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ABSTRACT OF THE DISSERTATION 

 

Objects to Bits: 

Efficient Implementation of Object-oriented Languages on Very Small Devices 

 

by 

 

Benjamin Lawrence Titzer 

Doctor of Philosophy in Computer Science 

University of California, Los Angeles, 2007 

Professor Jens Palsberg, Chair 

 

The accelerating digital automation of the world around us has placed increased 

focus on the problem of developing reliable and flexible software for microcontroller-

class devices. Today, microcontrollers serve as the primary or auxiliary processor in 

products and research systems from microwaves to sensor networks. Microcontrollers 

represent perhaps the most severely resource-constrained embedded processors, often 

with as little as a few bytes of memory and a few kilobytes of code space. Language and 

compiler technology has so far been unable to bring the benefits of modern object-

oriented languages to such processors. In this dissertation, I will establish that advanced 

language and compiler technology can bring the benefits of object-oriented programming 

to even the most constrained of embedded systems. 



 xiii 

I present two systems I have developed that significantly advance the state of the 

art in this area: Virgil, a new lightweight object-oriented language which I have designed 

with careful consideration for resource-limited domains, and the ExoVM, a system that I 

built for specializing the IBM J9 Java virtual machine on a per-application basis. These 

two systems echo three recurrent themes: pre-initialization, reachability, and 

compression. Virgil explores these themes in a pristine setting where the language, 

compiler, and applications can be rebuilt from the ground up. To avoid dynamic memory 

allocation and the resulting system complexity, Virgil introduces initialization time, 

where an application can build complex data structures during compilation. This exposes 

the entire heap of the program to the compiler and allows new heap-sensitive compiler 

optimizations: reachable members analysis for combined dead code and data elimination, 

and reference compression and vertical object layout for more memory-efficient object 

representation. In contrast, the ExoVM explores these three key ideas in a scenario where 

the primary goal is to reuse a large-scale industrial strength virtual machine, but reduce 

footprint by automatically removing dead code in the program and the virtual machine on 

a per-application basis. 
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INTRODUCTION 

 

Microcontrollers are tiny, low power embedded processors deployed to monitor 

and control consumer products from microwaves to fuel injection systems, where often 

the presence of a computer is not readily apparent. Microcontrollers are gaining increased 

attention in the research community because they are an ideal fit for sensor networks, 

where programmability, physical size, and power consumption are important design 

criteria. A typical microcontroller integrates a central processing unit, RAM, 

reprogrammable flash memory, and IO devices on a single chip. They have limited 

computational power and memories that are often measured in hundreds of bytes to a few 

kilobytes, representing one of the most extreme instances of a software-programmable 

resource-constrained embedded system. For example, a popular microcontroller unit from 

Atmel, the ATMega128, has 4KB of RAM and 128KB of flash to store code and read-

only data; it serves as the central processor unit in the Mica2 [52] sensor network node. 

Microcontrollers allow for software programmability by storing a program’s 

instructions in a flash memory that allows infrequent, coarse-grained updates, usually 

done only during testing. Software for the smallest of microcontrollers is generally 

written in assembly language, but medium to large microcontrollers are often 

programmed in C. Generally there is not enough code space or memory to fit a true 

operating system that provides both software isolation mechanisms and resource 

virtualization; thus most programs run directly on the microcontroller without any of the 

protection mechanisms that are common on desktop computing platforms. This complete 
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lack of traditional software isolation mechanisms complicates the problem of developing 

robust software for microcontrollers, since programmers cannot rely on the familiar 

mechanisms by which software safety is achieved on typical desktop systems. 

In this situation, static detection of errors is best. Modern programming languages 

offer two powerful mechanisms for increasing software robustness through static 

checking: strong types and software verification. Strong types offer two important 

advantages to programmers: the ability to express and document intended invariants on 

variables and the ability to enforce these invariants, limiting each variable to a known 

(but perhaps unbounded) set of values described by its type. When the type system is 

expressed as a formal system and the semantics of the programming language are 

formally defined, it is possible to prove a type system is sound, i.e. that a well-typed 

program will not generate any of a large class of potentially harmful software faults 

(often referred to as “going wrong”). The compiler will reject programs that do not pass 

the typechecker and generate an error message that helps the programmer to correct the 

problem in order to establish the invariants required by its types. Thus, successful 

compilation of the program indicates that it is free of a large class of potential internal 

errors. Software verification, however, is the process by which a verification tool such as 

a model checker establishes that a program meets an external specification. 

While strong typing helps in many programming paradigms, statically typed 

object-oriented languages have been particularly successful in the past 15 years. Notable 

examples include C++ [91], Java [46], and C# [1]. More recently, blending of functional 

and object-oriented concepts in a statically typed context have been successful in 
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languages such as Ocaml [5] and Scala [3][74]. Despite the demonstrable advantages that 

these more advanced programming languages and their associated runtime systems offer, 

the combination of severe resource constraints and need for low-level mechanisms have 

slowed their adoption in embedded systems. In particular, language implementations still 

tend to be designed for desktop or server scenarios and often have large, heavyweight 

runtime systems that include dynamic code loading, advanced JIT compilers, reflection, 

and serialization, all of which increase both the fixed cost of the virtual machine and the 

proportional cost of increasing program size. This often makes the total resource 

consumption of both the VM and application together unacceptable for very small 

devices. 

It is often assumed that the steadily increasing memory capacity of computers 

across the spectrum will solve this problem, and all devices will eventually have enough 

memory to run today’s software. While Moore’s law holds that the transistor density on 

integrated circuits doubles every 18 months, allowing larger and larger scale 

microprocessors, microcontrollers and the size class that they represent are unlikely to 

become obsolete soon. First, the improvements in transistor size through more advanced 

process technology can be exploited on several dimensions, including transistor count, 

energy consumption, clock speed, and manufacturing cost. While desktop and server 

microprocessor manufacturers have focused primarily on transistor count and clock speed 

in pursuit of performance, microcontroller applications tend to push vendors to 

concentrate more on manufacturing cost and energy consumption. Secondly, several 

factors conspire to slow the apparent improvement in process technology at the low end 
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of chip design, including industry consolidation and the increasing cost of manufacturing 

plants, resulting a lag time of several years before top-of-the-line process technology is 

employed for embedded chips such as microcontrollers. Thirdly, while microcontroller 

vendors continue to increase the memory capacity of their high-end models, they still 

manufacture and sell all of their previous lower-end models, because those chips still 

meet the needs of both legacy and new applications, since customers will always buy the 

smallest model that is capable of running their particular application.  

 

1.1. Thesis statement 

 

This dissertation addresses the problem of matching statically typed object-

oriented languages to very small devices. My thesis can be summed up in one sentence: 

 

Advanced language and compiler technology can bring the benefits of object-

oriented programming to even the most constrained of embedded systems. 

 

This dissertation provides evidence that this statement is true, presenting two 

systems that I have built which offer significant contributions to the state of the art in 

developing software in higher-level object-oriented languages for small devices.  

Before Virgil, it was thought that building systems software in a strongly typed 

language was impossible without opening holes in the type system and building a 

specialized language runtime that underlies all programs, often including significant 
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amounts of unsafe code. These runtime systems tended to be large enough that it was 

thought to be impossible to develop for microcontrollers. Virgil represents a leap forward 

in language technology for this domain, requiring no such loopholes in the type system, 

with a fixed cost so low that it rivals C, even running on the smallest of microcontrollers. 

Virgil programs compile directly to machine code and require no runtime system; the 

language provides access to hardware state sufficient to implement all device drivers 

necessary on a microcontroller. Key to achieving these results is a staged computational 

model which introduces initialization time, a phase during compilation in which the 

Virgil application can execute arbitrary code to allocate and initialize its data structures. 

Unlike traditional compilers that focus on code optimizations, the Virgil compiler 

performs an unprecedented amount of data optimizations. In this case, the strong type 

safety of the language and the availability of the entire program heap make optimizations 

easier, allowing the compiler to perform combined dead code and data removal and 

compression without sophisticated pointer analyses. 

Before the ExoVM, it was thought that developing Java applications for 

embedded devices with limited memories required specialized virtual machines that were 

specifically designed for small memory footprint. One consequence of that assumption 

was that embedded VMs have tended to lag behind the state of the art in performance and 

feature completeness. The ExoVM challenges this assumption and presents a system for 

reusing an existing large, state-of-the-art virtual machine in smaller footprint scenarios 

without requiring intrusive modifications. The ExoVM accomplishes this by applying the 

main themes of this dissertation: it pre-initializes the virtual machine, building a 
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complete representation of the program, applies program analysis techniques inspired by 

Virgil to compute the closure of all reachable entities, removing VM data structures and 

subsystems that are not used by the Java program, and then compacts the live data 

structures into a persistent image file for use at runtime.  

1.2. State of the Art 

This section describes the state of the art in three categories; embedded object 

systems, embedded languages, and program data compression technologies. 

1.2.1. Embedded Object Systems 

Most object-oriented languages use a virtual machine as their primary language 

implementation. By far the most popular language in this category is Java, but others 

include C#, Smalltalk, Self, Scala, Python, and Ruby. Virtual machines have important 

advantages for developing and distributing software, including a compact machine-

independent object code format for mobile code safety, fluid integration of dynamic code 

loading, support for reflective language features, automatic memory management, and 

increasingly sophisticated dynamic optimizations. For embedded systems, virtual 

machines can offer a number of advantages. In fact, the original development of the Java 

language and virtual machine was motivated by the need to develop portable embedded 

software for TV set-top boxes [4]. Two advantages are that a compact bytecode format 

can reduce the size of the application’s memory footprint and fine-grained software 

update can be useful in a scenario where the software on the device changes rapidly, 

particularly during testing and development. 
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In the early days of Java virtual machines, a complete implementation consisted 

primarily of a bytecode interpreter, class loader, and simple garbage collector. The 

simplicity of the system made the fixed cost of the virtual machine small enough to be 

suitable for devices with small memories, but this simplicity came at the expense of 

performance and language features. As the Java language evolved and its domain 

expanded, many of the original advantages were eroded by the increasing complexity of 

the language and virtual machine subsystems in pursuit of performance and features, 

usually at the expense of memory footprint. Today, a state-of-the-art virtual machine that 

supports dynamic class loading, JIT compilation, advanced garbage collection, and the 

complete Java language specification and accompanying class library spans millions of 

lines of code and has a memory footprint on the order of several megabytes: simply too 

large for many embedded devices.  

This upward pressure on virtual machine implementations has led to a backlash 

where a number of specialized VMs with fewer language features and simplified 

subsystems have appeared. There have been several research systems [27][30][63][97], 

and a number of standard library subsets have arisen, for example, the Connected Limited 

Device Configuration [2]. Most of these systems target devices with tens or hundreds of 

kilobytes of RAM, more than an order of magnitude more than a typical microcontroller. 

The Spotless System [97] was developed in 1999 at Sun Labs and later became 

the K Virtual Machine (KVM). It was one of the first Java virtual machine 

implementations developed from scratch that was specifically designed for small memory 

footprint scenarios; the basic RAM footprint was on the order of a few tens of kilobytes. 
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It achieved this small size by starting from nothing, building the virtual machine in C, 

and concentrating on a small (rather than full-featured) class library. It had no JIT 

compiler, but a simple interpreter, and had correspondingly low performance, particularly 

compared to modern virtual machines, but acceptable in comparison to the mainstream 

virtual machines of the time. Like many virtual machines that would follow, the Spotless 

System provided a platform for developing embedded applications, but did not address 

the problems of writing the actual system software, i.e. the virtual machine and operating 

system itself, in a safe language. The KVM [2] evolved into a language platform standard 

dubbed J2ME (Java 2 Micro Edition), whose focus was to define a small number of 

standard subsets of the Java language and libraries for embedded systems. At that time, it 

was simply accepted that a language subset definition was required in order to 

standardize the inevitable number of specialized virtual machines that would appear. The 

ExoVM presented in Chapter 2 directly challenges this assumption, demonstrating it is 

possible to reuse an existing, fully featured virtual machine in a small footprint scenario. 

Resource limitations have led to a number of systems that explore moving more 

work, including initialization, compilation, and compression to an earlier offline phase. 

VM* [63] is a virtual machine construction kit that allows the automatic generation of an 

application-specific virtual machine, including only the parts of the interpreter and 

runtime system that are needed. VM* targets very small sensor network nodes, and 

supports a subset of the Java language. It exposes a native API for operating system and 

hardware services, which allows simple sensor applications to be written in Java. VM* 

addresses only the application level development of sensor networks; the underlying 
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operating system services and the VM functionality are all implemented in C. Like many 

embedded virtual machines, a bytecode interpreter forms the core. The overhead in 

executing application code is between 50 (iadd) and 500 (invokevirtual) machine 

cycles per executed bytecode. The total RAM footprint for the system was between 500 

bytes and 2 kilobytes for five applications, while code footprint was between 9 and 25 

kilobytes. This makes it suitable for smaller applications on larger microcontroller 

models, but three problems still exist: poor performance, the virtual machine itself is 

implemented in C, and it cannot target the smallest microcontroller models. Later work 

[112] on the VM* system improved performance through precompilation and a network-

attached compile server for dynamic compilation based on profiling feedback from 

applications on the nodes, a technique first demonstrated by Delsart, Joloboff, and Paire 

in [37], but the other two problems remain. 

Several research systems have explored moving some of the work of class loading 

into an offline phase. Pugh and Weddell [80] describe a number of techniques for 

reducing class file sizes by compressing and removing redundant information. A more 

aggressive technique is to build the VM’s internal view of classes offline in order to 

remove to need to parse the standard class file format. For example, later improvements 

to the KVM added support for Java Code Compact (JCC) technology, which preloads 

class files against the virtual machine, generating the KVM-internal representation, 

emitting a C file that is compiled and linked into the KVM executable. JCC also supports 

manually specifying which of the application classes can be removed in this step.  
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Courbot, Grimaud, and Vandewalle [30] present a more aggressive system. They 

describe romization, a technique that loads an application into the virtual machine, pre-

initializing internal data structures, reducing them, and emitting a C file that contains the 

Java application with its custom virtual machine. Their system shares important 

similarities with the ExoVM presented in this dissertation. First, they employ pre-

initialization, closure, and persistence, which are the keys to the ExoVM philosophy. 

Second, they share the view that customizing against a larger, fully featured JVM is 

superior to building customized VMs. However, they base their system on the Java in the 

Small [6] project, which is (as its very name implies), designed for small footprint 

already; they do not base their work on an existing industrial strength virtual machine as 

the ExoVM described in this dissertation has. Third, they do not describe their closure 

algorithm in detail; the ExoVM’s closure constraint system sheds important light on the 

interconnectedness of the underlying virtual machine’s implementation, teaching us 

larger lessons and insights into virtual machine design that are identified and described in 

this dissertation. And finally, the ExoVM persistence mechanisms faced important real-

world challenges that are of practical importance and informative to later implementers of 

these ideas. 

Several research projects have focused on simplifying the JIT compiler. Recent 

work by Gal and Franz [41] has made important progress by concentrating on compiling 

straight-line bytecode sequences. Their system is based around a standard bytecode 

interpreter that collects dynamic profile information for bytecode traces. A heuristic 

selects profitable bytecode sequences to compile. Optimizing these straight-line trace 



 11 

code sequences is far simpler than the general case, simplifying many optimizations and 

reducing the implementation complexity of the JIT. However, their dynamic compiler 

still occupies approximately 150kb of code and data, which is too large for even the 

largest of microcontrollers. In contrast, Manjunath and Krishnan [67] use a simple JIT 

compiler that compiles basic blocks by concatenating the interpreter’s own code for each 

bytecode in the block in succession and then applying peephole optimizations. Their 

system occupies approximately 10 kilobytes of RAM. A detailed performance study is 

not provided, but it is likely the performance is somewhere between a pure interpreter 

and a very simple, non-optimizing compiler. 

While virtual machine research has made important advancements in the state of 

the art for embedded systems applications, ultimately, virtual machines are an attempt to 

address the challenges of embedded systems for the application level, not the system 

level. Usually, the virtual machine itself is generally either implemented in a lower-level 

unsafe language like C or C++. Thus many of the problems that plague software in these 

languages are still present for the systems software. Some attempts have been made to 

use higher-level languages such as Java for systems development. However, using Java to 

implement virtual machines and operating system kernels, such as in Jikes RVM [15] or 

JX [45], generally requires a native compiler that translates Java bytecode to machine 

code in order to bootstrap. This often requires magic holes in the type system to be 

agreed on by the system and the compiler in order to implement certain language 

features. In the end, this provides a convenient Java environment for applications, but 

significant challenges still remain for building the VM or OS itself. 
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The Solo Operating System [49], developed in 1976 by Hansen, was perhaps the 

first to investigate the use of type-safe, structured programming languages for kernel and 

operating systems development. Solo explored applying Concurrent Pascal to target the 

PDP/11, developing a kernel and applications together, with a kernel of about 8KB of 

hand-written machine code. The compiler was part of the system; all programs had input 

parameter types that were checked at program invocation. Programs communicated via 

passing argument values, reading from buffers, and reading and writing from a very 

simple file system. Although extremely innovative for its time, it was a research system 

that languished in obscurity during UNIX’s viral spread. Unlike Virgil, it was developed 

for an interactive console environment and thus included a fully-fledged (though simple) 

compiler for Pascal as part of the system to support development of new programs on the 

running system. Pascal, especially at that time, was a comparatively simple language, and 

typechecking and code generation techniques were simpler in order to be feasible on the 

slower machines of the day. In contrast, Virgil has an advanced type system with objects 

and parametric types. The Virgil compiler is not meant to run on the actual deployed 

hardware device, allowing it to utilize the computational power of the desktop system on 

which the Virgil applications are developed and apply more advanced code generation 

techniques.  

The Singularity Project [51] at Microsoft Research is a recent attempt to build a 

complete desktop operating system primarily in C#, eliminating as much unsafe code as 

possible. In developing a modern operating system kernel with a safe language, there are 

several challenging problems that potentially require unsafe code. For example, 
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implementing virtual memory requires manipulating MMU mappings, context switching 

requires saving and restoring processor state onto and off of program stacks, and locating 

certain memory-mapped devices may require scanning raw memory. The garbage 

collector implementation potentially requires some unsafe code and special magic tunnels 

under, around, or through the type system. The result is that there is still a large amount 

of unsafe code. 

Embedded object systems can also offer embedded language features as an API or 

library on top of an existing virtual machine. For example, Eventrons [88] are a 

programming construct introduced in the context of the IBM J9 virtual machine that 

represent Java tasks with additional language restrictions. Specifically, an Eventron is 

forbidden from reading or writing mutable reference fields, allocating memory, or 

attempting locking operations. These tight restrictions enable the Eventron to safely 

preempt the garbage collector and achieve a response time that is shorter than the 

minimum GC pause time. A runtime verification phase (performed after the Eventron 

object is constructed but before execution) enforces the language restrictions. Given the 

fully constructed Eventron object within a Java heap, the verifier discovers the methods 

and objects reachable from the run() method, checks that each method obeys the 

language restrictions, and then pins the reachable objects in memory. While an important 

advance for responsiveness, Eventrons are too restrictive because they forbid mutation of 

reference fields; they also still require a large runtime system support and therefore 

wouldn’t be suited to developing the actual VM or operating system in a safe language. 
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1.2.2. Embedded  Languages 

C++ is often cited for its suitability to writing low-level code, but the language 

and its implementation have a number of drawbacks [85] that make targeting a 

microcontroller difficult; primarily the complexity of the object model, the inefficiencies 

of certain language constructs, the runtime and metadata requirements, and a lack of 

strong safety mechanisms. C++ lacks the strong type safety guarantee given by Virgil, 

and thus some kinds of optimizations for C++ cannot be made sound, such as reference 

compression, which is described in Chapter 4 of this dissertation. Despite promises of its 

adherents, C++ has not succeeded for microcontroller class systems. 

NesC [44] is an extension to C that adds module capabilities and a simple task 

model that is based on two-way interfaces which can be configured by “wiring” them 

together in a configuration language. NesC inherits C’s weak type system and therefore is 

subject to a number of potentially dangerous and difficult to diagnose program errors 

such as out-of-bounds memory accesses causing memory corruption, stack overflow, etc. 

The primary focus was to simplify configuration of programs through the module system, 

but these module capabilities are mostly orthogonal to the deeper language issue of safety 

and expressiveness, especially in regard to objects, which nesC does not provide. The 

task model is hardwired into the language and implemented underneath by a significant 

amount of TinyOS-specific C code. The core language does not provide for allocating 

memory, although it’s possible to link in libc and use malloc(). Applications and 

modules are expected to statically allocate the memory that they require, but complex 
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initialization routines are not possible, and a significant amount of code can be required 

at device startup. 

In the 1970’s, Charles Moore designed Forth [7], a minimalist interpreted 

language that has become popular for programming embedded systems. Forth is stack-

based and untyped, exposing the stack to the programmer with its reverse polish notation. 

There are many free, reusable implementations available. In fact, its philosophy 

encourages building custom, application-specific implementations and extensions, rather 

than providing a one-size-fits-all library or compiler. However, its lack of type safety and 

constructs for information hiding, data encapsulation, and modularity limit its use in 

developing larger systems.  

  

1.2.3. Program Data Compression 

In addition to the previously described techniques that seek to remove or reduce 

the static program or virtual machine size, researchers have also investigated a number of 

compiler and runtime techniques for reducing the memory footprint of the program’s data 

structures. Individual program quantities such as pointers, object headers and primitive 

values can be subjected to compression, reducing the average or worst case memory 

footprint of the heap. Compression of the heap can sometimes help performance as well.  

For example, Mogul et al. [68] observed in 1995 that pointer sizes could affect 

performance significantly on a 64-bit computer because larger pointers occupy more 

space, putting greater stress on the memory system, affecting cache hit ratios and paging 

frequency. 
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Some compiler techniques are purely static. Cooprider and Regehr [31] use static 

analysis to analyze C programs with statically allocated heaps. Their technique uses 

abstract interpretation and a simple pointer analysis available with the CIL framework 

[72] to compute bounds on the range of values for every variable in the program. A 

source-to-source transformation packs scalars, pointers, structures, and arrays into fewer 

bits using a compression-table scheme. Lattner and Adve [65] use static analysis to 

convert and compress 64-bit pointers to 32 bits on a per-data structure basis. Their 

technique extends their earlier work on static pool allocation [64] that uses sophisticated 

context-sensitive, field-sensitive pointer analysis to assign data structures to pools. 

While traditional static compilers do not have the complete heap, dynamic 

techniques implemented in the language run-time system can track all objects that have 

been created and use the information to dynamically compress pointers.  Some research 

systems exist that employ dynamic techniques, sometimes assisted by hardware. The 

simplest is perhaps that described by Adl-Tabatabai et al. [4], which represents 64-bit 

pointers as 32-bit unsigned offsets from a known base; the result is a significant 

performance improvement, despite additional instructions. 

Many virtual machines employ compression techniques as well, usually on object 

headers. In Java, object headers contain such data as type information, a hash code, and a 

lock, which can often occupy two or three words of space. Bacon, Fink, and Grove [20] 

presented compression techniques that allow most Java objects to have a single-word 

object header. Full object compression is possible as well. Chen et al [28] study dynamic 

heap compression techniques in an embedded Java VM setting, based on the KVM [97] 
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reference implementation of the Connected Limited Device Configuration (CLDC) [2], 

which is intended for use on devices that have at least 192KB of RAM. The center of 

their system is an enhanced garbage collector system that compresses objects when a 

traditional compacting collector cannot recover enough space for new objects. Their 

collector employs several techniques for tuning the tradeoff in execution time versus 

memory size. It uses a simple and fast compression algorithm that operates on the raw 

memory values of objects, without considering the types. Dynamic checks are required so 

that compressed objects are decompressed upon their first use.  

The hardware and operating system can also assist in reducing program data size, 

particularly pointers. For example, Zhang and Gupta [115] use special hardware 

instructions to help compress pointers and integers on the fly; they use profiling 

information to guide what data should be compressed and when compression should be 

done. Wright, Seidl, and Wolczko [114] present a memory architecture with hardware 

support for mapping object identifiers to physical addresses, thereby enabling new 

techniques for parallel and concurrent garbage collection; such an architecture could 

support compression of pointers as well.  Wilson [111] supports large address spaces with 

modest word sizes by using pointer swizzling at page fault time to translate large pointers 

into fewer bits.   

Ananian and Rinard [17] present a suite of both static and dynamic techniques to 

reduce data size for Java programs. They propose field reduction, a whole-program static 

analysis that bounds the ranges of values that primitive fields may contain over any 

execution in order to reduce their size, unread and constant field elimination, that 
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removes unused and constant fields, static specialization, which eliminates fields that are 

constant by subclass, externalization, which removes frequently constant fields and puts 

them in a hash table, and class pointer compression, which is essentially a single 

compression table for object headers. Most of these techniques are subsumed by or are 

complementary to techniques described in this dissertation. 

Tip et al [98] present Jax, a system that employs a number of static techniques for 

reducing Java programs, particularly their static footprint in terms of code and metadata 

size. Among these are name compression, which replaces long class and method names 

with shorter ones, class merging, which reduces the total number of classes, dead code 

elimination, which removes unreachable methods, dead field elimination, which removes 

unused and write-only fields, and devirtualization of method calls for removal of 

associated metadata. Name compression is unnecessary for Virgil because class and 

method names are not included in the compiled program. Class merging is also 

unnecessary because the Virgil compiler will not generate any metadata (including meta-

objects) for classes that have no objects remaining in the live heap after initialization. 

RMA also removes all dead methods and dead or write-only fields, inlining constant 

fields with their actual values (which are available after initialization, but may not 

necessarily be available to Jax). Like Jax, it also performs devirtualization and removes 

all metadata for methods that are completely devirtualized. However, Jax employs a form 

of flow analysis in its call graph construction algorithm, which is potentially more 

precise, whereas RMA uses a type-based approach with heap liveness information. 



 19 

Agesen and Ungar [10] in 1994 described a system for extracting Self 

applications from their environment. Their system extends previous work by Agesen on 

type inference for Self by adding the ability to remove dead slots from objects and persist 

them to disk, solving a similar problem to RMA. However, because Self is dynamically 

typed, their extractor requires type inference in order to give a sound approximation of 

possibly accessed slots of objects. RMA, however, simply uses the static, declared types 

of objects. Also, unlike RMA, the three phases of type inference, computation of live 

object slots and selection of live objects are distinct and are not iterative, therefore it is 

possible that type inference could become more precise after the first iteration. In 

contrast, RMA discovers reachable code, objects, and methods on demand in a single 

phase. Their experimental results showed their system could reduce image sizes by a 

factor of 10, but the resulting images are still more than 300kb in size. 

1.3. Three themes 

Though Virgil and the ExoVM have different views of code reuse and runtime 

infrastructure, they nevertheless echo three recurrent themes: pre-initialization, closure, 

and compression.  

The first key theme is pre-initialization, where data structures are constructed and 

initialized in an offline phase, which exposes them to compiler analysis and optimization. 

Unlike traditional compiler problems where the unavailability of the heap and the 

inevitability of the halting problem forces analyses to consider approximations of the 

possible runtime data structures of the program, pre-initialization exposes a rich new 

realm where analyses can use not only the code of the program with an approximation of 
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the heap, but actual data instances, in its optimization. This theme of pre-initialization is 

expressed in Virgil directly in the concept of initialization time, whereby an application 

allocates its entire heap during compilation. The further restriction of forbidding dynamic 

allocation means that the compiler has a complete picture of the entire runtime heap 

during compilation. The ExoVM system clearly echoes the pre-initialization theme with 

its approach of first loading the application program into the unmodified virtual machine, 

causing the VM to build its internal representation of the program, then resolving inter-

class references, and then further initializing the application itself by executing the static 

initializers of its classes. This pre-initialization phase of the ExoVM allows the further 

analysis phases to have a complete picture of the VM’s data structures and an initial 

picture of the application’s heap. 

The second key theme that is echoed in these two systems is the concept of 

closure, or computing an approximation of the set of program entities reachable over 

execution, both code and data. Virgil introduced this idea in the reachable members 

analysis (RMA) optimization that simultaneously computes a closure over live objects in 

the pre-allocated heap and the code of the program. This optimization idea appears again 

in the ExoVM, where closure over the VM’s initialized data structures, application 

objects, VM code, and application code is computed simultaneously. We can consider the 

ExoVM closure process to be an extension of RMA that works over not only application 

entities, but also virtual machine entities. This idea, while implemented in separate 

systems, shares the same core reachability algorithm that can be posed succinctly as 

subset constraints. 
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The third key theme that is explored in this dissertation is compression, where the 

typical representation of an application quantity is replaced by a more space efficient (but 

perhaps slower) representation in order to reduce the total memory footprint. The Virgil 

compiler performs compression on object references using two techniques: table-based 

compression and compressed vertical object layout. Both techniques exploit the type-safe 

nature of Virgil to represent references in fewer bits than would be required in the 

familiar pointer representation of object references. While the ExoVM system does not 

employ compression directly, it does however compact the virtual machine’s internal data 

structures, which are normally allocated in pools and arenas that can be subject to both 

internal and external fragmentation. Compaction in the ExoVM reduces the internal 

fragmentation and eliminates external fragmentation, thereby saving overall memory 

footprint. 

 

1.4. Two Systems, Two Perspectives on Reuse 

 

The exploration of these two systems in this dissertation offers complementary 

views of the three main themes from two distinct perspectives on code reuse. The 

ExoVM takes the perspective that we would like to reuse as much infrastructure as 

possible that has been invested in developing state-of-the-art language implementations. 

In the case of Java, this means reusing an industrial strength virtual machine that includes 

advanced compilation and garbage collection technology. Such systems can be millions 
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of lines of code and represent hundreds of man-years of effort, which should be reused if 

possible.  

 

1.4.1. The ExoVM 

As discussed previously, the pressure for more language features, libraries, and 

performance for Java has led to a vast increase in the size and complexity of virtual 

machines with a concomitant increase in memory footprint. The traditional approach has 

been to build customized virtual machines, often entirely from scratch, that trade off 

feature completeness or performance for memory footprint. 

This traditional approach has important disadvantages. First, though a small VM 

is comparatively less engineering effort than a fully featured one, software development 

and maintenance effort is inevitably duplicated as engineers spend valuable resources 

implementing and tuning subsystems that could likely be reused if they were originally 

designed to be suitably modular. Secondly, improvements in the state of the art in 

implementation technology, which usually first appear in mainline virtual machines, 

cannot be automatically utilized in the custom VM. Thirdly, evaluations of research ideas 

and implementation techniques inevitably have narrower scope because results are not 

immediately comparable across domains that do not share a common virtual machine 

infrastructure.  

Unlike all previous work on state-of-the-art embedded virtual machines, The 

ExoVM approach is to reuse an existing industrial strength virtual machine and specialize 

it to a particular application by pre-initializing the virtual machine with the target 
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program. In order to make the system more amenable to automatic specialization, the 

ExoVM limits the dynamism of both the program and the virtual machine, making them 

as static and predictable as possible. This makes it easier for an automatic program 

analysis to include only what is necessary from the virtual machine on a per-program 

basis.  

The starting point of the ExoVM system is a research configuration of the J9 Java 

virtual machine from IBM, a complete industrial-strength JVM implementation and its 

associated Java class library. The ExoVM assumes a closed world scenario, which allows 

the program and its VM implementation to be viewed in a more static way. Loading the 

entire application into the unmodified virtual machine allows the first step, pre-

initialization, where all of the internal virtual machine data structures are created offline. 

The next step is to employ feature analysis, a program analysis technique that computes 

the closure, or the set of reachable application and virtual machine entities that may be 

accessed over any execution of the program. The reachable entities are then copied and 

relocated to an image file that serves as a completely pre-initialized snapshot of the 

virtual machine with respect to that particular program. At runtime, the image file can be 

loaded into a specialized booter VM that is derived from the mainline VM by removing 

the dynamic resolution mechanisms and unnecessary subsystems such as the class loader 

and byte code verifier. 

The ideas embodied in the ExoVM and its prototype implementation represent a 

significant step forward in virtual machine construction in general, and the application of 

virtual machine technology in embedded systems specifically.  The ability to measure the 
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modularity of the virtual machine with respect to the source language using feature 

analysis opens up new possibilities for building more modular virtual machines in the 

future. The ExoVM has the potential of closing the gap between embedded virtual 

machines and mainline virtual machines by allowing a single infrastructure to span both 

domains, reusing important VM subsystems such as the JIT compiler and garbage 

collector. 

1.4.2. Virgil 

Virgil takes a radically different perspective on code reuse and considers the 

implications of redesigning the language and compiler from the ground up, free from the 

restrictions of any particular language feature or implementation. In contrast to the 

ExoVM, which attempts to reuse an existing virtual machine, Virgil approaches the 

problem of matching objects to microcontrollers from the language and compiler level, 

which allows the additional freedom to add or remove language features in order to meet 

the constraints of the microcontroller domain. 

Unlike previous work on embedded virtual machines, which only address 

application-level programming on embedded systems, Virgil is intended to address the 

challenges of developing systems software at the lowest layer, without requiring system 

designers to bootstrap a state-of-the-art virtual machine. Virgil is intended to allow both 

applications and operating systems to be developed in one language, without any 

supporting software. This is appropriate for the microcontroller domain, where 

applications are generally written to run in a standalone manner. Here, the simplicity of 

the hardware devices, the lack of virtual memory, and the one-stack, single-process 
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model allows Virgil programs to be implemented completely in safe code and compiled 

directly to the bare hardware with no runtime system. 

Virgil represents a unique point in the design space of languages for the 

embedded domain because it is both freed from the burden of legacy operating system 

and driver code yet constrained by the limitations of microcontroller devices. Virgil starts 

with the assumption that it will be used to build entire software systems from the ground 

up, in one language, without the need to interface to existing code in unsafe languages 

like C. Having the entire system in one safe language affords more complete control to 

the compiler to make efficient representation choices for objects and object references 

since it is not constrained by any external code and is only constrained by the hardware. 

This lack of legacy code also eliminates the need for a mechanism to interface between 

the two realms and potentially increases the robustness of the system.  

While the potential language design space is large, memory limitations are so 

severe on microcontrollers that Virgil is forced to avoid those language features that have 

large runtime cost in order to fit on the tiniest of devices. In fact, Virgil is designed to 

require no runtime system or library of intrinsic classes. It jettisons many language 

features that are common in object-oriented languages such as first-class metadata 

(“class” objects), a universal super-class (Object class), and reflection because their 

space costs are too high. All of Virgil’s features are designed to make the proportional 

cost of using Virgil’s features as low as possible so that a small change in the program 

size produces a small change in its footprint in a predictable manner, which increases 

programmers’ ability to make intelligent resource tradeoffs. 
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Memory allocation during runtime on the device is forbidden, removing the need 

for a garbage collector with its associated performance and footprint overheads. Instead, 

Virgil introduces initialization time, where programs can allocate and initialize objects 

during compilation for use at runtime. After initialization time, the entire runtime heap of 

the program is available to the compiler before generating code. This allows the compiler 

to ensure that memory is not exhausted and provides an opportunity for novel heap-

sensitive optimizations. The Virgil compiler employs reachable members analysis, a 

sophisticated dead code and data elimination, and several techniques for reference 

compression that represent object references in a more compact way in order to save 

RAM.  

 

1.5. Organization 

 

The remainder of this dissertation is organized into three main chapters that 

describe in detail the systems I have built and their contribution to the field. Chapter 2 

gives the technical development of the ExoVM system for J9 and corresponds closely to 

the paper published in PLDI 2007 [102]. Chapter 3 discusses the design of the Virgil 

language and the reachable members analysis optimization, containing most of the 

material from the OOPSLA 2006 paper [101] with added sections on raw and parametric 

types, as well as a more thorough experimental evaluation with new benchmarks drawn 

from Virgil driver code. Chapter 4 focuses on compression optimizations and includes 

some material from the OOPSLA 2006 paper as well as all of the material in the recent 
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CASES 2007 paper [104], which introduced vertical object layout. Chapter 4’s 

experimental evaluation mirrors that of Chapter 3, using the same benchmarks from the 

recently completed Virgil drivers. Chapter 5 gives the overall conclusion. 
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2. THE EXOVM 

This chapter describes the details of the ExoVM system, which exists in a 

scenario where we would like to reuse the investment in a state-of-the-art virtual machine 

for an embedded device with a smaller memory footprint. The ExoVM establishes part of 

the thesis by showing that advanced virtual machine technology can be reused in more 

resource-constrained embedded systems. This chapter shows that the main themes of this 

dissertation, particularly pre-initialization and closure, help to achieve this goal when 

applied to an unmodified virtual machine. 

The Java programming language and platform offer compelling advantages for a 

large class of embedded systems applications, including cross-platform compatibility, 

mobile code safety, automatic memory management, and a compact code distribution 

format. However, embedded Java virtual machines lag significantly behind the state of 

the art, particular in terms of performance and garbage collection technology. One of the 

primary reasons for this is that embedded virtual machines are often developed 

independently of standard “mainline” implementations and focus on small memory 

footprint rather than performance or feature completeness. Most embedded virtual 

machines have a completely separate source code base that is maintained independently, 

although some larger virtual machines have clumsy and ad-hoc configuration 

mechanisms that allow coarse-grained removal and replacement of subsystems. 

The ideal solution to the disparity would be a single VM implementation that 

spanned both domains. In theory, such a system would be able to seamlessly adapt 

between server situations with long-running, massively parallel and enormously memory-
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intensive tasks, desktop situations with focus on user interactivity and media, and 

embedded scenarios with limited footprint and even real-time requirements. We believe 

this is a grand challenge in virtual machine construction that has not yet been solved, 

indicated by the proliferation of single-domain systems which each have their particular 

strengths and weaknesses. 

The ExoVM approaches the embedded virtual machine problem from a new 

perspective and contributes positively to this grand challenge by applying the three main 

themes of this dissertation. Instead of building a new, specially designed virtual machine, 

we attempt to reuse an existing industrial strength virtual machine (IBM’s J9 virtual 

machine as the case is here), thus benefiting from the development effort already invested 

in building and tuning the “mainline” virtual machine. Our work highlights important 

deficiencies in the system we decided to adapt to our purposes and gives important 

lessons for virtual machine design in the future. Our approach is to apply pre-

initialization to build the initial program representation within the VM and resolve 

references, closure to compute the reachable entities over any execution of the program, 

and persistence to compactly store the live data structures for use at runtime. The result is 

a vast reduction in the fixed cost of the virtual machine and sizeable footprint savings. 

We based the ExoVM implementation on the CLDC 1.1 MT version of J9 and 

additionally included some minimal Java reflection support that is required to implement 

ExoVM pre-initialization and closure computation, thus our configuration does not 

precisely correspond to any particular IBM product. We studied two variants of this VM: 
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one using the CLDC class library (j9cldc, approximately 190kb), and another using a 

much larger class library that approximates the J2SE 1.4 (j9max, approximately 1.6mb). 

2.1. Overview of the Technique 

The first step of the ExoVM is to pre-initialize the unmodified virtual machine by 

loading the target application using the virtual machine’s own internal class loading 

mechanisms. This does not require intrusive modifications and causes the virtual machine 

to initialize itself and build its own internal data structures as well as data structures that 

represent the program, including its classes, methods, threads, etc. Part of this step is to 

resolve all internal and inter-class references that would normally be resolved 

dynamically while executing the program. If we assume a closed world scenario where 

all the code of the application is available, the pre-initialization phase can resolve all 

references statically and build a representation of the entire program, allowing the 

metadata that is associated with lazy resolution of references (as well as the mechanisms 

themselves) to later be removed. 

The second step of the ExoVM is to compute a closure over this pre-initialized 

virtual machine, including entities from both the internals of the VM and from the Java 

program itself. This closure may contain live VM data structure instances, Java objects, 

methods, and VM code. This echoes the second main theme of this dissertation, to use 

program analysis techniques to compute the set of reachable entities over any execution 

of the program. The computation of the closure relies on an approximation of the runtime 

behavior of the program, since the closure must identify all entities that might be 

accessed during any execution. In particular, the analysis needs to relate Java-level 
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operations and entities to VM-level operations and entities. To accomplish this, we apply 

feature analysis, which uses a constraint system that relates Java language features to 

their implementation in the J9 virtual machine.  

The third step of the ExoVM is to persist the closure of data structures and Java 

code that was identified in the feature analysis step into a compact, ready-to-use image. 

This closure may contain Java methods, classes, and objects, as well as virtual machine 

data structure instances and native methods. We developed a system that understands the 

layout and composition of all important VM data structures and is able to copy and 

relocate actual data structure instances from inside the virtual machine’s internal memory 

to a specialized image file. The image file contains a complete, ready-to-go virtual 

machine snapshot that has the target program loaded into it and contains only the data 

structures necessary to execute that particular program.  

The last step, runtime, is accomplished by using a customized “booter” VM that is 

derived from the unmodified virtual machine by simply removing the dynamic loading 

and resolution mechanisms, virtual machine initialization routines, as well as other 

unnecessary subsystems like the bytecode verifier. When mated with an image file that 

contains all of the data structures necessary, ready and initialized, the booter VM can 

simply memory map the image file and begin executing the Java program beginning at 

main(). 
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2.2. Fixed and Proportional Costs 

The dynamic memory footprint of a Java application is comprised not only of its 

own code and data, but also that of the virtual machine and class libraries. We can 

classify the memory usage into two main quantities: a fixed cost and a proportional cost. 

The fixed cost corresponds to the code and data of the VM that is independent of the 

application, such as a garbage collector, runtime class loading mechanism, interpreter, 

JIT compiler, etc. The proportional cost corresponds to program’s code and heap—e.g. 

the internal representation of its classes, bytecodes, dispatch tables, compiled code, object 

type information, method exception tables, Java objects, etc. Like the VM, the Java class 

library has both proportional and fixed costs, since many core classes are needed for any 

program and others are only loaded as necessary, though the exact breakdown is not 

clearly delineated or typically well-understood. 

For many embedded applications, the fixed cost of the JVM runtime system and 

its data structures may dwarf the size of the application. For example, the j9cldc VM 

executable has more than 600kb of native code, 40kb of static data, and 190kb of Java 

classes, while none of the 6 EEMBC benchmarks (Section 6) requires more than 120kb 

for its own class representations, and 5 of 6 execute successfully with a heap less of just 

128kb. In this case, it is most important to reduce the fixed cost of the virtual machine. 

However, for larger applications, the fixed cost of the VM becomes amortized, and 

eventually the proportional cost will dominate. If we were to envision an ideal solution, 

we would want the fixed cost to be as small as possible to avoid penalizing small 

programs, and we would want the proportional cost to be directly related to the size and 
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characteristics of the application so that simplifications and reductions of large programs 

produce predictable reductions in total footprint. 

Our insight is that the virtual machine can be divided into more fine-grained 

pieces of functionality that can be related to features in the Java programming language, 

and that the fixed cost of a state-of-the-art virtual machine is not as fixed as previously 

thought. Dividing the VM along feature lines allows costs that were previously fixed to 

become proportional to the feature usage of the program. Automated program analysis 

can then produce the set of features used in a particular application and therefore allow a 

customized Java VM with a smaller fixed cost to run the application. 

2.3. Pre-Initialization 

Many large programs have complex initialization routines that build data 

structures for use throughout the life of the program. In the case of a Java virtual 

machine, there are data structures to represent and manage the program and the 

program’s state, including threads, Java classes and methods, locks, the garbage collector, 

JIT compiler, the Java heap, etc. The insight of pre-initialization is that these complex, 

often long-lived data structures that are normally built at the beginning of the program 

execution can instead be built offline and saved for use when the program begins 

execution. If the data structures are pre-built, then the code for the initialization routines 

can simply be removed, saving both in memory footprint and startup time. 

We began studying our unmodified virtual machine’s startup routines with the 

intention of building a separate pre-initialization phase that would build the initial data 
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structures offline and save them. However, we soon discovered that the mechanisms that 

build and maintain internal data structures both at startup and throughout the execution of 

the program (e.g. resolving and loading a class) were simply too complex to replicate for 

our purposes. A far more elegant solution is to simply reuse the existing initialization 

routines by running them without modification until they reach a consistent state, and 

then taking a snapshot of the resulting data structures. 

The ExoVM system implements this solution by loading the program into the 

fully featured virtual machine using the standard startup and loading routines already 

built into the internal API. This naturally and nonintrusively causes the virtual machine to 

initialize itself to a state that is ready to begin executing the program. In particular, the 

VM has already built the internal representation of the first of the program’s classes and 

methods as well as parts of the class library. The initial threads data structures are 

allocated, and some Java objects have been created as a side effect of resolving some 

string constants. Important Java classes needed in the internal implementation of certain 

language features are already resolved. Thus the ExoVM analysis system has a complete 

picture of the initial data structures that are required to begin executing the program. 

Normally, the virtual machine would dynamically resolve and load new classes, but the 

closed world assumption of pre-initialization allows the VM to load all of the application 

classes over any execution. Therefore the VM has built the internal representation of all 

of the application classes and the class loading mechanisms are no longer necessary at 

runtime. 
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2.3.1. Class Initializers 

In Java, a class may define an optional class initializer (also called a static 

initializer), a static method that is executed upon the first use of the class while the 

program is executing. While lazy initialization gives rises to some semantic problems 

such as nondeterminism in initialization, exceptions in initializers, cyclic dependencies, 

and dynamic incompatible class change exceptions, the dynamic resolution of class, 

method, and field references in Java code has definite implementation costs. First, it 

requires that the constant pool references include the metadata needed for dynamic 

resolution, including the string names of methods, fields and classes. Second, dynamic 

resolution may trigger class loading and initialization. Third, the VM must also maintain 

more metadata for every declared class, field, and method in anticipation of new 

references to them in the future. Fourth, resolution mechanisms inevitably include hash 

tables and other such fast search data structures that consume space.  

While dynamically loading application classes may reduce the average case 

footprint for some applications, we consider dynamic resolution and initialization of 

classes as unwarranted complexity and resource consumption, leading us to explore the 

implications of changing the model according to our original design philosophy of 

making the program more static. Therefore, the ExoVM aggressively executes all class 

initializers for the live classes of the program and resolves all constant pool references to 

classes and methods as part of the pre-initialization phase.  

Changing the model has advantages as well as disadvantages. First, it ensures that 

class initializers will not need to be executed at runtime, which allows their code to be 
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removed. Second, no dynamic resolution of class, method, or field references will occur, 

so the metadata that is needed for dynamic resolution can be removed, and the 

mechanism can be removed from the VM. Third, this allows a program written with the 

model in mind to pre-allocate needed data structures in its static initialization routines, 

which are discarded before runtime, yielding a staged computation model closer to 

Virgil’s initialization time, which is discussed in Chapter 3. 

One disadvantage of this approach is that it subtly alters the semantics of Java’s 

class initializers, which some programs may depend on. Also, eager initialization could 

trigger the execution of routines that might not be triggered at runtime, which might 

allocate large data structures that waste space, destroy the state of other classes, and 

generally interact in unintended and unpredictable ways. However, we believe that most 

programs for this domain do not depend on the order or laziness of initialization. For 

example, in the EEMBC benchmark suite, only one program, Parallel, appears to do 

significant computation in its class initializers. This initializer does not depend on other 

classes, but simply allocates and initializes a static matrix of data that is used during the 

benchmark. Moreover, we believe that the closure technique described in the next section 

will automatically remove many data structures that are allocated by the initialization 

phase but are unused at runtime.  

2.4. Closure and Feature Analysis 

To ensure the smallest possible program footprint, we would like to automatically 

compute the smallest set of classes and methods that are reachable over any execution of 

the program. There are a number of whole-program techniques to address this problem, 
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including RTA [21], CHA [32], RMA [101], and flow analyses such as 0-CFA, as well as 

whole-module analyses such as that used in Jax [98]. All of these techniques share a 

common conceptual approach to the problem, beginning at some entrypoint method(s) in 

the program and building a static call graph that approximates the reachable code in the 

program. Typically a closed world assumption is made, allowing code that is not 

reachable to be safely removed, but if an open world is assumed, constraints can be added 

to prevent unsafe removal of possibly live code while still allowing for some dead code 

to be removed (e.g. unused private members). 

In the ExoVM system, we must compute reachability over not only classes and 

methods in the Java program, but over the initial Java heap as well as the data structures 

and code in the virtual machine. Our analysis builds on both RTA and RMA and extends 

the class of whole-program, closed world techniques that include live heap objects in the 

analysis. While RMA, which is described in Chapter 3, computes closure over a complete 

Virgil program, which does not require a runtime system, the ExoVM requires three new 

types of constraints that relate entities at the Java level to runtime entities at the virtual 

machine level. 

2.4.1. Feature Analysis 

Feature analysis extends the traditional approach of analysis over program entities 

to include analysis of entities that are the explicit implementation of language features 

within the virtual machine. We will use the term entity to refer to a single data structure 

instance, Java object instance, Java method, string constant, or VM native method that 

consumes either code or data space. Our analysis makes entities in the virtual machine 
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explicitly analyzable and will only include entities in the final program image if they are 

used over any execution of the program. In discussions of programming languages, 

feature is perhaps the most loosely used term and most poorly defined concept. In order 

to be more precise in our discussion, we will use the term feature to refer to the members 

of or operations on entities. 

Once we restrict our attention to entities and features that have an isolatable 

implementation in the virtual machine, we can reason more concretely about the language 

in terms of these implementation artifacts. For example, a large, coarse-grained service 

might be garbage collection. By studying its implementation, we can break this service 

down into a small, well-defined set of entities and features that require metadata about 

classes, objects, methods, and threads. Another example might be the getClass() 

method in java.lang.Object, which allows inspection of the run-time type of an 

object. This feature also has an identifiable implementation which accesses the object 

header and exposes a representation of the class to the program when it calls this method, 

both of which can be modeled as features. Another example is the use of the 

Class.forName() static method; this method’s implementation requires the VM to 

have a mapping between string names and class representations, as well as the ability to 

search for a class if it is not already loaded. If the program does not invoke this method at 

any point, then the data structures corresponding to implementing this feature can be 

removed. Other, finer-grained examples are floating point arithmetic, explicit casts, 

synchronization operations, weak references, JNI, reference arrays, static initializers, and 

exceptions. 
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Many features correspond almost directly to Java bytecodes (and therefore 

source-level Java language features), and some correspond to Java library methods and 

classes. But internal virtual machine features become apparent after some study of the 

VM implementation, such as the ability to search for a method by its name in a particular 

class, or to resolve constant pool entries. Most such internal features do not have a direct 

language expression but are demanded by the implementation of other features. For 

example, the ability to search for a class by its name is necessary for the VM to resolve 

some internal Java classes such as those representing language-level runtime exceptions.  

The key idea behind feature analysis is that by exposing all of these VM data 

structures as first class entities in the closure process, just like Java classes, objects and 

methods, the analysis of language features can be expressed as relations on members and 

features of these entities. The problem of computing reachability over entities then 

becomes analogous to the familiar notion of reachability over heap objects; an entity is 

only reachable if it is referred to by another reachable entity through a feature. If an entity 

is not reachable through a chain of feature uses in the program and the virtual machine, 

then it is not used during any execution of the program and can be safely removed. 

2.4.2. Constraint-based Analysis 

Constraint-based program analyses separate the specification of a correct solution 

to a program analysis problem from the implementation of the algorithm that computes 

the best solution [11]. For example, in a program analysis problem such as flow analysis 

or pointer analysis, the primary goal is to compute sets of program quantities, such as 

“what variables may this pointer refer to over any execution of the program?” or “what 
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method implementations are reachable at this call site in the program?”. Constraint-

based analyses usually have the property that there is always a default, correct, but overly 

conservative solution such as “this pointer might point to anything”. The art of getting a 

good and verifiably correct solution to the analysis problem is deriving a rule set that 

describes the minimal properties of a correct solution. Typically, the analysis inspects the 

program once and generates a complete constraint system that is fed as input to a general 

constraint solver. The constraint solver then computes the least solution to the constraints, 

giving the most precise answer. 

2.4.3. Entities and VM Types 

The overall goal of our analysis is to compute the set of all live entities needed to 

implement the program, both at the Java level and at the VM level. In our analysis, each 

entity has an associated type, each type has an associated live entity set, and an entity and 

is considered live if it is contained in its type’s set of live entities. The overall solution is 

the union over all types of live entities. Our analysis models Java-level entities such as 

methods, classes and objects in a manner that is similar to RMA. To simplify the 

constraints, Java methods with implementations have type method, classes have type 

Class, and each object instance’s type is its dynamic Java type. Note that each of these 

Java-level entities may have one or more associated VM-level entities, not all of which 

may be ultimately considered live.  

In addition to the Java types from the program, our implementation models 24 

different VM data structure types that are listed in Figure 2.1.  Among these types are: 

VMNative, which models the native code implementations of Java methods such as 
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Object.hashCode(); VMClass, the in-memory representation of a Java class; 

VMMethod, the in-memory representation of a method; VMROMClass, the on-disk and 

in-memory representation of the read-only portion of a Java class such as string names, 

the constant pool, declared methods; VMThread, a representation of a Java thread; and 

the all-important VMJavaVM data structure, which contains pointers to important classes, 

the heap, collections of classes, threads, and at least a dozen other subsystems. 

Each pointer field within a 

native data structure is modeled 

as a feature. This allows fine-

grained precision in the analysis 

of the data structures of the VM. 

Our analysis models dozens of 

features for these types; space 

limitations preclude a complete list.  

2.4.4. Constraint Sets 

Our constraint formulation uses two kinds of sets. The first kind of set, an E 

(entity) set, contains live entities such as Java objects, VM data structure instances, or 

Java method implementations. For example, for a Java class C, the set EC represents the 

set of all reachable objects of exact dynamic type C in the initial heap.  

The second kind of set is an F (feature) set, which contains the used features of a 

particular type. The set FC for a Java class C contains the declared fields and methods of 

VMNative  VMStackWalkState 
VMJavaVM  VMHashTable 
VMClass   VMMemorySegment 
VMArrayClass  VMMemorySegmentList 
VMClassLoader  VMPortLibrary 
VMROMClass  VMThreadMonitor 
VMMethod  VMJavaLangString 
VMROMMethod  VMJavaLangThread 
VMConstantPool  VMInternalVMFunctiona 
VMROMConstantPool VMMemoryManagerFunctions 
VMITable  VMInternalVMLabels 
 

Figure 2.1: List of modeled VM Types. 
Native data structures are modeled in the analysis, and each 
has its own set of features. For example, the VMNative 
entity type models implementations of Java native methods 
from the class library that are supplied by the VM. 
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C that have been used explicitly within the program. Similarly, the FT set for a VM type T 

contains the declared fields of T that are used by the program and the VM. Consider the 

VMMethod type. It has declared fields name and signature that reference UTF8 

strings. These fields are modeled as features of the VMMethod type, and if the fields 

(features) are used, then they will be added to the FVMMethod set. Further constraints will 

ensure that the strings to which these fields refer will be included in the closure.  

There is one EC set and one FC set for every Java class C in the program and one 

ET set and one FT set for every type T of VM data structure types. To simplify the number 

of different types of constraints, our analysis models a Java method implementation (i.e. a 

method that contains code) as an entity of type method, and the set of all reachable 

method implementations with Emethod.  

2.4.5. Constraint Forms in Feature Analysis 

Our analysis generates 8 forms of constraints. Most of these constraint forms 

should be familiar to readers who have prior experience with analyzing Java code with 

constraints. 

 

(1) Base case for entities: expresses initially reachable entities. If an entity e of 

type T is present at the beginning of the program execution, for example the 

main method, then e is reachable. 

e ∈ ET 
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(2) Call site: analyzes call sites in the code of reachable methods in the program. 

For each method M and each call site e.p() in the code of M, where the static 

type of e is C, we have the constraint: 

M ∈ Emethod ⇒ p ∈ FC 

(3) New  object: analyzes allocation sites in the code of reachable methods in the 

program. We use dummyC to denote a dummy entity of type C.  For each method 

M and each new C() in the code of M, we have the constraint: 

M ∈ Emethod ⇒ dummyC ∈ EC 

(4) Feature use: approximates the result of using a feature of a type by using the 

feature on all live instances of that type. Specifically, if the entity e0 of type S is 

live, and the feature f of type S is live, then the entity referred to by e.f is also 

live: 

f ∈ FS ∧ e0 ∈ ES ⇒ e0.f ∈ Etypeof(e0.f) 

(5) Subtyping: establishes the relationship between used features in a supertype 

to the used features in a subtype. Specifically, for types S and T in the Java 

program, where S is a subtype of T, we have the constraint: 

FT ⊆ FS 

(6) Feature implication: expresses cases where the use of a feature entails that 

some other feature is also used.  Specifically, for a type S with feature f, and a 

type T with feature g we may have a constraint of the form: 

f ∈ FS  ⇒ g ∈ FT 
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(7) Entity implication: expresses cases where the reachability of one entity 

implies the reachability of some other entity.  Specifically, for an entity d of type 

S, and another entity e of type T, we can have constraints of the form: 

d ∈ ES  ⇒ e ∈ ET 

(8) Entity implies feature: expresses cases where the reachability of one entity 

entails the use of a feature of some other type.  Specifically, for an entity e of 

type S, and for a type T with feature f, we may have the constraint: 

e ∈ ES  ⇒ f ∈ FT  

 

The constraints (1), (2), and (3) are basically equivalent to rapid type analysis, 

which maintains a set of possibly instantiated classes RTAC and a set of reachable method 

implementations RTAM. We can take this view if we consider the existence of dummyC in 

EC is equivalent to C being in the live set RTAC maintained in RTA. However, constraints 

(4) and (5) extend this basic view with live entity sets that are similar to those maintained 

in the RMA analysis. The key insight is that the new constraints (6), (7), and (8) extend 

the power of the analysis even further, allowing us to specify per-language and per-VM 

constraints that relate Java entities to their implementation and vice versa. 
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Figure 2.2 gives examples 

of some constraints that handle 

native method implementations 

in the class library. These 

constraints model the fact that 

native methods can trigger Java-

level features such as creating 

new Java objects and arrays, as 

well as directly manipulating the 

VM’s internal data structures. 

Consider the example constraint (e) in Figure 2.2, which models the need for the 

class table, a hashtable that maps strings to class representations in implementing the 

Class.forName Java native method. If this native method is never called (i.e. it never 

is added to the set EVMNative), then the classTable pointer need not be analyzed, and 

consequently, this data structure can be removed.  

2.4.6. Granularity and Natives vs. Sanity 

In our experience, writing the constraints for all of Java’s bytecodes was 

comparatively little effort, as this problem is generally well understood and has already 

been explored in many previous analysis techniques. If we make the assumption that the 

constant pool entries are resolved and that classes are loaded and initialized, then most 

bytecodes amount to little more than manipulating Java objects and the stack and 

performing calls to some simple VM services such as the allocator. At the bytecode level, 

(a) fillInStackTrace ∈ EVMNative  

⇒ dummy[I ∈ E[I 

(b) fillInStackTrace ∈ EVMNative  

⇒ classSegmentList ∈ FVMJavaVM 

(c) startThread ∈ EVMNative  

⇒ run ∈ Fjava.lang.Runnable 

(d) startThread ∈ EVMNative  

⇒ J9VMInternals.threadCleanup ∈ Emethod 

(e) forName ∈ EVMNative  

⇒ classTable ∈ FVMClassLoader 

(f) indexOf ∈ EVMNative  

⇒ bytes ∈ Fjava.lang.String 

(g) javaVM ∈ EVMJavaVM  

(h) e ∈ EVMJavaVM  

⇒ mainThread ∈ FVMJavaVM 

(i) m ∈ Emethod  

⇒ repof(m) ∈ EVMMethod 

 

Figure 2.2: Example VM-specific constraints 
Natives can (a) allocate new Java objects (b) use features of VM 
structures (c) invoke Java virtual methods, (d) invoke Java static 
methods (f) use fields of Java objects. Default constraints assert 
certain entities (g) and features (h) to be live. The constraint (i) 
ensures that if a Java method implementation is live, then its 
representation in the VM is live. 
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it is easy to have confidence that our analysis constraints for each bytecode will force the 

inclusion of the necessary data structures into the image, and that “pure Java” programs 

will execute without problems on the ExoVM. 

However, the bulk of Java—its class library—is not so simple. Java has dozens of 

classes in its standard library that are wormholes into the VM; many have native methods 

that manipulate internal VM data structures directly. In the case of J9, the VM and the 

native code that implements the class library are developed separately but significantly 

interdependent. In the j9cldc class library, there are 75 such native methods, many of 

which are implemented in assembly code. In the J2SE (j9max) class library, there are 

more than 200. Some use JNI or internal services to call back into Java code or allocate 

Java objects. Each of these methods requires constraints that trigger the inclusion of Java 

code and VM structures that are needed to implement them. We were able to derive 

constraints for many of the most important ones. For some we simply coarsen the 

granularity of the analysis of data structures and conservatively include some possibly 

unreachable data structures. Otherwise, we forbid native methods that we do not yet 

support by dynamically trapping calls to them.  

An example of tuning the analysis between fine-grained and coarse-grained is the 

idea of modeling every pointer in every data structure in the virtual machine as a feature 

that is only used when certain constraints are triggered, such as the use of a particular 

native method or VM service. While the most fine-grained approach is attractive because 

it allows the maximum possible reduction of data structures, only including them under 

the most specific circumstances, the VM is complex enough that determining the most 
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specific constraints for each pointer becomes infeasible. For many pointers, we were 

forced to simply assert them either dead or live. Asserting them live is always 

conservative and correct, provided that the data structure that they refer to is correctly 

identified and copied into the image, but of course this may include many unnecessary 

data structures. However, asserting a pointer to be dead is too aggressive if the associated 

language feature or service is needed at runtime, in which case the virtual machine or 

native libraries will crash due to the missing data structures.  

Our approach has taken the middle of the road, asserting many pointers to be dead 

that correspond to VM features that we do not intend to support, such as dynamic class 

loading, and asserting some pointers live and always copying the referred data structures 

because the right constraints may be elusive. Some data structures are always necessary, 

such as the VMJavaVM data structure and the VMThread structure for the main Java 

thread. To guide our effort, we developed a suite of micro-programs that target individual 

features, including the basic bytecode set and specific native methods. This proved to 

greatly expedite testing and debugging, allowing us to pinpoint the usage of many 

pointers of VM structures and relate them directly to language features. For more 

complex correctness validation including native methods, we rely on running larger 

benchmark programs and verifying that each program computes the same results as it 

does on the complete JVM. An industrial scale, feature-complete implementation of our 

technique would have to test against the Java language compliance kit, since we do not 

believe that it is possible to directly prove the correctness of the analysis technique due to 

the sheer size and complexity of the virtual machine. 
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2.5. Persistence 

Persistence is the process of taking a snapshot of the fully initialized virtual 

machine, including the data structures that represent the program and the program’s state, 

and saving it to an image file or other persistent store to be loaded later. Persistence has 

been studied widely in programming languages and database systems [18] and has a 

number of compelling advantages for programming systems. Key issues are the 

transparency and efficiency of the persistence mechanism, as well as data evolution and 

versioning. 

In our system, we perform imaging of the VM only once as part of an offline 

analysis, so the efficiency considerations do not apply, and we do not support data 

evolution simply because the kinds of data we are saving are heavily tied to one 

particular VM implementation. As such, our persistence framework, which we refer to as 

the imager, need not be as general as that in previous systems. After the closure process 

has computed a set of reachable Java methods, classes, objects, and VM data structures, 

the imager copies and relocates the data structures that exist inside the virtual machine to 

a special region of memory which is then saved to the disk. This image file is a 

compacted snapshot of the VM data structures that represents only the reachable parts of 

the program. The image file contains essentially a complete ready-to-go VM that can be 

used immediately by simply mapping it into memory.  
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2.5.1. Persisting C-based Data Structures 

Once the closure process has computed the set of reachable data structures of the 

VM that are needed to correctly execute the program, the imager must copy and relocate 

these data structures to persistent store. These data structures are declared in C but are 

manipulated by C, C++, and assembly code. The imager therefore needs to persist C data 

structures in a way that preserves the invariants that are implicit in the code that 

manipulates them. We began studying the layout of these data structures and the code 

that manipulates them, discovering that many were more complex than we initially 

thought and had many implicit constraints. This manual process represents a particularly 

unromantic but significant amount of our development time, approximately 3-5 man-

months. From our efforts we were able to develop a description of each important data 

structure: its layout, address alignment constraints, contents, and its pointers to other data 

structures. The imager uses the description to determine how to copy and relocate VM 

data structures of each type, which includes computing the size and layout of a particular 

instance and where pointers to other data structures lie within the structure. This is 

similar to the description of a Java object that a garbage collector needs in order to scan a 

Java object for references to other objects, but can be considerably more complicated. We 

discovered a number of implicit constraints on data structures. Two constraints of note 

are implicit adjacency/layout requirements, and strangely encoded pointers.   

Many kinds of data structures are segregated into segments, which allows mass 

allocation and deallocation as well as fast traversal over all data structures of a given 

type. The dependence on this layout is buried deep in the assembly and C code of the 
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VM; to reuse this code without modification requires preserving the invariants it expects. 

This requires the imager to collect certain structures into new segments during the copy 

process.  

Some data structures have grown very complex as they evolved over time. For 

example, the J9 representation of a class has numerous adjacent, embedded members of 

variable size; code throughout the VM relies on being able to find known structures at 

computed offsets from the beginning of the structure. Worse, other data structures 

throughout the VM point into the middle of the class structure. A correct description of 

this data structure for the imager required tedious manual analysis of the code to 

determine its undocumented layout and implicit constraints. 

Many virtual machine techniques pack extra information into pointers in the high 

or low-order bits, such as in implementation tricks for monitors [73], virtual tables, and 

object headers, etc. These pointers are assumed to point to structures aligned on addresses 

that are particular powers of two (most often 8, 16, and 256 bytes), which allows the 

lower bits to be reused. To address this common undocumented tendency, the description 

of each data structure in the imager contains alignment constraints that are used when the 

imager chooses a new address for a data structure, making the undocumented constraints 

explicit. Similarly, pointers that contain extra information bits have special types that 

instruct the imager to preserve the appropriate low-order bits; the type makes it obvious 

that the pointer contains extra information.  

Another problematic feature of the system is the use of self-relative pointers 

within some data structures; a self-relative pointer stores an offset instead of an actual 
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address; instead, code that uses the pointer computes the actual address of the target by 

adding the pointer’s value to the pointer’s location. This allows some data structures to be 

copied to and from disk and shared across processes without relocation, as long as the 

entire data structure containing the self-relative pointers are moved as a unit. Because our 

imager may move pieces of these data structures around independently, it must encode 

and decode self-relative pointers correctly. Like pointers with extra bits, self-relative 

pointers have a special type in the data structure description that documents this fact and 

allows the imager to handle these pointers with equal ease as normal pointers. 

2.5.2. Compilation 

By completely initializing the VM before imaging, the system can also save any 

compiled code of the application that has been produced by the JIT. In fact, because of 

the offline nature of the imaging process, we can simply compile all of the reachable 

methods with the JIT compiler ahead of time. The JIT and its data structures can then be 

removed completely from the ExoVM, effectively turning the original VM into a static 

compiler – albeit one which may generate superior code because all classes are resolved 

and initialization code has already been executed. Because the compilation takes place in 

a closed-world scenario, there is no need to invalidate code and recompile. In most cases 

the bytecode of compiled methods can be discarded, though sometimes looking up 

exception handlers and generating a source-level stack trace requires bytecode-level 

information. 

In our case, supporting pre-compilation required some small modifications to the 

JIT compiler. First, we had to direct it to generate code into the image, rather than into 
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internal code buffers, and we had to disable mechanisms that trigger recompilation of 

methods. Also, the JIT often writes the absolute address of data structures and functions 

that it assumes do not move into the compiled code; the imager must make sure that these 

pointers are found and relocated before the image is finished. We instrumented the JIT to 

record where it writes absolute addresses into the compiled code, and then patch the 

addresses at image load time. With this approach, there is no need to alter the machine 

code that the JIT generates. This feature was fully operational in an earlier version of the 

ExoVM but our experimental results here use the interpreter and do not include any 

compiled code. Of course, the size of the compiled code depends on the quality of the JIT 

compiler and the total amount of reachable code of the program. Our early experience 

was that the size of the compiled code was roughly comparable to the size of the class 

representations. 

2.6. Loading a VM Image 

Although the imager is capable of producing an image that contains a complete 

collection of data structures that represent the program and the VM needed to run the 

program, the imager is not capable of actually copying the machine code of the VM into 

the image because the linking model of C and C++ precludes this. For example computed 

jumps and branches within machine code cannot be supported without linking 

information. Our approach to this problem is to separate the data structures (which are 

stored in the image file) from the boot VM, a specialized offline build of the fully 

featured VM that contains little or no internal data structures. The boot VM lacks the 

normal VM initialization routines that build these internal data structures, as well as 
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mechanisms such as the JIT compiler and dynamic class loader, but instead only contains 

VM subsystems that will be needed at runtime for each application, such as the 

interpreter, garbage collector, natives of the class library, etc. The boot VM loads all of 

the needed data structures from the image. 

Our imager produces image files that are intentionally not relocatable; i.e. all of 

the internal data structures and code within an image file contain absolute pointers to 

each other that assume the image starts at a fixed memory address. This simplifies both 

the imager and the boot VM, allowing the boot VM to simply memory map the image 

from the file to the specific address and thus begin using the image in memory without 

relocating any internal pointers. Additionally, the image header contains pointers to the 

main class, the main method of the program, and to important global VM data structures 

so that the boot VM need not search the image for where to begin execution. 

2.6.1. Patching and Rebuilding 

The separation between the code and data of a VM instance is not perfectly clean, 

and many internal data structures that are saved in the image contain pointers to internal 

VM functions that do not exist in the image. The boot VM must supply the 

implementation of these functions by patching these pointers when the image is loaded 

into memory. For example, a VMMethod instance contains a pointer to code that 

implements the calling convention for that method. An interpreted method contains a 

pointer to machine code in the interpreter to set up the interpreter state, while a 

synchronized method has a pointer to code that obtains the lock on its receiver object 

before executing the method, and so on. When the imager copies a data structure and 



 54 

encounters pointers to VM machine code or a C function, it uses a table of known VM 

routines to identify the target routine. At load time the boot VM loads the image and 

replaces these pointers with pointers to its implementation of the corresponding routines. 

One further complication with the imaging process is that not all internal data 

structures can be persisted. In particular, the VM has data structures that correspond to 

operating-system level resources such as threads that are not transferable from one 

process to the next. The boot VM rebuilds certain data structures as necessary when it 

loads the image into memory. 

2.7. Experimental Results 

2.7.1. Footprint 

We have implemented pre-initialization, closure, and persistence in a J9-based 

virtual machine with the j9cldc and j9max class libraries to investigate the memory 

footprint of the VM and the application in an embedded scenario. These numbers are 

obtained on the x86 build of J9 running on Linux 2.6. We did not specifically measure 

the execution time for the imaging process, but even with our completely untuned 

implementation written mostly in Java and running in interpreted mode, the entire 

loading, initialization, closure, and copying process of the ExoVM took less than 5 

seconds on a fast Pentium IV workstation for all our benchmarks. 

To evaluate the effectiveness of the ExoVM approach, we measured a number of 

footprint factors for our benchmark programs. First, we evaluate the fixed cost of the VM 

in terms of the VM’s static code and data footprint for the two original VM 
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configurations and the ExoVM specialized boot VM. The j9cldc configuration consists of 

600kb of compiled VM code and natives, 260k of read-only data (of which 190kb is the 

class library compiled into the executable), 20kb of initialized data and 17kb of 

uninitialized data. The j9max configuration consists of 750kb of compiled VM code and 

natives, 90kb of read only data, 25kb or initialized data, and 17kb of uninitialized data. 

To reduce the size of the boot VM, we statically compiled out some subsystems, 

including the JIT compiler, bytecode parser and verifier, zip library support, and some 

initialization routines, saving about 200kb of compiled code. We believe that there is 

more code that can be removed from this specialized VM, but linking issues and time 

constraints limited our ability to explore this. 

 

In Figures 2.3 and 2.4, we compare the dynamic memory footprint measurements 

for the data structures and loaded classes across our benchmarks for the j9cldc and j9max 

configurations. The first row of each benchmark contains the measurements of several 

footprint factors on the unmodified VM running the applications with the corresponding 

 CLIB ROCL RWCL INH NHA IHEAP total 
Chess 0 597 162  0 557   0 1316 
  -exo 0 619 172 27  10 171  999 
Crypto 0 595 163  0 591   0 1349 
  -exo 0 615 173 26  10 195 1019 
kXML 0 588 159  0 646   0 1393 
  -exo 0 610 169 26  11 204 1020 
Parallel 0 574 147  0 549   0 1270 
  -exo 0   0   0  0   0   0    0 
PNG 0 549 148  0 504   0 1201 
  -exo 0 577 160 25  11 181  954 
RegExp 0 571 156  0 518   0 1245 
  -exo 0 598 168 26  11 173  976 

 
Figure 2.3: j9max Memory Footprint 

Dynamic non-heap memory footprint for six 
benchmarks on the j9cldc configuration. Each 
benchmark has two rows: one for its footprint in 
the standard VM, and the next row for its 
footprint using the ExoVM system. 

 CLIB ROCL RWCL INH NHA IHEAP total 
Chess 188  74 60  0 394  0 716 
  -exo   0 113 42 33  10 14 212 
Crypto 188  70 62  0 466  0 786 
  -exo   0 114 46 25  10 41 236 
kXML 188  56 58  0 483  0 785 
  -exo   0 113 45 27  11 50 246 
Parallel 188  49 45  0 415  0 697 
  -exo   0  87 26 30  89 33 265 
PNG 188  26 48  0 383  0 645 
  -exo   0  74 32 23  11 30 170 
RegExp 188  47 55  0 389  0 679 
  -exo   0  98 41 26  11 21 197 

 
Figure 2.4: j9cldc Memory Footprint 

Dynamic non-heap memory footprint for six 
benchmarks on the j9cldc configuration. Each 
benchmark has two rows: one for its footprint in 
the standard VM, and the next row for its 
footprint using the ExoVM system. 
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class library. These footprint factors are CLIB; the size of the class library which is 

compiled into the binary executable (applicable only to j9cldc); ROCL, or read-only 

portions of the application classes (VMROMClasses); RWCL, or the read-write portions 

of these same application classes (VMClasses); NHA, or non-heap allocations, which 

are data structures allocated by the VM that are not Java objects and thus not part of the 

heap. Each of these numbers is given in kilobytes. The two remaining footprint factors 

apply only to ExoVM images. These are INH, or imaged non-heap data structures, which 

are non-heap data structures that were allocated during pre-initialization and have been 

persisted; and IHEAP, which is the initial heap of Java objects, consisting of everything 

from string constants to application objects that have been determined to be reachable by 

the closure process. Note that we do not measure the dynamic heap of the program here; 

we were able to successfully execute the benchmarks with just 128kb of heap (except 

kXML, which required 512kb), which makes the VM data structures by far the 

dominating factor. 

These measurements show the effectiveness of pre-initializing the virtual machine 

and the application. With a completely built image, the ExoVM has no need of an 

external class library (CLIB). Feature analysis detects that a number of classes are unused 

and removes them, showing a moderate reduction in the size of the read-write class 

representations (RWCL). The size of the initial heap (IHEAP) generated by running the 

class initializers in the virtual machine is relatively small. But by far the biggest factor is 

the reduction of the VM’s dynamic non-heap memory allocations. This shows that pre-

initialization of the VM and feature analysis allow the ExoVM to remove the dominant 



 57 

factor of space consumption in these benchmarks. The reduction of nonheap memory 

allocations is between 62 and 73% for these six benchmark applications. 

Figure 2.3 shows the result of the same experiment with the j9max configuration, 

which consists of the same VM, but a more complex, fully featured class library. In this 

scenario, the class library is much larger and not compiled directly into the virtual 

machine’s binary. However, we can see that the dominant cost is now the size of loaded 

classes, because the more fully featured class library has many more interdependencies 

that force many classes to be loaded and initialized. 

The most surprising result is that running the feature analysis to produce an image 

for each of these programs does not yield a smaller ROM or RAM class footprint. We 

investigated the reason for this and discovered that the j9max’s Class.getName() 

implementation uses a HashMap that maps a class representation to its String name. 

Because our analysis is partly written in Java and runs on this underlying class library to 

compute the closure, if the program being analyzed calls the Class.getName() 

method, then the analyzer will discover that this HashMap is reachable, and begin 

analyzing its contents. Because these classes are reachable through Java references, it 

therefore concludes that all loaded classes are live, and none are removed from the image. 

We were not able to successfully run the Parallel benchmark on the ExoVM 

because the larger class library demanded an implementation of protection domains 

which were beyond our resources to support. This highlights another problem with a 

larger class library. Adding a security layer tends to demand reflective features from the 

VM that vastly increase the complexity of the virtual machine. 
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2.7.2. Feature study 

During the course of developing the ExoVM system and testing feature analysis 

for correctness, we wrote a large number of Java micro-programs that each uses a 

specific language feature, such as virtual dispatch, throwing an exception, calling API 

methods, running threads, etc. While primarily 

intended for our internal use in testing correctness, 

they had the side effect of exposing just how much of 

the class library and VM is tied to a particular 

language feature.  Though we don’t claim that our 

micro-program suite is fully comprehensive of the 

Java language, it did highlight important issues. 

Our micro-programs were all less than 25 lines of code and primarily target a 

single language-level feature. We found a good approximation of the cost of a feature to 

be the size of the image generated by our analysis, which includes not only VM data 

structures, but also persisted classes and objects. As a starting point, we tested how small 

an image our system could generate for the empty program; i.e. a single static main 

method that just returns. On both j9cldc and j9max, our system generates a 5kb image 

that contains the main class (1kb), java.lang.Object (1kb), the VMJavaVM 

structure (1.3kb), a thread (0.6kb), and a small number of other data structures. This is 

enough to reuse the existing VM code unmodified and execute successfully. 

From this starting point, we investigated the incremental cost of supporting 

individual languages features; Figure 2.5 shows several microprograms and the resulting 

   cldc max 
empty   5   5 
arrays  38 225 
checkcast  42 228 
constructors 13  31 
floating point  7   7 
nullptr  13  31 
.getClass() 30 872 
refarray  40 226 
Hello world 75 872 
 

Figure 2.5: Microprograms 
Resulting image sizes for several 
different microprograms, where each 
stresses a single language feature. 
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image size for the j9cldc and j9max configurations. From the table, we can see that 

several of the programs that generate small images on the j9cldc configuration have large 

images on j9max.  

We were able to pinpoint the problems that cause this phenomenon of “feature 

explosion” in j9max by using these unit feature tests. Our analysis revealed that the larger 

class library contains a small number of “precarious” dependencies, such as the 

HashMap in the Class.getName() implementation mentioned previously. When 

one such dependency is triggered, it tends to pull in a large subset of the class library as a 

whole. This can be seen in the tests that construct and print exceptions: they tend to pull 

in a large portion of the class library, which ultimately dwarfs their small size. Our 

conclusion from this study is that future design of class libraries and careful 

implementations should strive for modularity in features so as to avoid penalizing small 

programs and avoid precarious dependencies. Another approach might be to embed more 

special knowledge into analysis about the Java-level entities that implement Java 

features, such as introducing a special case for the Class.getName()’s internal data 

structures. This remains as future work. 

2.8. Experience 

In our experience developing the ExoVM system in J9, we learned important 

specific lessons about its implementation and virtual machine design in general that we 

think are valuable to others. The first is that complex and arcane data structures frustrate 

automated imaging techniques, and judging from the implementation complexity that 

seems to replicate itself over and over throughout the virtual machine, we simply do not 
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believe they are worth whatever gain they intend. By far most of our manual effort was 

inferring implicit constraints of data structures and fixing problems with pointers and 

layout tricks, working backwards from VM crashes. Although certain techniques have 

advantages for performance or space usage, our overwhelming sense after studying the 

code is that the most complicated data structures have evolved by accretion and they 

survive because their deep entanglement with the VM makes them particularly dangerous 

to migrate or refactor. We think that our work shows the value of persisting the internal 

VM data structures for an embedded domain, and simpler, more regular data structures 

make this technique far easier. 

The second lesson we learned from our experience is that there appears to be 

more modularity to source-level language features than previously thought. This 

dimension of modularity does not seem to be borne out in current virtual machine design 

and class library implementations, including J9 and those with which the authors have 

previous experience. We believe that this dimension of modularity has important 

applications in the embedded domain, and that valuing it more highly in the design of 

new virtual machines will have positive consequences for the ability to scale from small 

devices to server class machines. 

The third lesson that we learned is that the implementation technology of the 

virtual machine itself matters considerably. We cannot achieve our ultimate goal of total 

automatic VM specialization given J9’s current implementation technology, in particular 

the static linking model inherent in C and C++ applications. A large amount of our 

development effort has been spent in recovering implicit usage patterns of data structures 
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in the virtual machine, which is difficult to automate in these languages. Given our 

experience in program analysis for large applications written in higher-level, statically 

typed languages like Java, we believe that much analysis can be streamlined, if not 

automated completely, if the VM itself were implemented in a language that is more 

amenable to disciplined program analysis. 

Not surprisingly, we found that complexity of the class library makes an 

important difference to the footprint of an application, especially with the implementation 

of the basic language features such as exceptions. The CLDC implementation of the class 

library contains not only fewer classes over all, but the implementation of basic classes 

such as exceptions has fewer dependencies, resulting in smaller image sizes. The 

implementation of exceptions and I/O, particularly international formatting of strings, is 

significantly more complex in the j9max library, which results in many more live classes 

and consequently more used language features. For this technique to work well on such 

class libraries, more modularity in these implementations seems to be necessary, or the 

analysis must be improved. 

Java’s dynamic invocation of class initializers may work well for a bigger 

domain, but our results with pre-initialization of the classes in an image tends to suggest 

that for this domain, significant gains can be made by changing the model. 
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3. VIRGIL 

This chapter describes the Virgil programming language and compiler system. 

Unlike the ExoVM, which seeks to reuse an existing virtual machine, the Virgil language 

and compiler are developed in a scenario where we have the freedom to rethink the 

language syntax and semantics and have the opportunity to rebuild all of the software, 

from the drivers to the operating system. Virgil establishes part of the thesis by showing 

that advanced language and compiler technology can bring the benefits of object-

oriented programming to developing microcontroller software. 

Microcontroller-class devices represent an extreme setting for the challenges 

inherent in building embedded systems. These challenges include not only resource 

constraints such as code space, data space, and CPU performance, but also the lack of 

supporting software and hardware mechanisms to enforce safety, the need to access low-

level hardware state directly, and the concurrency introduced by handling hardware 

interrupts. This chapter considers the question of how object technology can benefit 

developing software in this domain when not constrained by legacy code or backwards 

compatibility. Objects have much to offer embedded systems software where events, 

queues, packets, messages, and many other concepts exist that lend themselves naturally 

to being expressed with object concepts. Unfortunately the domain constraints have thus 

far limited the adoption of object-oriented languages. 

The Virgil programming language addresses the challenge of bringing object 

technology to microcontrollers through language and compiler techniques. The most 

important design consideration when taking this approach is the space overhead that 
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language features add to the program implementation. This space overhead can be 

divided into two categories: runtime, which consists of libraries, routines and subsystems 

needed to implement language features like garbage collection, class loading, reflection, 

dynamic compilation, and serialization; and metadata, which consists of data structures 

added to the program such as dispatch tables, string constants, type signatures, and 

constant tables. Virgil avoids heavyweight features that require a runtime system or 

significant metadata and selects features that admit a straightforward, low-overhead, 

constant-time implementation that is both clear to programmers and can be accomplished 

without sophisticated compiler analyses. The lack of supporting hardware and software 

mechanisms for enforcing safety is overcome by enforcing strong type-safety at the 

language level with some dynamic checks. Finally, Virgil’s compilation model allows for 

complex application initialization at compile time and enables three new aggressive 

optimizations that further increase application efficiency. 

3.1. Design Principles and Constraints 

This section explains the design principles that have guided the design of Virgil 

language as well the design constraints that the domain imposes. While the overall goal is 

to ease the development of modular and robust programs, design principles translate the 

goal into a set of concrete, desirable properties that the language should have. Virgil’s 

four main design principles are:  

 

i. Objects are a good fit. The object-oriented programming paradigm has 

successfully led to better designed programs that are more modular, flexible, and 
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robust. Embedded software often uses events, queues, packets, and messages; 

objects are a natural fit to represent such entities. 

ii. Static detection of errors is best. Strong static type systems catch a large 

class of errors that are still embarrassingly prevalent in embedded systems 

software. The weak type systems in languages like C and C++ fail to catch an 

avoidable class of bugs in the interest of allowing direct control over data 

representations, manual memory management, and access to hardware state for 

software at the lowest level. Ironically, these kinds of systems have the greatest 

need for static checking, because errors are the hardest to find and the most 

damaging. Strong static safety guarantees in this domain are paramount. 

iii. Objects are not always perfect. Although object-oriented concepts are a 

good fit for many tasks, new expressiveness problems continually stress object-

oriented constructs. For some problems, functional or procedural programming 

styles still have important advantages that should not be overlooked. The 

language should afford programmers some degree of flexibility to seek elegant 

solutions. 

iv. Some dynamic checks are OK. An object-oriented language cannot usually 

avoid all potential safety problems statically, particularly when indexable arrays, 

null references, or type casts are allowed. In this case the language must fall back 

on some dynamic checks that may generate language-level exceptions. Although 

microcontrollers often lack hardware safety checks and thus require explicit 
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checks to be inserted by the compiler, modern compiler optimizations are now 

advanced enough that this overhead is usually acceptably small. 

 

Design principles outline desirable properties that Virgil should have, while the 

limitations of microcontrollers impose an important set of constraints. The resource 

challenges of an embedded system require a systematic design approach that avoids 

introducing unacceptable resource consumption in implementing the basic language and 

libraries. One of the primary efficiency considerations for Virgil is to ensure that 

overheads introduced by the language are small and proportional to usage in the program. 

This affords programmers control over resource consumption by avoiding uncontrollable, 

fixed costs like a large runtime system. Where and when language feature overheads 

occur will be apparent to moderately skilled programmers and therefore can be reduced 

or avoided by restructuring the program if needed. This leads to the imposition of the 

following design constraints on the language and compiler: 

 

i. No runtime. First, any large, fixed cost that is beyond the control of the 

programmer should be avoided. Secondly, Virgil programs will run as the lowest 

layer of software, so the notion of a language runtime underlying a Virgil program 

is problematic; the runtime is often implemented “under the language” and is 

typically not under control of the application or system programmer. 

Microcontroller programmers usually need to have control over all of the code 

that will end up on the device.  
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ii. No intrinsics. Intrinsics are library code and types, other than primitives, that 

are needed to implement basic language features and are generally established by 

a language standard. For example, in Java, the entire java.lang.* set of classes are 

needed by both the compiler and runtime system to implement a Java program. 

Transitively, these classes pull in a nontrivial part of the JDK. Despite the positive 

effect that standardizing basic libraries can have, like a runtime, the 

implementation of intrinsics isn’t supplied by the programmer, and thus 

represents yet another uncontrollable source of resource consumption.  

iii. No dynamic memory allocation. Manual memory management, aside from 

concurrency, is perhaps the most error-prone part of software. Modern languages 

employ automatic memory management, often in the form of a general-purpose 

garbage collector, which eliminates most of the problem. But even the best 

garbage collectors impose significant space overhead on programs, often 

requiring two to three times as much heap space in order to achieve good 

performance, as well as significant metadata to support precise collection. In the 

microcontroller domain, static pre-allocation of all necessary data structures is 

very common, in fact, one of the nesC [44] language’s primary design criteria was 

that dynamic memory allocation is unnecessary for the targeted class of systems. 

iv. Minimal metadata. Metadata associated with a program, such as runtime 

type information, virtual dispatch tables, and object headers should be small and 

proportional to the program’s complexity. This allows the programmer to trade 

some space for better language features at his or her discretion, provided the 
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overhead is acceptably small and readily apparent during implementation and 

tuning.  

3.2. Virgil Language Features 

In this section, we examine the features of the Virgil programming language, both 

those features selected for inclusion and those rejected. In this design space there is 

significant tension between expressiveness and its runtime cost, with RAM usually the 

scarcest resource. For example, embedded programmers have often felt the need for 

explicit control of data representations in order to save space, while to save execution 

time and code space, they often shy away from language constructs that appear 

inefficient. The common rule of thumb in C++ is “you get what you pay for,” which 

leads programmers concerned about efficiency to avoid exceptions, runtime type 

information, templates, and many other language features. Most microcontroller 

programmers avoid higher-level languages altogether, preferring C because developing a 

standalone program is relatively easy, and C is perceived as an inherently efficient 

language because it is very low-level. Worse yet, some microcontrollers are so tiny they 

are still developed primarily in assembly language. 

Virgil balances this design tension at a unique point, carefully selecting features 

according to the design principles and constraints, increasing expressiveness while 

retaining an efficient implementation that builds programmer trust. Each feature is 

considered carefully against the efficiency and straightforwardness of its implementation. 

This will allow a programmer to trust that a basic compiler will implement objects 
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efficiently. Advanced optimizations presented later in this chapter and in Chapter 4 will 

further reduce program footprint, lightening the burden on the programmer, leading to 

higher productivity and more robust systems. 

3.2.1. Inheritance Model 

Virgil’s inheritance model is motivated primarily by the need to allow a 

straightforward and very efficient object implementation with minimal metadata, while 

retaining strong type safety. Because programmers in this domain often face tension 

between program flexibility and implementation efficiency, Virgil makes the efficiency 

tradeoff more explicit and controllable. 

Virgil is a class-based language that is most closely related to Java, C++ and C#. 

Like Java, Virgil provides single inheritance only, with all methods virtual by default, 

except those declared private, and objects are always passed by reference, never by 

value. However, like C++ and unlike Java, Virgil has no universal super-class akin to 

java.lang.Object from which all classes ultimately inherit. But Virgil differs from 

C++ in two important ways; it is strongly typed, which forces explicit downcasts of 

object references to be checked dynamically, and it does not provide pointer types such 

as void*. The implications of lacking an Object class are explored in the next 

subsection. 

Java provides limited support for multiple inheritance through the use of 

interfaces, which increase the flexibility of object classes. However, the implementation 

efficiency of interfaces can be troublesome, particularly in terms of the metadata needed 
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for interface dispatch. In some cases, altering a single class to implement a new interface 

can result in a significant increase in the size of dispatch tables across multiple types. 

Alpern et al [4] discuss efficient implementation techniques for Java interface dispatch in 

the Jikes RVM; their technique uses a hashing scheme that works well in practice, but 

can require generating code stubs that perform method lookup. In general, most interface 

dispatch techniques are either constant-time (e.g. two or three levels of indirection), or 

space-efficient (e.g. linear search, hashing, caching), but not both. Because of these 

limitations, Virgil does not support interfaces. 

Restricting Virgil classes to single inheritance and removing features such as 

interfaces and monitors reduces the amount of metadata needed for each class and each 

object instance. A Virgil object requires only a single-word header that is a pointer to the 

meta-object of its class. Because Virgil has no universal super-class, a root class inherits 

nothing and its meta-object contains only a type id and the slots for virtual methods 

declared in the class (although Chapter 4 discusses more advanced and efficient object 

layouts). Further, because Virgil meta-objects have no mutable state, they can be stored 

in ROM in order to save precious RAM space. 

Single inheritance also allows subtype tests to be implemented by using the well-

known range-check technique where each class is assigned a type id and range of type ids 

that contains its subclasses. A dynamic type test of object O against type T is 

implemented as a check of O’s type id against the range of type ids for T. For leaf types 

T, only one comparison is necessary. This approach, first presented in [86], is more 

efficient than dynamically searching O’s list of parent types, but requires the availability 
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of the complete inheritance hierarchy. This technique is a good fit for Virgil; it 

guarantees every cast is a constant-time operation, regardless of the depth of the class 

hierarchy, and requires at most one integer type id per meta-object. Virgil’s compilation 

model ensures the entire class hierarchy is available at compile time. 

3.2.2. To Object or Not to Object 

One important design choice in Virgil is the lack of a universal super-class such 

as Object that all classes implicitly extend. In Java, Object includes a host of features 

including monitors, first-class meta-objects (the getClass() method), hashing, 

equality, etc. A number of these services require space in each object header, in addition 

to mark bits needed by the garbage collector. Bacon et al [20] discuss in detail the 

challenges inherent in implementing the Java object model efficiently. Even in high 

performance virtual machines, two or more words of space are usually needed for object 

headers. Class-based inheritance requires the meta-object for a class to be at least as large 

as that of its super-class. In Java 5, Object contains 11 virtual methods, forcing every 

meta-object in the program to be at least as large.  

As an alternative to the Java model, one could consider an empty Object that 

contains no methods and no capabilities. An empty Object that is the root of the 

hierarchy would prevent bloating of all meta-objects and allow generic collections such 

as a list to hold any kind of objects, at the cost of forgoing the convenience of default 

functionality. At first, this seems like a reasonable tradeoff. However, this still forces all 

objects to retain a header that contains type information because objects can be implicitly 
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cast to Object and then later explicitly downcast, which requires type information for a 

dynamic safety check. 

The decision to eliminate the universal super-class in Virgil allows some objects 

to be implemented without any metadata. Virgil programmers can write what are termed 

orphan classes: classes that have no parent class and no children classes. An instance of 

an orphan class is a degenerate case of an object; it can be represented as a record without 

any object header, like a C struct, since it is unrelated to any other classes. Because 

the Virgil type system rejects casts between unrelated classes (as in Java), an object of an 

orphan class never escapes to a point where its exact type is not known. The compiler can 

also statically resolve method calls on orphan objects, removing the need for a virtual 

dispatch table. 

Orphan classes can arise intentionally and unintentionally in a Virgil program; a 

programmer need not restrict a class to be an orphan explicitly. In fact, each class is an 

orphan by default, unless it extends some other class, in which case neither class is an 

orphan. Personal experience with large applications in Java gives tends to suggest that a 

substantial number of classes tend to be orphans without purposeful contemplation. The 

Virgil compiler extends this tendency to a guarantee that orphan instances will be 

represented without an object header. Orphans therefore give the careful programmer a 

way to extract maximum efficiency, at some cost to the program’s flexibility. 

The advantages of this lack of a universal super-class and the special support for 

orphans include: 



 72 

 

i. Removes the need for intrinsics. There is no need for a special root class that 

is built into the language. Such special built-ins have a tendency toward feature 

bloat, which reduces the programmer’s ability to make efficient implementation 

decisions and goes against the design criteria of Virgil.  

ii. Orphan objects are very efficient. Orphan instances require no object header 

and no meta-object that contains runtime type information for the class. A 

programmer can use objects like structures without penalty in a way that is 

statically type-safe.  

iii. Improves type-based analysis. Several compiler analyses use the static type 

information as an approximation of aliasing and flow information [35][77] and 

lose precision when references are typed Object. Such analyses get a precision 

boost by the virtue that objects cannot escape beyond their ultimate root class. 

iv. Lightweight confinement. Virgil’s strong type system affords a kind of 

lightweight confinement. By introducing a new class hierarchy unrelated to the 

rest of the program, the programmer can confine objects to a region of code, 

because such objects cannot escape through implicit casting to super-classes. 

Confinement, in addition to security benefits, helps modularize program 

reasoning for programmers and tools [108][116]. 

v. Documentation and understanding. Static types of fields and parameters 

provide valuable documentation to programmers. When finding uses of a class in 

a Virgil program, the programmer need only consider places where the class is 
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mentioned by name and need not reason about objects escaping through 

subsumption. 

vi. Reference compression. Covered in detail in Chapter 4, the compiler can 

exploit the confinement properties of disparate class hierarchies to compress 

object references in order to save RAM. 

 

On the other hand, the lack of a unifying super-class has important disadvantages 

if the language lacks other mechanisms for polymorphism. First, it is difficult to write 

generic collections and data structures such as lists, maps, and sets that work with any 

kind of objects. A library might address this problem by reintroducing a base class for 

“collectible” classes that client code must extend in order to use the functionality—its 

own Object class, for example. Classes that choose to extend this Object class would 

forgo the efficiency benefit of orphans. A second problem is that as different libraries 

emerge, competing versions of Object could complicate programs that use multiple 

libraries. Another approach is to employ the Adapter [43] pattern by writing wrapper 

classes to adapt their classes to the API of various libraries. Delegates (covered later in 

this section) reduce this problem by allowing limited functional programming. The best 

solution overall is parametric types [22], which are discussed next. 

3.2.3. Parametric Types 

Many reusable data structures are type-agnostic, meaning that they are intended to 

store program data without regard to its type. For example, a linked list simply stores a 
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sequence of data items, and its fundamental structure does not depend on the 

representation size or operations that the data type supports. Similarly, a hash table that 

maps values of one type (a “key” type) to another type (a “value” type) typically does not 

depend on any aspect of the value type, and only requires hash and equality routines for 

the key type. Maximizing code reuse for these basic data structures removes the need for 

programmers to re-implement each data structure for every combination of types. 

The traditional object-oriented way to solve this problem is to implement the 

linked list or hash table using an overly general “top” type (such as Object in the case 

of Java). Because this type is the root super-class of all classes, the data structure can 

store any type of objects, but not primitives. Worse, the information about which data 

type a particular collection instance contains is lost; a list of strings has the same type as a 

list of integers because both use the same implementation that internally uses the 

Object type. It is then the responsibility of the programmer to remember which data 

types are in which collection. In a statically typed language like Java, the programmer is 

forced to insert a cast to the expected type when retrieving data from the collection. The 

cast is dynamically checked; it may fail at runtime if the programmer has made a mistake. 

In a dynamically typed language, no explicit cast is required, but the implicit dynamic 

type test can still fail. The underlying problem is that the use of the collection causes a 

loss of static type information. 

Functional languages beginning with ML recognized and solved this problem 

with a technique known as parametric types. With parametric types, declarations of 

program entities such as classes and methods can be parameterized over a type. The type 
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parameter declaration introduces a type variable that names a type for use within the 

scope of the class or method, without specifying exactly which actual type the variable 

refers to. Instead of declaring and implementing a list of Object, the programmer can 

declare and implement a list of X (written in Java, C#, and C++ as List<X>). The list 

implementation can be reused for many different types by substituting in the actual type 

in the place of the type parameter at the usage site.  

The general trend is that statically typed object-oriented languages are 

transitioning away from the Object-based polymorphism of traditional implementations 

towards polymorphism based on type parameterization. In the object-oriented world, 

parametric types are known as generic types or simply generics. Virgil uses the term 

parametric types because it is more evocative of the underlying concept, and early 

implementations of generics had severe handicaps that carry a negative connotation. 

The need for parametric types in Virgil is especially great because there is no 

universal super-class such as Object, giving rise to a number of problems as discussed 

in the previous section. 

Java 5 allows classes and methods to have type parameters. However, there are a 

number of pitfalls that arise because the implementation focuses on backward 

compatibility with existing Java virtual machines. The Java compiler erases all generic 

type information after the typechecking phase, replacing all references to type parameters 

with their upper bound [70], usually java.lang.Object, and inserting type casts into 

the bytecode where necessary. Such casts never fail for correctly written generic code, 

but nevertheless impact the runtime performance. Worse, type erasure dictates the 
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source-level semantics; the loss of generic type information at runtime leads to certain 

operations with generic types being either forbidden (e.g. allocating an array of a generic 

type) or unchecked (casting to a generic type). But the insuperable limitation of this 

approach in the context of Virgil is the automatic boxing of primitive types (int, char, 

short, boolean, long, etc), which requires memory allocation. Boxing is necessary 

with type erasure because the one (type-erased) implementation must have a single data 

representation for variables of the parametric type. Because Java primitive types are not 

classes and have different data representations than object references, the implementation 

requires boxing to ensure that all values have the same machine representation. 

C++ uses templates to parameterize a section of code, either a class or method, 

over a type parameter. The code is duplicated for each instantiation of the type parameter. 

Because typechecking of the duplicated code happens for each instantiation individually, 

C++ templates are not typically considered a generic or parametric type system, but more 

of a macro or code-duplication mechanism. The advantages of C++ templates include the 

ability to write very terse code due to the use of operator overloading within the template, 

as well as good performance due to implicit and explicit inlining, the lack of dynamic 

type tests or boxing, and template meta-programming techniques [8]. However, the 

downsides are that type errors in the template code can manifest themselves at usage sites 

and the possibility of exponential code explosion due to the aggressive duplication of 

code. 

 C#’s parametric type system does not perform type erasure, but preserves all 

parametric type information in the bytecode [61]. All objects and meta-objects carry all 
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of the type information at runtime, meaning that every type is reified, or has a runtime 

representation. This allows all operations on parametric types to be supported, including 

allocating arrays of a parametric type and casting to a parametric type. C# also allows 

type parameters to be bound to any type, including primitive types, which means that the 

data representation and therefore object layout might vary, potentially requiring multiple 

versions of the code. Code duplication is performed by the virtual machine on-demand as 

new instances of a parameterized class are allocated or new instantiations of a 

parameterized method are called, with some sharing if the generated code is identical. 

Runtime duplication of the code means that the number of runtime types can potentially 

be unbounded; for example, for any type T, the program can allocate a new List<T>, 

leading to new types such as List<List<T>>, List<List<List<T>>>, and so on. 

Scala [74] is a relatively new object-oriented language that offers parametric 

types as well as some functional programming constructs. Scala compiles to Java 

bytecode; Scala programs and their language runtime execute together on an unmodified 

Java virtual machine. Because of the implementation platform, Scala implements 

parametric types through type erasure, like Java 5. However, unlike Java, every Scala 

value is an object and there is one universal supertype called scala.Any, which avoids 

some of the problems with Java’s primitive types. This also means that all values are 

object references and therefore have a common machine representation, which makes a 

single, type-erased implementation of generic methods and classes feasible. However, 

this still requires dynamic memory allocation, which is infeasible given the Virgil design 

constraints. 



 78 

The design of Virgil’s parametric type 

system is closest to C#. However, instead of 

dynamic instantiation and specialization of 

types by a virtual machine, the Virgil compiler 

performs specialization statically. The number 

of types is bounded because Virgil does not 

allow dynamic memory allocation; the only types that can exist at runtime are the types 

of those objects in the live heap allocated by the initialization phase. The availability of 

the complete heap after initialization also reduces the amount of code duplication, since 

only the code of reachable live objects needs to be duplicated. Virgil does not allow 

wildcards in parametric types, which forbids heterogenous collections such as a list of 

lists of any type. The lack of wildcard types also means that the multiple-inheritance 

problem that arises when duplicating class hierarchies does not arise (see [14] for details). 

Currently, the Virgil compiler does not maximize sharing of duplicated code, and there is 

some room for improvement in the implementation. 

 

3.2.4. Components 

In addition to classes and simple inheritance, Virgil contains a singleton 

mechanism called a component that serves to encapsulate global variables and methods. 

While Java allows static members inside of classes, all members in Virgil class are 

instance members. Components are used to encapsulate those members that would be 

declared static in Java. This provides for global state and procedural style 

class Tree<K, V> { 
    field key: K; 
    field val: V; 
    field left: Tree<K, V>; 
    field right: Tree<K, V>; 
    method add(k: K, v: V) { . . . } 
    method find(k: K): V { . . . } 
} 

Figure 3.1: Virgil Type Parameters 
This example shows a binary tree 
implementation using Virgil’s parametric 
type system. 
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programming, but within modules. This explicit separation of static and instance concepts 

reduces problems of incomplete abstraction (e.g. hidden static state in classes), and 

makes the separation apparent to both programmers and program reasoning tools. 

Components require no metadata to implement, since they are not first-class values. They 

cannot have type parameters like classes, although their methods can. Components also 

serve an important purpose that will be explored more in Section 3.3: they encapsulate 

the initialization portion of the program and their fields serve as the roots of the live 

object graph.  

3.2.5. Delegates 

Purely class-based languages have 

one important drawback that design 

patterns such as the Adapter, Observer, 

and Visitor [43] attempt to address; for 

different modules to communicate, they 

must agree not only on the types of data 

interchanged, but the names of the 

operations (methods). This is manifest in 

the proliferation of interfaces that serve to 

name both types and methods for 

interchange between modules. Some 

view this as a language flaw that can lead 

to needlessly complicating applications and libraries with interfaces. Parametric types are 

class List { 
    field head: Link; 
    method add(i: Item) { . . . } 
    method apply(f: function(Item)) { 
        local pos = head; 
        while ( pos != null ) { 
            f(pos.item); 
            pos = pos.next; 
        } 
    } 
} 
component K { 
    method printAll(l: List) { 
        l.apply(print); 
    } 
    method append(src: List, dst: List) { 
        src.apply(dst.add); 
    } 
    method print(i: Item) { . . . } 
} 

Figure 3.2: Components and Delegates 
Example code in Virgil that demonstrates the use 
of components and delegates. Component K 
contains static members and data. The List class 
provides an apply() method that accepts a 
delegate, which K uses to implement 
printAll() and append(). 
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only a partial solution to this problem. Functional programming paradigms have a more 

elegant solution to this problem and allow first-class functions to be used throughout the 

program based only on type signatures. Unfortunately, implementing higher-order 

functions in general can require allocating closures on the heap, and Virgil does not allow 

any dynamic memory allocation. 

Virgil makes a compromise between the functional paradigm and the object 

paradigm by borrowing from C# the delegate concept, which is a first class value that 

represents a reference to a method [1]. Delegates in Virgil are denoted by the types of 

their arguments and their return type, in contrast to C# where in addition to the argument 

and return types, a delegate type must be explicitly declared and given a name before use. 

Thus a delegate in Virgil is more like a first-class function in any statically typed 

functional language than an object concept as it is in C#. A delegate in Virgil may be 

bound to a component method or to an instance method of a particular object; either kind 

can be used interchangeably provided the argument and return types match. 

Delegate uses in Virgil do not require any special syntactic form for their use. 

Rather, delegate syntax generalizes the common expr.method(args) notation for 

instance method calls, by allowing expr.method to denote a delegate value and 

expr(args) to denote applying the delegate expression expr to the arguments. This 

retains the familiar method call syntax of Java, but allows delegates to be created by 

simply referring to the method name as if it were a field. See Figure 3.1 for an example. 
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The Virgil compiler implements all delegate operations, including creating, 

assigning, and applying delegates as efficient, constant-time operations that do not 

require allocating memory. At the implementation level, a delegate is represented as a 

tuple of an object pointer and a function pointer. A delegate tuple is not allocated on the 

heap, but is represented as two scalar variables or two single-word fields, depending on 

where it occurs. When the programmer uses an object’s method as a delegate, the 

receiver method is resolved dynamically as in a virtual dispatch, and the object reference 

and the resolved method pointer constitute the delegate tuple. Referring to a component 

method as a delegate creates a tuple with null as the object. Invoking a delegate with its 

argument values is implemented as a simple indirect function call, passing the bound 

object reference as the hidden this parameter. Since method resolution takes place at 

creation time rather than invocation time, delegate invocations actually require one fewer 

memory access than a virtual dispatch, and require no memory accesses if both the 

receiver object and method are in registers. Further, the scalar variables representing the 

object reference and the method reference of a delegate tuple can be subjected to standard 

compiler optimizations such as constant/copy propagation, code motion, etc. 

In contrast, delegates in C# are compiled to an intrinsic Delegate class 

supplied by the compiler; using delegates requires both dynamic memory allocation and 

reflection mechanisms in the runtime system. However, C# also supports multi-cast 

delegates, where a delegate can refer to multiple methods and invoking it invokes all 

methods. Virgil does not support multi-cast delegates. 
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3.2.6. Raw Types 

Low-level code such as device drivers often has to manipulate data that is 

encoded in specific patterns of bits. For example, often a hardware register for controlling 

a device will be divided into several subfields, where some bits select the operating 

mode, another bit enables the device, etc. Recent work by Diatchki, Jones and Leslie [33] 

has explored adding facilities for specifying bit-level representations of data types in 

functional languages. Bacon [19] designed a language where the basic building blocks 

are bits and all other data types are derived. However, mainstream languages such as C 

and Java still force programmers to express such bit-level operations with masks and 

shifts on integers, often mixed with hexadecimal constants representing bitmasks. Such 

code is tedious to write and get correct; it is also very often obscure and ugly to read.  

Virgil defines a family of types that correspond to bit-level quantities that are 

inspired by work done by Redwine and Ramsey [83]. The types 1, 2, 3, to 64 define 

fixed-width bit quantities called raw types. Raw types are primitive value types like 

integers and booleans. Assignment and promotion rules are defined naturally to capture 

the essence of working with bits: i.) a smaller raw type can be assigned to or used in the 

place of a larger raw type, with promotions always filling the upper bits with zero, and 

ii.) assigning a larger raw type to a smaller raw type requires an explicit conversion 

which discards the upper bits. Integers, booleans, and characters can be implicitly 

converted to their raw representations, but conversion from raw types back requires an 

explicit conversion. References can never be converted to bits or vice versa. 
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A programmer can write hexadecimal, octal, and binary literals in Virgil 

programs. The length of the literal determines its size in bits, and therefore the resulting 

raw type. For example, a binary literal 0b1000 has four bits, and therefore raw type 4, 

while a hexadecimal constant 0xf4c has three hex characters, therefore it has raw type 

12. Unlike other languages that define the bitwise operators such as exclusive-or and 

shifts on integral types, bitwise operators in Virgil apply only to raw types. Each operator 

defines its result type naturally from the types of its operands, which helps the 

programmer ensure that the expressions compute the intended result and that the resulting 

storage location has enough bits. The shift operators (<< and >>) are defined to operate 

within a window that is the same size as the raw type being shifted; this makes the 

operation’s semantics independent of the width of any particular machine’s registers. 

Virgil also overloads the array subscript operator [] to allow the programmer to access 

and update individual bits within raw values. This helps to improve the terseness and 

readability of bit-level code. 

3.2.7. Hardware Registers and Interrupts 

Microcontrollers typically define a particular region of memory for 

communicating with and configuring on-chip devices such as an analog-to-digital 

converter (ADC), timer, or USART. Each individual device defines a set of registers that 

lie at known addresses within this region of memory. For example, the Timer0 device on 

the ATMega128 defines an 8-bit register named TCNT0 that contains the current counter 

value, as well as a TCCR0 register that is used for configuration. A device driver written 

in C or assembly typically uses explicit pointers the known memory addresses in order to 
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access individual registers. Of course, a software device driver usually hides the details of 

these hardware registers and offers a simplified interface to higher levels of software.  

Virgil has support for directly accessing these hardware I/O registers in a 

controlled way, without having to resort to calls to native methods, indirect accesses 

through pointers, VM tricks, or other magic holes in the type system. Instead, the 

hardware registers with fixed memory addresses in the I/O space are exposed to the 

program as named fields of a special component named device that can be read or 

written with raw types only. The names and locations of these registers are defined by a 

machine specification that is distributed with the compiler and selected by the 

programmer when targeting a specific device. The compiler will arrange the heap in 

memory so that objects and data structures do not overlay the I/O space. Accesses to 

these registers are always direct, by name, and thus the program cannot inadvertently 

alter the contents of the heap through indirect pointers. 

On-chip devices can also generate interrupts that must be handled by device 

drivers. Virgil allows the programmer to specify individual component methods that are 

connected to particular hardware interrupts, allowing a complete hardware device driver 

to be written entirely in Virgil, without any underlying unsafe code.  

3.2.8. Concurrency Model 

On a desktop or server system with a true operating system, preemptive 

multitasking is normally provided by the kernel, which manages stacks and multiplexes 

processes or tasks on the CPU (or CPUs) to provide concurrency because each 

underlying CPU offers only a one-stack execution model with hardware interrupts and 
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traps. Although Virgil does not currently have a formal concurrency model, it mirrors the 

hardware’s one stack model and exposes the hardware interrupts as entrypoints. Virgil 

does not offer synchronization primitives, but allows access to the hardware state that 

enables and disables interrupts. Therefore, the task of providing mutual exclusion is 

currently left to the programmer, e.g. by disabling all interrupts or a specific interrupt 

within critical sections. 

Incorrectly synchronized programs can have unpredictable results, which is why 

some languages such as nesC offer synchronization primitives built into the language and 

a phase which performs race condition checking, warning about possible synchronization 

violations. In the future, Virgil will offer an atomic region construct similar to nesC’s 

atomic statements and offer a similar verification phase. 

3.2.9. Virgil Anti-Features 

There are a number of language features available in modern object-oriented 

languages that have important expressiveness benefits but nevertheless cannot be 

comfortably supported given the design constraints. Section 3.1 has already discussed the 

Virgil inheritance model that allows efficient object implementations by removing 

features such as interfaces, but the design constraints have led Virgil to omit a number of 

features that entail large metadata and runtime overheads, such as: 

 

i. Locks. Synchronization primitives require runtime support in the form of 

locking and unlocking operations. This includes natively implemented atomic 

instruction sequences and spin loops, but most importantly queues, which 
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consume memory. Wait queues also assume a threading model; a microcontroller 

is generally a one-stack system without real threads. 

ii. Class loading. Dynamically loading new classes into the program is generally 

not needed for the types of programs that are written for microcontrollers. 

Additionally, dynamic class loading requires attaching significant metadata to the 

classes so that the host system can integrate the code into its current view of the 

program’s type system. This requires a significant runtime support structure. 

Additionally, dynamic loading can invalidate almost any interprocedural compiler 

optimization, which forces a static compiler to be overly conservative.  

iii. Reflection. The ability to reflectively inspect the members of objects and 

modify them by name requires a substantial runtime support system that carries 

significant metadata with the program. Large cost aside, the development model 

of microcontroller programs would tend to suggest that runtime reflection and 

dynamic configuration techniques should rather be replaced with static 

configuration mechanisms. 

iv. Garbage collection. Garbage collection is simply unnecessary because no 

dynamic memory allocation is allowed. Instead, programs in Virgil must statically 

allocate all of their needed memory during compilation. 

v. Method Overloading. C++, Java, and C# all allow overloading methods by 

their parameter types. Although overloading is a purely syntactic form of 

polymorphism and thus has no inherent runtime cost, it ruins the simplicity of 

Virgil’s delegate mechanism. Because Virgil supports using a method as a 
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delegate by simply referring to it by name, overloading would introduce 

ambiguity and require a clumsy resolution mechanism. 

 

What remains in Virgil is a simple but elegant set of object-oriented, procedural, 

and functional concepts that all require very little metadata, no runtime support, and all 

support strong type checking, with minimal dynamic safety checks. The dynamic checks 

required in Virgil are inserted automatically by the compiler and optimized where 

possible. These are explicit null checks, array bounds checks, subtype tests for explicit 

downcasts, and division by zero. 

3.3. Program Initialization 

Many embedded and real-time programs have a natural separation between 

application start up, where global data 

structures are allocated and initialized, and 

steady state execution where events are 

handled and the main computation is 

carried out. For example, an operating 

system allocates data structures associated 

with process tables, memory management, 

device management, caches, and drivers 

once when it boots and then reuses them 

through its lifetime. 

class List<T> { 
    field head: Link<T>; 
    method add(i: T) { . . . } 
} 
component K { 
   field a: List<int> = new List<int>(); 
   field b: List<int>; 
   constructor() { 
      b = new List<int>(); 
      add(a, 0); 
      add(b, 1); 
   } 
   method add(l: List<int>, i: int){ 
      l.add(i); 
   } 
} 

Figure 3.3: Program Initialization 
Example initialization code in Virgil that 
demonstrates the use of component 
constructors. Component field initializers and 
the constructor() method are run inside 
the compiler before generating code. 
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Because the core Virgil language has been carefully designed to allow 

applications to execute on the bare hardware without any supporting software or language 

runtime, it provides an explicit separation between initialization time, where data 

structures are allocated and initialized to a consistent state, and run-time, where data 

structures will be manipulated but no longer created or destroyed. 

Each component in a Virgil program can optionally contain a constructor, much 

like an object’s constructor, that contains code that initializes the component. The Virgil 

compiler contains an interpreter for the complete language and provides an initialization 

environment for this constructor that is richer than the run-time environment. 

Constructors execute inside the Virgil compiler, before any code is generated. The 

initialization environment allows unrestricted computation using all the language 

features; in particular the constructor may access other component’s fields, allocate and 

initialize objects and arrays, call component and object methods, create delegates, etc. 

Because the initialization phase represents Turing-complete computation, it is of course 

undecidable to determine whether the constructors will terminate, and the Virgil compiler 

leaves this to the programmer. In the future, a timeout option could be provided along 

with other debugging facilities to examine the operation of the program’s initialization 

phase if it goes awry. 

In Virgil, initialization is considered an inseparable part of the compilation 

process for a program. Initialization requires the entire program to be available, since 

initialization code can transitively reference any part of the program. The assumption of 

whole-program compilation is justified in this domain because when building a 
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standalone program for an embedded device there is always a point, traditionally link 

time, where the complete binary is put together. The Virgil compilation model recognizes 

this as inevitable and makes it an integral part of the compilation process. 

3.3.1. Initialization Determinism 

Initalization of a Virgil program is always deterministic and determined by the 

program alone. This avoids one significant drawback of previous persistent systems such 

as Smalltalk, where replicating the initialization environment for a particular program 

could be nontrivial. The order in which component constructors are executed is given by 

the order in which the program files are specified on the compiler command line. 

However, dependencies between components can force initialization to happen earlier. 

For example, if the field of an unconstructed component K is accessed during the 

initialization of an earlier component J, then K's constructor is invoked before the field 

operation completes. A cycle in constructor invocations cannot occur because a 

component is marked as constructed just before executing its constructor. Fields not 

explicitly given an initialization value, or fields that have not yet been initialized because 

of a cycle in dependent initialization, have a default value given by their type (e.g. 0 for 

int; null for arrays and objects).  

3.3.2. Initialization Garbage 

The built-in interpreter utilizes a general-purpose garbage collector so that any 

unreachable objects allocated throughout initialization are reclaimed. Upon termination 

of the application initialization phase, the compiler traces from the component fields 
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through objects and object fields to discover the graph of objects that are transitively 

reachable from the roots. All unreachable objects are discarded, and only the code and 

metadata associated with live objects are included in the final program binary. 

3.3.3. Code Generation and Runtime 

After the identifying the reachable heap, the Virgil compiler will compile both the 

code and the heap of the program together into a single binary that can be loaded onto the 

device or executed in a simulator. When the program begins execution on the device, the 

entire initialized heap is available in memory and the program can manipulate these 

objects normally, reading or writing fields, invoking methods, creating delegates, etc. 

However, the program will not be allowed to allocate new objects, which eliminates the 

need for a runtime memory manager or a garbage collector. 

3.4. Optimization 

Careful adherence to the design constraints allows Virgil to be implemented 

straightforwardly and efficiently without a language runtime and with minimal metadata. 

In addition to the base efficiency of the straightforward implementation, basic 

optimization techniques can be applied. For example, the Virgil compiler will employ 

class hierarchy analysis [32] to devirtualize calls and delegate uses, as well as to identify 

degenerate orphan classes to be represented without object headers.  

The availability of the complete program heap enables an advanced Virgil 

compiler to substantially improve on the base implementation with three new 

optimizations. The first, reachable members analysis, removes code, objects, and fields 
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of objects that are unused in the program and is described in this section. Reference 

compression, covered in Chapter 4, exploits the language’s type safety to represent object 

references in a compact way, and ROM-ization reorganizes object layouts to move read-

only fields into the larger ROM memory. All three optimizations exploit the type-safe 

nature of the Virgil language and are made possible by the availability of the program 

heap at compile time. 

3.4.1. Reachable Members Analysis 

Initialization time allows a Virgil program to build complex data structures such 

as lists, queues, pools, maps, and trees during compilation for use at runtime. Garbage 

collection following program initialization uses the standard notion of transitive 

reachability through object references to discover the reachable heap and discard 

temporary objects. However, libraries or drivers used by a Virgil program may create 

data structures that are reachable through object references but are not actually used at 

runtime by the program.  

This can arise in a number of scenarios. For example, a software device driver 

may create data structures that are only used if the hardware device is used by the 

program. Imagine a timer driver with an event queue used to trigger application events at 

specific future times; the queue is only necessary if the application actually uses this 

feature of the timer. Another example is when a device with many different modes of 

operation is used in only one particular mode. In other situations, an application may only 

use a subset of the functionality provided by a complex data structure; a doubly linked 



 92 

list that is only traversed forward will never use the back pointers, or a tree that is only 

searched and not modified may not need parent pointers in its nodes.  

A compiler may remove objects and fields from the program, provided they are 

never accessed upon any execution. This is especially important when compiling an 

application that reuses drivers, modules, and data structures that provide more 

functionality than is needed for the program. The compiler need only generate the code 

and include live data structures, reducing the total memory footprint of the program. 

There are numerous techniques for dead code elimination and data structure 

reduction [95][100], but the consideration of initialization code leads to overly 

conservative approximations. In general, removal of dead code requires computing a 

sound set of reachable methods and requires approximating the possible receiver methods 

of dynamic dispatches in the program. Unlike all previous work, the explicit separation of 

initialization time and run time in Virgil eliminates the need to consider initialization 

code: the availability of the complete program heap provides access to all of the objects 

that will be manipulated by the program at run time. 

Now we are ready to state the reachable members problem and begin exploring 

possible solutions. 

Reachable Members Problem: Given (P a Virgil program, R a set of initialized 

root fields, H the initial heap of objects, and E initial methods representing entrypoints 

into the program), which methods in P and which fields F of object instances in H might 

be accessed on some execution of P? As stated, the problem is clearly undecidable, 
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reducible to the halting problem. So we will consider sound approximations that are less 

precise. 

3.4.2. Classical approaches 

Let’s first sketch a general idea of how a compiler might approach this problem. 

The classical solution would be to begin analyzing the code of the entrypoint methods E 

and build a call graph that represents the set of reachable methods. At virtual method and 

delegate invocation sites in the program, the algorithm would use some conservative 

approximation of possible receiver methods, leading to a conservative approximation of 

the reachable methods that may include some methods that are dead. After computing a 

set of all live methods in the program, the compiler would analyze the code of each 

method for accesses of root fields R and instance fields of objects. Then, the compiler 

would remove unused root fields as well as unused fields in objects in the heap. 

Following this approach, what approximation is appropriate at each invocation 

site? We might use a simple analysis such as CHA, which considers the class hierarchy of 

the program and the static type of the object reference at the call site to determine a set of 

reachable method implementations. However, this approximation may be too 

conservative because CHA considers all the code of all classes declared in the program, 

including ones that may not have instances in the heap H. Another approach might be to 

only consider the classes of objects that have live object instances in the heap H. This 

would be similar to Rapid Type Analysis [21], which maintains a set of possibly live 

types during analysis by inspecting the object allocation points of the program. This 

second approach is more precise than CHA because only method implementations 
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corresponding to live objects in the heap are considered. However, simply using the 

existence of any object of a particular class in the initial heap may be too imprecise, 

because after removing dead objects, the set of live types might also be reduced. Another 

iteration of the algorithm may be able to further reduce the set of reachable methods 

because the approximation of each call site may become more precise. In general, the 

algorithm might need to iterate to a fixpoint to get the least solution.  

There are some situations where even the fixpoint will not give the best result. For 

example, a liveness cycle can arise where a class has a method that contains the only use 

of a root field, and that root field is the only path by which objects of that class are 

reachable in the heap. In this case, the existence of the object in the heap forces 

consideration of the method, which forces the root field to appear live, which forces the 

object to be considered live, even if the field is not used elsewhere in the program. 

Iterating the RTA analysis will not discover the field, and therefore the method, is dead. 

Figure 3.4 contains an example program for analysis that illustrates this liveness 

cycle problem. Note that the component field initializers are run in the compiler, and by 

the time analysis begins, these fields refer to actual live object instances in the heap, 

which we will call object A1, B1, and C1. The initial assumption of CHA is to ignore the 

heap and assume that the call to m() in Main.entry() can reach any of the three 

implementations, considering them live; however it correctly discovers that field 

Main.h is unused because there are no references to it in any of the code. Now consider 

RTA, where the first iteration assumes that A.m, B.m, and C.m are reachable because 

objects of those types exist in the heap; RTA therefore concludes that Main.g is used 
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because it is used in B.m. After the first iteration, RTA can eliminate field Main.h and 

object C1. Upon beginning the second iteration, C.m is no longer live because C has no 

live instances in the heap; however, RTA still considers the code in B.m live and 

therefore Main.g is still live.  

 

The core imprecision of classical approaches to this problem is that they are not 

data-sensitive, meaning they do not operate in the context of the live object instances in 

the heap. The main weakness of CHA is that it doesn’t consider live objects at all. RTA, 

however, is too imprecise because in each pass a class’s method implementation is 

considered live if at least one instance of the class exists in the heap, even if the object is 

later considered unreachable. 

3.4.3. Reachable Members Analysis 

component Main { 
    field f: A = new A(); 
    field g: A = new B(); 
    field h: A = new C(); 
    method entry() { 
        while ( true ) f = f.m(); 
    } 
} 
class A { 
    method m(): A { return this; } 
} 
class B extends A { 
    method m(): A { return Main.g; } 
} 
class C extends A { 
    method m(): A { . . . } 
} 
 

Figure 3.4: Analysis Comparison 
Example Virgil program used to compare analysis precision. A liveness cycle exists involving the 
method B.m and the field Main.g preventing CHA and RTA from computing the most precise result. 
The table on the right gives the analysis results for CHA, two iterations of RTA, and RMA. 

Analysis Methods Fields Objects 

CHA 
Main.entry 

A.m 
B.m 
C.m 

Main.f 
Main.g 

A1 
B1 

RTA (1) 
Main.entry 

A.m 
B.m 
C.m 

Main.f 
Main.g 

A1 
B1 

RTA (2) 
Main.entry 

A.m 
B.m 

Main.f 
Main.g 

A1 
B1 

RMA Main.entry 
A.m Main.f A1 
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Reachable members analysis addresses the imprecision of classical approaches by 

analyzing code and objects together as they become reachable from the entry points of 

the program. RMA is an optimistic algorithm and initially assumes that nothing is 

reachable. By pulling in objects, 

methods, and fields in an on-demand 

fashion, it avoids the imprecision 

inherent in the CHA and RTA 

analyses. Before beginning the 

detailed algorithm, consider a 

conceptual outline. RMA begins at the 

entrypoint methods analyzing the code 

of each method by inspecting reads of 

root and object fields. For a use of a 

new root field, it considers the field to 

be live and puts the object referenced 

by the field into the live object set. For 

a use of a new object field, RMA 

considers that field live for every 

object of that type; for every object in 

the live set, it transitively pulls in 

objects reachable through the new 

field. For a new method invocation, it 

info: Map<Type, {members: Set<MemberName>,  
                 subtypes: Set<Type>, 
                 instances: Set<Object>}> 
methods: Set<Method> 
 
(1) analyze(Program p) = 
    foreach( Method m in p.entrypoints ) 
        post(m) 
    while( !empty(worklist) ) 
        analyze(dequeue(worklist)) 
(2) analyze(Method m) = 
    methods.add(m) 

    foreach ( Expr e in m.body ) 
 if ( e = read(C.f) ) post(C, m) 
 if ( e = read(e.f) ) post(type(e), m) 
 if ( e = call(C.m) ) post(C, m) 
 if ( e = call(e.m) ) post(type(e), m) 

(3) analyze(Type t) = 
    info[t].subtypes.add(t); 
    foreach( Type p in parents(t) ) 
        info[p].subtypes.add(t) 
    let pm = info[parent(t)].members 
    foreach( Member m in pm )  
        post(t, m) 
(4) analyze(Type t, Field f) = 
    info[t].members.add(f) 

    foreach( Object o in info[t].instances )  
        post(value(o.f)) 
    foreach( Type s in info[t].subtypes )  
        post(s, f) 
(5) analyze(Type t, Method m) = 
    info[t].members.add(m) 

    foreach( Type s in info[t].subtypes )  
        post(resolve(s, m)) 
(6) analyze(Object o) = 
    post(type(o)) 

    info[type(o)].instances.add(o) 
    foreach( Field f in info[t].members ) 
        post(value(o.f)) 
 

Figure 3.5: RMA Algorithm 
Data structures and analysis rules for each type of 
work unit. The post() method produces a new 
work unit of the corresponding type and inserts it into 
the worklist if the unit of work has not already been 
performed. 
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considers only method implementations corresponding to classes that have instance 

objects in the current live set. The algorithm iterates until there are no new method 

implementations or objects to analyze.  

Figure 3.4 contains the core of the RMA algorithm. The two central data 

structures used in the RMA algorithm are info, a map from a class or component type 

to a set of used members, instantiated subtypes, and object instances; and methods, a 

set of the currently reachable methods. 

The info data structure is initialized for every type in the program with an 

empty entry, and the methods set is initially empty. The analysis is organized into five 

different units of work that are all inserted and removed from a central work list. The 

work list is processed in order, and each kind of unit of work may produce new units of 

work to be inserted in the list and performed later. One can view the algorithm as 

recursive, with the work list implementing memoization for termination. The five types 

of work units are: 

 

i. New Method. This unit represents a previously unseen method that contains 

new code to analyze.  

ii. New Type. This unit represents a new instantiated type that has not been 

encountered before.  

iii. New Field Access. This unit represents a previously unseen field access of a 

class or component. 



 98 

iv. New Method Access. This unit represents a new access to a method of a class 

or component. 

v. New Object Instance. This unit represents a new object instance that has 

been discovered to be reachable in the heap. 

 

When a new unit of work is available, the post() method is called with that 

unit. The post method is analogous to the analyze() method, and is overloaded for 

each type of work unit. The post() implements a form of memoization; it always 

checks to see whether the unit of work has already been performed or is already pending 

before placing the unit in the work list. 

Let’s examine the work units in detail. Imagine that we are running the analysis 

algorithm by starting at (1), and initially begin processing a work unit of type (2) on the 

entry method of the program. At this point there are no objects yet considered reachable, 

and nothing in the main data structures. The work unit (2) iterates over the statements in 

the method; if the program reads a component field, the analysis posts a new unit of work 

of type (4) to analyze the component field later. Similarly if (2) detects a read of an object 

field, then a work unit (4) is posted on the type of the expression and the field name. The 

analysis treats component and object field accesses are together in (4) by considering a 

component to be a class with a single instance in its instances list. Work unit (4) 

analyzes the new field for all live objects in the instances list, posting the objects 

those fields reference into the work list, and then recursively posts a work unit (4) on 

each of the instantiated subtypes with the same field. For a virtual method call, the work 
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unit (5) resolves the method implementation for the static type and posts the method to be 

analyzed later by (2). To process a new object instance, the work unit (6) first posts a 

work unit on the object’s type (3), which integrates the type into the lists of its parents 

and posts any fields or method accesses performed on the parent on the new type, and 

then analyzes the fields of the new object. 

RMA’s worse case complexity is quadratic in the number of declared fields in the 

program, but this only occurs for pathological inheritance scenarios. The source of 

nonlinearity is the repeated posting of field members from a super-class to its instantiated 

subtypes (4), which happens at most once per field per subtype, which in the worst case is 

quadratic. For simple hierarchies, the algorithm runs in linear time. RMA analyzes the 

code of each reachable method at most once, since it need only glean from the body the 

static types of field and method accesses. Secondly, each object instance that the analysis 

considers is added to exactly one instances list, since each object has exactly one 

dynamic type. The instances list for a type may be processed multiple times, but at 

most once per new field encountered, thus each field of each reachable object is inspected 

at most once, either when the object instance is first encountered, or when a new field 

read is encountered in the program. A less precise result could be obtained by only 

keeping field access information in the type where the field was declared. This would 

reduce the worst-case complexity, but would reduce precision.  

The algorithm as presented can be used to compute the necessary information for 

the pull members down optimization that moves fields from a super-class to its children 

classes if it is unused in the super-class, which saves space in instances of the super-class. 
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This transformation originally appeared in automated refactoring tools, but admits a small 

opportunity for space savings here. Tyma in [106] describes field percolation, where 

members are pulled up into super-classes when possible. This reduces the meta-data per 

class, but potentially increases the size of objects if the super-class is instantiated. 

3.4.4. ROM-ization 

Reachable members analysis can also be used to statically determine an 

approximation of which component fields and object fields the program may modify. For 

example, if no writes to a particular component field exist in the program, then that field 

will remain constant throughout any execution and the compiler will simply replace 

accesses to this field with its value and remove the field. For object fields, if no writes 

exist to a particular object field, then for all instances of the object in the program, the 

corresponding field will not change value over the execution of the program. These fields 

can be factored out of the object and stored in the ROM.  

There are various techniques to represent the constant. If it is the same value 

across all object instances, the compiler can inline it as a constant wherever reads occur. 

If it is constant by subclass [17], the compiler can move it to the meta-object, and 

otherwise, the compiler can store the field in ROM. It may choose to split the object into 

a read-only and a read-write portion; either a hash table or a pointer from one to the other 

can associate the two halves of the object. More techniques for ROMization are discussed 

in Chapter 4.  
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3.4.5. Metadata Optimizations 

In addition to optimizing the layout of objects within the heap, the compiler can 

also perform a number of optimizations on metadata, including the meta-objects and the 

object headers. First, the compiler can use the results from reachable members analysis to 

optimize the meta-object itself. The reachable members analysis computes which virtual 

methods are used within the program and the unused entries in the meta-object can be 

removed. Similarly, the slots in the meta-object that correspond to methods that have 

been fully devirtualized can be removed. The compiler can also compress the object 

header, which normally contains a direct pointer to the meta-object, replacing the pointer 

with an index into a meta-object table. This can allow the object header to be compressed 

to only a few bits. Third, since the meta-objects are read-only throughout the life of the 

program, they can be stored in the ROM to save precious RAM space. 

3.5. Experience 

We have implemented a prototype compiler that supports the complete Virgil 

language, including a front-end that parses and typechecks the program, an interpreter 

that runs the initialization phase to obtain the complete program heap, a middle portion 

that implements reachable members analysis and performs optimizations, and a backend 

that produces C source code. The compiler totals approximately 48,000 lines of Java code 

including all comments and documentation. It transforms the Virgil program and emits 

all of the code into a single C source file, including the live objects in the heap, their 

metadata, and all the reachable code. This C program includes all code necessary to run 

on the bare device, and does not require the use of any libraries, including libc, the C 
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language runtime. Of course, this intermediary C code generation step is not intrinsic in 

the language compilation, runtime, or linking model; a production Virgil compiler would 

output native code directly. 

The Virgil compiler is open source. In May 2007 the third version of the Virgil 

compiler system was released, which includes more extensive documentation and a suite 

of example programs. The source code is covered under a BSD-like license, which grants 

copying and redistribution rights provided the copyright notice is left intact. The entire 

system is available for download at: 

 

 http://compilers.cs.ucla.edu/virgil 

 

3.5.1. AVR Driver Libraries 

Based on my example driver for Timer0 device on the ATMega128 

microcontroller, undergraduate students Akop Palyan and Ryan Hall developed software 

drivers for most of the on-chip AVR devices during their Winter 2007 quarter project. 

Both students had intermediate experience with Java, but neither student had prior 

experience with Virgil. Both were able to learn the language very quickly and had their 

first working drivers within three weeks. Their rapid absorption of the language may be 

partly due to the total lack of any APIs or standard libraries that they needed to learn 

which allowed them to start from scratch and build a completely standalone world. 

The device driver suite is written entirely in Virgil, without any underlying unsafe 

C or assembly code, and offers a simplified interface to the hardware devices based on 
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queues and events. Development and testing of the drivers was done with the Avrora 

[105] cycle-accurate AVR emulator that we built in 2004 and 2005, as well as on actual 

Mica2 sensor network nodes in our lab. Avrora provides detailed instrumentation and 

measurement capabilities [103] that proved to be invaluable during development. Based 

on the students’ feedback, a simple Avrora monitor was developed that generates a 

source-level stacktrace when a Virgil program throws an exception while running in the 

simulator. Virgil’s static type system backed with dynamic checks proved to be 

extremely useful to both students in diagnosing program errors that would have otherwise 

manifested themselves in mysterious crashes and resets had the programs been written in 

C or assembly code.  

Available device drivers include the analog-to-digital converter (ADC), serial 

driver (USART), and the serial peripheral interface (SPI). Each driver has an associated 

test program that can be used to test the driver in the simulator and on the hardware. A 

driver for the CC1000 external radio chip is now partially working, which will allow 

further layers of software to implement a protocol stack so that applications can 

communicate with other sensor nodes, including those that may be running another 

operating system such as TinyOS or SOS. 

 

3.5.2. Benchmark Programs 

This section uses 13 Virgil programs that are drawn from several disparate 

sources. Blink is a simple test of the timer driver, toggling the green LED twice per 

second; LinkedList is a simple program that creates and manipulates linked lists; 
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TestADC repeatedly samples the analog to digital converter device; TestUSART 

transmits and receives data from the serial port; TestSPI stresses the serial peripheral 

interface driver; TestRadio initializes the CC1000 radio and sends some pre-computed 

packets; MsgKernel is an SOS excerpt that sends messages between modules; 

Fannkuch is adapted from the Programming Language Shootout Benchmarks and 

permutes arrays; Decoder is a bit pattern recognizer and is discussed in more depth in 

the next section; Bubblesort sorts arrays; PolyTree is a binary tree implementation 

that uses parametric types; and BinaryTree is the same tree implementation but uses 

boxed values. 

3.5.3. Exploiting Initialization Time - Decoder 

After some experience writing code in Virgil, the initialization time concept has 

proved to be quite versatile. An application can use initialization time not only to 

initialize its state and allocate pools of objects, but it can build complex data structures, 

balance them, and run test cases on its own code. This can be especially useful when 

building complex data structures such as trees and maps that need only be constructed 

once and then repeatedly reused throughout the lifetime of the program. In this case, the 

program can perform data structure tuning at compile time to get the most efficient data 

structures possible. 

One illustration of the flexibility that this mechanism provides is in the Decoder 

application. The Decoder application builds a b-tree which represents an efficient bit 

pattern recognizer that can be used to differentiate patterns of bits such as machine 

instructions, commands, network packets, etc. It is tedious to write the b-tree by hand, 
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especially if it is encoded with several levels of switch statements. Instead, efficient 

algorithms exist to build a decision tree from a list of bit patterns in time linear in the 

number of patterns. The tree can even be reduced using techniques similar to those for 

BDDs [cite], yielding a directed acyclic graph. The Decoder application runs this 

algorithm during its initialization phase to produce and optimize the decoder data 

structure. Specifically, it creates a DecoderBuilder object in the constructor of the 

main application and inserts its specific set of bit patterns and then calls the 

DecoderBuilder.build() method. This method constructs the tree from the bit 

patterns, optimizes the tree, allocates the node objects, and then connects the nodes 

together, returning a reference to the completed decoder graph. The main program stores 

the data structure for use at runtime. After initialization terminates, the 

DecoderBuilder and its data structures are garbage collected automatically by the 

compiler. The program retains only the decoder data structure, which only contains only 

a few nodes that can be optimized by the compiler. Reachable members analysis will 

remove all the code and data structures that are unreachable from the entry point, so the 

complex initialization code for the DecoderBuilder is discarded. 

3.6. Experimental Results 

This section provides experimental results that demonstrate the space savings 

achieved by reachable members analysis. In addition to removing dead code and data, the 

prototype compiler uses RMA to inline the values of read-only fields where possible, 

reduce the size of meta-objects, and devirtualize method calls where possible. The impact 

of these optimizations on footprint and execution time are evaluated for the AVR 



 106 

architecture using the Avrora simulator [105]. The Virgil compiler emits C code that is 

compiled to AVR machine code using avr-gcc version 4.0.3 with an optimization level 

of -O2. The ROM-ization optimization described previously in this chapter is not 

currently implemented in the prototype compiler. 

 

 Figure 3.6 shows the reduction in RAM usage of the benchmark programs before 

and after applying the RMA optimization. The first section (blue) of each bar represents 

the heap size after RMA has been applied; the second section (red) represents the size of 

the runtime stack (included only for comparison, because RMA does not affect stack 

size); and the third section (yellow) of each bar represents the size of heap data removed 

 
Figure 3.6: RAM Reduction 

RAM reduction by applying the RMA optimization. The first section (blue) of each bar represents the 
heap that is live after applying RMA. The second section (red) represents the size of the dynamic 
program stack (obtained through instrumentation and unaffected by RMA). The last section (light 
yellow) is the size of the heap removed by RMA. 
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by RMA. Thus, the total length of the bar represents the total RAM consumption if RMA 

had not been applied. First, notice that the empty program requires no RAM whatsoever, 

which means the fixed RAM cost of using Virgil is zero. Secondly, all applications fit 

comfortably in less than 1000 bytes of RAM; the larger heaps actually have more than 

100 objects. The smaller applications have heaps that fit in less than 100 or 200 bytes of 

RAM, even with drivers that include large arrays, queues, and callbacks, demonstrating 

that it is feasible to build software for even the smallest of microcontroller models in 

Virgil.  

This figure also illustrates how effective program slicing has altered the way 

Virgil applications are built. Instead of the developer tediously specifying which code in 

which files are required for each application, all programs in this suite are simply 

compiled against the entire driver library for AVR, regardless of what they actually need. 

These drivers internally require storage for numerous configuration fields, data structures, 

but RMA works so well that all of this is removed automatically. Some of these 

programs, of course, do use parts of the drivers, and the necessary data structures remain. 

Nevertheless, all applications benefit substantially from RMA—so much so that the 

application build process has changed and application programmers at the moment 

needn’t even bother removing unused drivers their programs use in order to save space. 
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Figure 3.7 shows a similar comparison for code size. The first section of each bar 

(blue) represents the code size after RMA has been performed, and the second section 

(yellow) represents the code removed. After optimization, all applications fit in less than 

6 kilobytes of code space, with 11 of 13 in less than 4KB and 6 of 13 fitting in less than 

1KB. The Empty program requires just 262 bytes of code; this includes the interrupt 

table for the microcontroller (approximately 120 bytes) and some boilerplate code that is 

generated by avr-gcc. Here again we see the large amount of dead code from the 

driver library that is automatically removed. 

  

 
Figure 3.7: Code Size Reduction 

Code Size reduction by applying the RMA optimization. The first section (blue) of each bar represents 
the size of the code that is live after applying RMA. The last section (light yellow) is the size of the 
code removed by RMA. 
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 Figure 3.8 gives a comparison of execution time of the benchmarks over four 

Virgil compiler configurations. The time for each benchmark is normalized to the time of 

the base configuration (i.e. base = 100%). This chart compares four configurations: 

RMA: devirtualization with RMA; RMA+CP, devirtualization with RMA, followed by 

propagation of constant field values; inline1, devirtualization with RMA followed by 

some inlining; and inline2, devirtualization with inlining and further optimizations. RMA 

affects execution time because later passes in the compiler use the analysis results to 

devirtualize call sites and inline the values of read-only fields. The Empty program is a 

degenerate case and is just shown here for comparison; its execution time is dominated 

by the bootstrap code that loads the heap from ROM into memory—after RMA, there is 

 
Figure 3.8: Normalized Execution Time 

Execution time of four different optimization configurations, normalized to the base configuration 
with no optimization (i.e. base = 100%). 
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no heap. Blink benefits highly because its main computation is a simple interrupt 

handler that after inlining becomes very trivial updating of hardware registers. Most other 

programs have between 10-15% performance improvement from RMA alone and about 

20-30% performance improvement total when combined with inlining. Currently, little 

work has gone into improving inlining heuristics in the prototype compiler, which 

indicates there may be more room for even better results in the future. 

 

 Figure 3.9 compares code size for all five of the compiler configurations 

mentioned in this section, including all of the results from Figure 3.6 and adding results 

for the two inlining configurations. Here we can see the unsurprising result that inlining 

 
Figure 3.9: Absolute Code Size 

Absolute code size of five configurations in kilobytes. The four configurations are the same as in 
Figure 3.8. 
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increases code size, sometimes substantially. But the most interesting thing about this 

graph is that the code size of the inline2 configuration is typically less than code size 

of the base configuration (i.e. without RMA). Thus, we can take the view that RMA 

removes enough dead code that it gives the compiler a “budget” for achieving better 

performance through inlining optimizations. This is a positive step towards a compiler 

than can make intelligent resource tradeoffs. 

 

 Figure 3.10 shows compilation time for each of these benchmarks. The Sun Java 

1.5.0 virtual machine is used to run the Virgil compiler on our Linux 2.6 server with two 

3.06ghz Xeon processors and 4GB of memory. No application requires more than 1.7 

 
Figure 3.10: Compilation Time 

This figure shows the compilation time of all applications, broken down into distinct phases, including 
parsing/typechecking, optimization, emission of C code, and compilation of C code to machine code. 
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seconds of compilation time. By far the dominant cost is parsing and type checking 

(second section, blue), followed by the compiler and JVM startup time (first section, 

yellow) and optimizations (fourth section, red). Initialization time cost (third section, 

light blue), where the compiler interprets the program’s initialization code, is small for all 

applications, though proportionally larger for Decoder, which contains a complex 

initialization routine for building its main data structure. Emission of C code and gcc 

compilation time vary the most, since these are proportional to the size of the program 

coming out (as opposed to going in); these two are considerable for large programs, but 

negligible for small programs. Overall, the compiler is fast enough that whole-program 

compilation isn’t even noticeable, yet it remains to be seen whether compilation time will 

become an issue for larger applications. 

3.6.1. Effect of Safety Checks 

The Virgil compiler inserts safety checks in the program to detect program errors 

such as null dereferences, array bounds violations, and failed type casts. While language 

runtime systems usually trap null dereferences using virtual memory techniques, the 

Virgil compiler must insert explicit null checks because the AVR microcontroller has no 

hardware support for null or bounds checks. To study the effect on code size and 

execution time, the Virgil compiler supports an option to disable these safety checks. 

This option is only meant for tuning of the compiler, and not for application 

programmers. Figure 3.11 gives the code size comparison for two new configurations. 

The basenn configuration is the same as the base configuration from the previous 

figures, but with safety checks disabled, while the inline2nn configuration is the same 
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as the previous inline2 configuration, but also with safety checks disabled. This figure 

gives the respectively normalized code sizes, where basenn is normalized against 

base, and the inline2nn is normalized against inline2.  

 

Here we can see that there are four applications whose code size is not affected by 

safety checks. Empty contains no object operations, and hence no safety checks; Blink 

contains object operations that are optimized to remove safety checks and inline 

constants; both PolyTree and BinaryTree include null checks as part of their main 

logic, thus the extra null checks inserted by the Virgil compiler are actually redundant 

and optimized away by avr-gcc. Further, there are several applications with substantial 

code size reductions from disabling safety checks (up to 45%), particularly bounds 

 
Figure 3.11: Normalized Code Size w/o Safety Checks 

This figure shows the resulting code size when safety checks are disabled. All results are normalized to 
the RMA configuration. 
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checks. Currently, the Virgil compiler does not perform any safety check optimizations; 

techniques such as [59] and [23] could likely reduce the disparity significantly.  

 

Dynamic safety checks also impose some runtime overhead on the program as 

well. Figure 3.12 shows the impact of disabling safety checks on the runtime of the 

programs. As in Figure 3.11, each bar is normalized to its respective configuration with 

safety checks. Here we can see that the same four applications are not affected, but some 

applications, particularly the array-intensive BubbleSort and Decoder applications, 

are severely affected. This is in line with literature on array bounds optimizations [23], 

which typically reports speedups as high as 2-3x for some programs. As can be seen from 

the results, it will be important to optimize these safety checks in the future. The 

 
Figure 3.12: Normalized Execution Time w/o Safety Checks 

This figure shows the resulting execution time when safety checks are disabled. Each result is 
normalized to its respective configuration with safety checks enabled. 
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Fannkuch results are an anomaly; although the program does not actually trigger any 

safety check violations during execution, a compiler bug in avr-gcc triggers an 

incorrect optimization that causes the program to fail to terminate when the checks are 

not present in the code. 

3.6.2. Virgil versus C 

For programming microcontrollers, C is still the dominant language due to its 

low-level nature with small fixed and proportional costs. With avr-gcc, there is little to 

no built-in runtime system required, allowing very small C programs to be created for the 

AVR. These properties make it an attractive choice for most microcontroller 

programmers. They also make it an attractive choice for the Virgil backend target, 

 
Figure 3.13: Code Size (C vs. Virgil) 

This figure compares code sizes for Virgil and C programs over several different Virgil compiler 
configurations, with and without safety checks. 
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allowing the Virgil compiler to concentrate on high-level data and code optimizations 

while leaving low-level optimizations such as instruction selection and register allocation 

to the C compiler. Nevertheless, we want to measure the overhead introduced in writing 

code in Virgil, with its safety and expressiveness benefits, as opposed to writing the code 

directly in C. 

For this experiment, we rewrote five of the example programs directly in C, 

eliding the object-oriented features and the driver library, cutting the programs down to 

bare essentials. Then, to make the comparison as fair as possible, these C programs were 

translated back into Virgil with a one-to-one function-to-method and struct-to-class 

mapping. This ensures, as close as can be, that the comparison focuses the language 

overheads rather than the design decisions made by libraries or driver code. Figure 3.13 

gives the code size comparison between the five C programs and their Virgil equivalents, 

with four Virgil compiler configurations. First, we can see that the Virgil compiler 

configurations with safety checks enabled (base, inline2) can be significantly larger 

in the BubbleSort and LinkedList cases, while the other three programs have are 

not affected by safety checks. Second, when safety checks are disabled (basenn, 

inline2nn), the Virgil code size is only slightly larger than the corresponding C 

program. 
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 Figure 3.14 compares the execution time for the four Virgil compiler 

configurations, normalized against the execution time for the respective C program. Here, 

we can see that only BubbleSort is affected by the safety checks, because the other 

programs either require no safety checks, or they are redundant when combined with the 

program’s logic. Three programs have 5% or less execution overhead with respect to the 

C program, with 29% for LinkedList without inlining. The avr-gcc compiler does 

not perform aggressive inlining, which means the Virgil compiler actually has an 

opportunity to outperform the C compiler more aggressive optimizations. It has been long 

known that inlining is key for good performance in object-oriented and functional 

programming languages. We saw earlier in Figure 3.7 that inlining with the Virgil 

 
Figure 3.14: Execution Time (C vs. Virgil) 

This figure compares execution time for Virgil and C programs over several different Virgil compiler 
configurations, with and without safety checks. The execution times are normalized to the execution 
time for the C version. 
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compiler significantly improves performance; in this case, the LinkedList program 

actually runs over 30% faster than the C program. At a higher level, if we view 

performance as an item that can be budgeted, then inlining and aggressive optimization 

buy us the necessary performance to support the higher-level features of Virgil.  

 The data sizes for these five programs are also very close. Empty, Blink, and 

TestADC require no heap whatsoever, in either the C or Virgil versions. The 

BubbleSort program is dominated by a large array of integers. It requires 800 bytes of 

memory in the C implementation and 805 bytes in the Virgil implementation. 

LinkedList requires 124 bytes in the C implementation and 125 bytes in the Virgil 

implementation. Both the C and Virgil LinkedList programs have a static array that is 

a pool of link nodes that is used to build the main list at startup; the main list is used 

throughout the rest of the benchmark. In the C implementation, the pool is an array of 

Link structures rather than array of pointers to Link structures, while in the Virgil 

version, it is an array of references to Link objects, which increases the heap size by one 

pointer per pool entry. During optimization, the Virgil compiler detects that the Link 

objects are orphans and removes their object headers. Then the Virgil compiler’s RMA 

optimization detects that the backward pointers are unused and removes them. This 

results in Link objects that are actually smaller than the corresponding C Link structs, 

balancing out the cost of the extra pointers in the pool. Interestingly, if we apply 

reference compression techniques from the next chapter, the heap size of the 

LinkedList program can be reduced to 97 bytes, which is actually 22% smaller than 

the C version. 
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Overall, these results clearly show that Virgil is a very close competitor to raw C. 

We can see that the safety checks impose significant performance and code size costs in 

some cases, but this can likely be removed in the future with well-known array bounds 

and null check optimizations. Heap size results are very promising. Orphan classes 

provide the programmer with low-cost data structures that do not require metadata, and 

RMA removes unused data structures and fields. Compression techniques described in 

the next chapter serve to further reduce the heap size. 
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4. COMPRESSION 

This chapter describes the compression optimizations that the Virgil compiler 

employs in order to reduce the RAM consumption of applications. These optimizations 

exploit the type safe nature of Virgil code in order to represent program quantities in a 

more space efficient way. These compression techniques establish part of the thesis by 

showing that advanced compiler technology can reduce the resource consumption of 

programs written in Virgil for microcontroller devices. 

Often the most important resource constraint of a microcontroller is the RAM 

space available to store the program heap and runtime stack, while makes reducing RAM 

consumption of paramount importance. Reducing RAM consumption allows larger 

applications to be built and deployed on the same microcontroller model, while 

optimizing a single application also allows a smaller, cheaper microcontroller to 

accomplish the same task. There are several general techniques to reduce RAM 

consumption. One is to simply remove unused data structures through compiler or 

manual analysis, such as the reachable members analysis described in the previous 

chapter. Another technique is to reduce the average footprint of a program by moving 

infrequently used data to larger, slower storage such as disk, e.g. with virtual memory 

mechanisms. A third technique is to compress infrequently used data and dynamically 

decompress it as it is accessed. A fourth technique is to statically compress program 

quantities so that dynamic decompression is unnecessary. 

This chapter evaluates two offline heap compression techniques implemented in 

the Virgil compiler. Both techniques exploit the type-safety of Virgil and the availability 
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of the entire program heap at compile time to encode references in a more compact way. 

Unlike previous approaches [31][65], this technique is based on the type safety of the 

language and does not require sophisticated program analysis. The first technique 

represents object references as object handles instead of direct pointers, allowing them to 

be represented with fewer bits. Because the entire heap is available at compile time, the 

compiler can introduce a compression table stored in ROM that contains the actual 

memory address of each object. This adds a level of indirection, as object operations 

require first loading the actual memory address from the table using the object handle. 

The second technique is a novel object layout model that we call vertical object layout. 

Vertical object layout represents objects in a more compact way by viewing the heap as a 

collection of field arrays that are indexed by object number, rather than the traditional 

approach of a collection of objects that are accessed via pointers. This object layout 

technique represents object references with integer identifiers that can be used as indices 

into each individual field array, requiring no extra indirection. A special numbering 

system for identifiers ensures that each field array can be represented compactly without 

wasting space, even in the presence of subclassing. 

Our experimental results show that vertical object layout has better execution time 

and code size than the table-based compression scheme on nearly all benchmarks, while 

achieving similar RAM size savings. Relative to the standard object layout strategy, the 

code size increase from vertical layout is less than 10% for most programs, and less than 

15% for all programs, while the execution time overhead is less than 10% for 7 of 12 

programs and less than 20% for 9. Interestingly, compressed vertical layout actually 
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improves execution time over the standard object model for two programs that use 

dynamic casts intensively, because type casts are implemented more efficiently. 

4.1. Pointer Waste 

On microcontroller architectures with between 256 bytes and 64 kilobytes of 

RAM, pointers into the memory are typically represented with a 16-bit integer byte 

address. In a weakly typed language like C, a pointer is not constrained to point to values 

of any particular type and can conceivably hold any value. In fact, pointer arithmetic 

relies on the fact that pointers are represented as integers and allows operations such as 

increment, addition, subtraction, and conversion between types. Worse, C allows pointers 

to be converted to integers, manipulated, and converted back to pointers. 

However, in a strongly typed language such as Virgil, each reference has an 

associated static type, and the type checker enforces that every reference may only refer 

to heap entities of the correct type. For example, object references of declared type A 

must only refer to objects of type A or one of its subtypes. In Virgil, the representation of 

object references is entirely opaque to the program; references cannot be converted to or 

from primitive types, and their machine width is not exposed. Recall that after 

initialization time, a Virgil program has already allocated all the objects that will ever 

exist in the heap and no further objects can be allocated at runtime. The compiler can 

exploit this combination of type safety and static allocation to encode references in a 

more compact way, rather than simply using pointers to an object’s address in memory. 

In order to reduce the total memory space consumed by the heap, we would like 

use as little space to store each reference field as possible. We will refer to the compact 



 123 

representation of a reference stored in a field as the compressed reference, and refer to 

the actual address of the object in memory simply as the address. Reference fields may be 

written during the execution of the program; thus a sound compression scheme must 

approximate the set of objects that could be referenced by each field over any execution 

of the program. We will refer this approximation as the referencible set. The compression 

scheme must therefore ensure that each compressed reference can represent all objects in 

its referencible set. A simple and intuitive approximation is to use the declared type of the 

field as an approximation of the referencible set.  

Consider a program that has allocated some number K of objects of type A during 

its initialization phase. Type safety ensures that every reference of declared type A may 

only refer to one of these K objects (or possibly null), over any execution of the 

program. We can therefore use the static type of a reference as a simple and conservative 

approximation of the possible set of objects to which it may refer. This means that only 

log(K+1) bits are required to distinguish between all of the possible referent objects. 

Because the approximation is conservative and the representation is opaque to the 

program, the compiler will never need to dynamically compress and decompress the 

reference representation. This is in contrast to [31], which attempts to compress C data 

values whose representation is not opaque to the program and therefore sometimes 

requires both dynamic decompression and dynamic compression. 

4.2. Heap Layout 

The dedication to complete type safety and opaqueness of references and object 

layout issues gives the Virgil compiler complete control over the arrangement of the heap 
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in memory. For example, it may elect to place objects of the same type next to each other 

in memory, reorder objects and fields for cache locality, etc. The compression techniques 

presented here do not assume any particular assignment of addresses to objects or 

arrangement of fields within objects. Locality is not an issue here because 

microcontrollers typical lack any memory cache.  

It is important to note that other compression schemes are possible if the compiler 

chooses a heap layout with particular properties. For example, if the heap layout 

algorithm places all objects of a particular referencible set into the same region of 

memory starting at a known location, the offset of an object’s address from the starting 

location of the region could be used as the compressed reference representation. In this 

scheme, direct addresses could be used throughout the program, with field reads being 

decompressed by adding the starting address of the first object and field writes 

subtracting the starting address before storing the field. While an offset may require more 

bits to store than an index into a compression table, the indexed address scheme does not 

require any compression tables in ROM. 

4.3. Table-based compression  

The most straightforward way to implement reference compression is to use a 

compression table where each compressed reference is an object handle: an integer index 

into a table that contains the actual addresses of each object. Because Virgil has disjoint 

inheritance hierarchies, the compiler can compress each reference by creating a 

compression table for its associated root class, with one entry in the table for each object 

whose type is a subclass of that root. The number of bits needed to represent the integer 
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index is therefore the logarithm of the table size. For example, if the table has 15 live 

objects plus null, we could use a 4-bit integer index, a savings of 75% over using a 16-

bit address. Because there is no garbage collector which may move objects at runtime, 

object addresses do not change during runtime, which allows the compiler to store the 

table in ROM or flash, which is considerably larger than RAM, though usually slightly 

slower to access. Figure 4.1 gives an illustration of the table-based compression scheme.  

The table adds a level of indirection to all object operations. Reads and writes on 

object fields require first reading the object address from the compression table and then 

performing the operation as before. For frequently access objects, especially within loops, 

the compiler may be able to avoid the cost of the indirection by using standard code 

motion optimizations to cache the actual address. When compressing fields in the heap, 

accesses may be slower if the fields are 

bit-packed in memory and require 

masks and shifts, but can be faster if the 

field requires only one byte of storage 

instead of two. Thus table-based 

compression represents a classic 

space/time tradeoff: it consumes some 

ROM space for the tables and may 

reduce performance, but saves RAM. 

It is important to note that table-

based compression can sometimes save 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Table-based Compression 
Each hexagon represents a complete class hierarchy 
labeled with its root class. The reference table is 
stored in ROM (bottom box) and stores the 
addresses of the actual objects in RAM (top box). 
The representation size for a reference is the 
logarithm of the table size.  
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RAM space even if the compression tables themselves are also stored in RAM. This is 

because for a table of size K and a pointer size of P bits, the cost of the table is K*P bits 

while the savings is N*(P - log(K+1)) bits, where N is the number of references 

compressed. N is always larger than K because every object must have at least one 

reference to it to be considered live. If N is large enough, N*(P – log(K+1)) is 

larger than K*P. We don’t expect this case to be common; our implementation always 

stores compression tables in ROM for maximum RAM savings. 

4.4. Vertical Object Layout 

In traditional high-performance object-oriented systems, each object is 

represented in memory as a contiguous region of words that contain the values for each 

of the object’s fields. An object reference is represented as a single-word pointer to this 

contiguous memory region, and the different fields of a single object are located at fixed 

offsets from this base address. Advanced features such as mix-ins, multiple inheritance, 

etc may be implemented by indirection to further contiguous memory blocks. This layout 

strategy has the best performance in a scenario where objects are created, moved, or 

reclaimed dynamically. An object allocation operation amounts to little more than an 

acquisition of a small contiguous region of memory, often simply bumping a top-of-heap 

pointer by a fixed amount. Field accesses in this model are implemented 

straightforwardly as a read or write of a memory address that is a small fixed offset from 

the object pointer; nearly all architectures allow this operation to be implemented with a 

single instruction. We will refer to this implementation strategy as the standard or 

horizontal layout, for reasons that will become obvious in this section. 
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In Virgil, the compiler has maximum freedom to layout objects in any way that 

respects the program’s semantics. Our basic insight is that Virgil’s initialization time 

model gives rise to a scenario where objects are not created, moved, or reclaimed 

dynamically; this means that objects need not be laid out as contiguous regions of 

memory words in order to simplify these operations.  

Imagine the heap of the program after initialization has completed. The program 

has allocated some number of objects of various types, and each object has values for all 

of its declared and inherited fields. If we view the objects as a matrix, each object 

corresponds to a row in the matrix, and each declared field in the program corresponds to 

a column, with each entry in the matrix storing the value for the field for the 

corresponding object. In the standard layout, an object reference is represented by a 

pointer to a row of the matrix, where the elements of a single row are adjacent in 

memory. In a sense, the standard layout arranges the matrix in memory horizontally. But 

one can also explore the implications of arranging this matrix in memory vertically, 

where an entire column has its elements adjacent in memory. 

Consider the example in Figure 4.2. The classes A, B and C have declared fields 

f, g, and h, respectively. Suppose now that we collect all the objects in the initialized 

heap of these types and number them so that all the objects of exact type A are first, B 

second, and C third. Then if we put these objects into a table such that the columns are 

the fields f, g, and h, we can see that each column has a contiguous range of indices for 

which the field is valid corresponding to the indices of the class in which the field was 

declared. If we represent an object reference as an index from 0 to 9 (with -1 representing 
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a null reference), and represent the 

field f as an array A_f_array, we 

can read and write the field by simply 

indexing into A_f_array by the 

object number.  

An access of the field g in the 

program requires the receiver object to 

be of type B; therefore we know 

statically that accesses of field g must 

use indices in the valid range for B 

objects. While we could represent the 

field g as an array over the entire index range 0 to 9, we can avoid wasting space by 

instead rebasing the array so that element 0 of the array corresponds to index 3, the first 

valid index for B. Then, an access of the field g for a type B would simply adjust by 

subtracting 3 from the object index before accessing the array. While these seems slower, 

it is equivalent to a base 0 array if the compiler constant-folds the known fixed address of 

the array and the subtraction adjustment; the compiler will just use a known fixed address 

corresponding to where the array would have started in memory if it had been based at 0.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Vertical Layout 
For classes A, B, and C, and declared fields f, g, and 
h, we can represent each of the fields by a table 
indexed by preorder object number. Preorder 
numbering ensures objects of exact type A have ids 
0-2, B have 3-6, and C have 7-9. Only the occupied 
portion of each table is stored and the object id is 
adjusted upon access. 
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read(e.f) =>  
  A_f_table[e] 
read(e.g) =>  
  B_g_table[e-3] 
read(e.h) =>  
  C_h_table[e-7] 
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It is simple to generalize from the example. For any inheritance tree, we simply 

assign object identifiers using a pre-order tree traversal. Figure 4.3 gives the algorithm. 

The output of the algorithm is an interval of valid indices for each class and an object id 

for every object. By employing preorder traversal of the inheritance tree, the final 

assignment guarantees that each class has a contiguous range of indices corresponding to 

all objects of that type or one of its subtypes. Therefore the array that represents that field 

in the vertical object layout can be compact, avoiding wasted space. This algorithm 

chooses to restart the object id at zero for each root class in the hierarchy, which means 

that an object id is unique within its inheritance hierarchy, but not necessarily globally 

unique. 

We can use the same technique to represent meta-objects vertically as well. In 

Virgil, meta-objects store only a type identifier that is used for dynamically checking 

down casts and a dispatch table that is used for virtual dispatch. We can use the same 

algorithm to number the 

meta-objects according to 

the inheritance hierarchy 

and then represent each 

method slot in the dispatch 

table vertically. A virtual 

dispatch then amounts to 

two vertical field accesses 

(as opposed to two 

void assignAll(Program p) { 
    for ( ClassInfo cl : p.getRootClasses() ) 
        assignIndices(0, cl); 
} 
int assignIndices(int min, ClassInfo cl) { 
    int max = min; 
    // assign the indices for objects of this type 
    for (ObjectInfo o : cl.instances) o.index = max++; 
    // recursively assign id's for all the children 
    for (ClassInfo child : cl.getChildren)  
        max = assignIndices(max, child); 
         
    // remember the interval for this class 
    cl.indices = new Interval(min, max); 
    return max; 
} 

Figure 4.3: Object and Class Numbering 
Algorithm to compute object indices by pre-order traversal of 
inheritance tree. For each class, ClassInfo stores a list of the 
child classes and an interval representing the valid indices for 
objects of this class and subclasses. For each object, 
ObjectInfo stores the object id (index) assigned to the object. 
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horizontal field accesses in the traditional approach). The first vertical field access 

retrieves the meta-object id by indexing into the meta-object id array using the object 

index. The retrieved meta-object id is then used to index into the virtual method array for 

the specified method to retrieve a direct pointer to the code of the appropriate method. 

This numbering technique also has another advantage in that the contiguousness 

of the object identifiers makes dynamic type tests extremely cheap, because the object 

identifier actually encodes all the type information needed for the cast. The algorithm 

assigns object identifiers so that every class has an interval of valid indices that 

correspond to all objects of that type. Thus, given a reference R that is represented by an 

object index and a cast to a class C, we can simply check that the index R is within the 

interval for the class C. This requires only two comparisons against two constants; no 

indirections and no memory loads are required. 

Reference compression becomes trivial with vertical object layout. Because each 

object reference is now represented as an index that is bounded by the number of objects 

in its inheritance hierarchy, like table-based compression, it can be compressed to a 

smaller bit quantity. Thus, wherever the reference is stored in the heap (e.g. in the fields 

of other objects), it consumes less space. However, the field arrays may not be completed 

packed at the bit level. If the field is compressed to fewer than 8 bits, the indexing 

operation is more efficient if the field array is a byte array rather than packed at the bit-

level because memory is usually not bit-addressable. Our implementation does not 

compress references in the vertical layout to be smaller than a byte.  
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Vertical layout also potentially saves memory by eliminating the need to pad 

fields in order to align their addresses on word boundaries, which is sometimes needed in 

the horizontal layout. Padding is unnecessary in vertical object layout as long as each 

field array is aligned at the appropriate boundary for its type, ensuring that each element 

in the array is aligned by virtue of being of uniform size. (However, padding and memory 

alignment is not generally an issue on 8-bit microcontrollers.) 

4.5. Experimental Results 

In this section we evaluate the impact that reference compression and the vertical 

object model have on three program factors: code size, heap size, and execution time. We 

use the same benchmark programs from Chapter 3, omitting the Empty program, which 

has no heap. As before, these applications target the popular Mica2 sensor node, and we 

use avr-gcc version 4.0.3 to compile the C code emitted by the Virgil compiler to 

AVR machine code. Precise performance numbers are obtained by using the program 

instrumentation capabilities [101] of the Avrora cycle-accurate AVR emulator. 

We tested five configurations including the standard horizontal object layout; the 

four new configurations are normalized against the results of the standard layout to show 

relative increase and decrease in code size, data size, and execution time. The three main 

configurations are: hlrc, which is the standard horizontal layout with table-based 

compression; vl, which is the vertical object layout without compression; and vlrc, 

which is the vertical layout with compression applied to object indices. The last 

configuration, hlrcram, is only shown for code size and execution time comparison; it 

corresponds to horizontal layout with reference compression, but instead of storing the 
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compression tables in ROM, they are stored in RAM in order to compare the cost of 

accessing ROM versus accessing RAM. 

 

Figure 4.4 shows a comparison of the relative data sizes for our benchmark 

programs for the three main configurations, normalized against the base configuration of 

horizontal layout with no reference compression. First, we notice that vertical layout (vl) 

often saves some memory over the base configuration. This is because it does not require 

type identifiers in the meta objects because the object numbers have been assigned so that 

they encode the type information. Also, the horizontal layout sometimes produces zero-

length objects; avr-gcc allocates a single byte of memory to such objects. The second 

observation is that the compressed vertical layout typically saves a similar amount of 

 
Figure 4.4: Heap Size Decrease 

This figure compares relative heap decrease for three different object models, with each normalized to 
the standard horizontal object layout. Higher is better. 
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memory to the compressed horizontal layout, although some of this is due to the empty 

object anomaly and the lack of type identifiers in meta-objects. As expected, compressed 

vertical layout (vlrc) is uniformly better than vertical layout (vl) alone. 

 

Figure 4.5 shows the relative increase in code size for the same benchmarks with 

an added configuration, hlrcram. As in Figure 4.4, all configurations are normalized 

against the base configuration of horizontal layout without reference compression. Here, 

we can see that all configurations increase the code size of all programs (with the sole 

exception of vlrc on MsgKernel), with both vl and vlrc performing better than 

hlrc in each case. The increase for vlrc is less than 10% for most programs and less 

 
Figure 4.5: Code Size Increase 

This figure compares relative code size increase for three different object models, with each 
normalized to the standard horizontal object layout. Lower is better. 
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than 15% for all programs. Here, adding compression to the vertical layout actually 

reduces code size. This is because all field arrays become smaller, down to a single byte 

(because the Virgil compiler does not pack field arrays at the bit level), therefore the code 

to access them becomes smaller. 

Horizontal reference compression increases the code size in two ways. First, it 

introduces compression tables that are stored in the read-only code space. Second, it 

requires extra instructions for each object operation due to the extra indirection. When the 

compression tables are stored in ROM, the Virgil compiler must emit short inline AVR 

assembly sequences because avr-gcc does not support directly accessing the ROM at 

the source level. These assembly instructions are essentially unoptimizable by avr-gcc. 

To better isolate this effect, this figure includes code size results for a new configuration, 

hlrcram (or horizontal layout with reference compression tables in RAM). This 

configuration of course does not save RAM overall, but allows us to explore the effect of 

the special ROM assembly sequences on the code size in comparison to accessing the 

RAM. Comparing the hlrc configuration against the hlrcram shows that most of the 

code size increase is due to these special inlined ROM access sequences. The difference 

could be reduced if either avr-gcc understood and optimized accesses to ROM, or if 

the AVR architecture offered better addressing modes to access the ROM with fewer 

instructions. It is important to note that the largest proportional code size increases are for 

the smallest programs, as can be seen in Figure 3.9 in the previous chapter (the base code 

size here is equivalent to the RMA configuration in that figure). 
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Figure 4.6 gives the relative increase in execution time obtained by executing 

each benchmark in the Avrora [103] instruction-level simulator. The vertical layout 

technique performs better than horizontal compression in all but one case, and the 

execution time overhead for the compressed vertical layout is less than 20% in 9 of the 12 

benchmarks, less than 10% in 7, and actually performs better by than the baseline by a 

small amount in two cases. This is because these two programs perform a significant 

number of dynamic casts, which are cheaper in the vertical layout. This figure also 

includes results for the hlrcram configuration from Figure 4.5. We wanted to isolate 

how much of the execution time overhead is due to the cost of a ROM access versus a 

RAM access. In most cases, the execution time of hlrcram is noticeably better than that 

 
Figure 4.6: Execution Time Increase 

This figure compares relative execution time increase for three different object models, with each 
normalized to the standard horizontal object layout. Lower is better. 
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of hlrc, which means that a significant fraction of the overhead is due to this ROM 

access cost. Also notice that that the largest proportional execution time increases tend to 

be for the smaller, pointer-intensive programs like BinaryTree, PolyTree, 

LinkedList, and Decoder. 

 

 Figure 4.7 combines the data from figures 4.4 and 4.6, showing the tradeoff 

between increase in execution time and the savings in heap size for the three main 

configurations. First, we can see that the vertical layout without reference compression 

(vl) usually increases execution time without saving any heap space, while adding 

reference compression to vertical layout (vlrc) increases heap savings and usually has 

 
Figure 4.7: Heap Size vs. Execution Time 

This figure compares relative heap decrease and relative execution time increase for three different 
object models, with each normalized to the standard horizontal object layout. 
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better execution time than vertical layout alone. Also, hlrc compression tends to have a 

larger increase in execution time with some savings in heap size, but not as much as 

vlrc. Overall, there is significant variation across the benchmarks, suggesting that the 

two factors are not intrinsically correlated. Instead, it is more likely that the factors are 

correlated to benchmark characteristics, therefore the compiler should take these 

characteristics into account and avoid reference compression when it will save little heap 

space. 

  

Figure 4.8 combines data from figures 4.5 and 4.6 to show the correlation 

between increase in code size and increase in execution time for the three main 

configurations. First, we can see that the two factors appear closely correlated because 

 
Figure 4.8: Code Size vs. Execution Time 

This figure compares relative code size increase and relative execution time increase for three different 
object models, with each normalized to the standard horizontal object layout. 
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the points cluster near a line from the origin into the upper right quadrant. This is most 

likely due to the simplicity of the AVR instruction set architecture and lack of an 

instruction cache; adding more instructions has a predictable effect on the execution time. 

Second, we can see that vlrc performs significantly better than the other configurations, 

with most of its points clustered near the origin. Third, we can see that hlrc performs 

the worst, with the largest increases in code size and execution time.  

 

Figure 4.9 combines the data from figures 4.4 and 4.5, comparing relative 

increase in code size versus decrease in heap size. Here we can see for a given heap size 

reduction (horizontal axis), vlrc tends to produce smaller code than hlrc because of 

the lack of ROM compression tables and simpler field access sequences. 

 
Figure 4.9: Heap Size vs. Code Size 

This figure compares relative heap size decrease and relative code size increase for three different 
object models, with each normalized to the standard horizontal object layout. 
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Figure 4.10 compares execution time of the different reference compression 

strategies when more aggressive code optimizations (inlining and constant propagation) 

are also applied, providing a more complete picture of the overall performance. All 

results are normalized to the execution time of the none (where RMA is not applied) 

configuration, which corresponds to the none configuration from Chapter 3. The base 

configuration corresponds to RMA; opt3 corresponds to inlining at a slightly more 

aggressive level than inline2 in Chapter 3; hlrc and vlrc are as before; 

hlrcopt3 corresponds to horizontal layout with reference compression and 

optimization level 3, and vlrcopt3 corresponds to vertical layout with reference 

 
Figure 4.10: Execution Time with Compression and Inlining 

This figure compares the execution time of the reference compression strategies when more aggressive 
inlining optimizations are also applied. The configurations here correspond closely to the 
configurations from results in Figure 3.8. 
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compression and optimization level 3. Here we can see that applying aggressive 

optimization significantly reduces execution time for all configurations, though it 

increases code size as seen in Figure 4.11. In fact, applying aggressive optimization 

allows the compressed configurations hlrcopt3 and vlrcopt3 to run faster than the 

none configuration (no RMA) in most cases, and faster than the base configuration 

(RMA only) on average. One way to view these results is that aggressive code 

optimizations provide a performance “budget” that allows reference compression to be 

applied without an overall loss of performance relative to the baseline. Because 

aggressive optimization increases code size, we can view the overall tradeoff as trading 

code size for data size, without a loss of performance. 

 
Figure 4.11: Code Size with Compression and Inlining 

This figure compares the code size of the reference compression strategies when more aggressive 
inlining optimizations are also applied. The configurations here correspond closely to the 
configurations from results in Figure 3.8. 
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Figure 4.11 compares absolute code size for combined reference compression and 

inlining, using the same configurations from Figure 4.10. Here, we can see that in terms 

of absolute size, the effect of reference compression alone is small, while the effect of 

aggressive inlining is large. Of course, applying RMA (the base configuration), reduces 

code size substantially, which in the case of the smaller applications means that the 

highly optimized configurations are actually smaller than the none configuration. We 

can see that on average, RMA provides enough dead code removal to negate the increase 

in code size due to inlining. Similar to the performance “budget” provided by inlining, we 

can view RMA as providing a “budget” of code space that allows the inliner to improve 

performance. Inlining heuristics deserve further study here. Because these results show 

that for larger applications, the effect of inlining far outweighs the code size increase 

from reference compression, it is more important to develop and tune heuristics so that 

only the most frequently executed calls are inlined, rather than focus on reducing code 

size increase from reference compression. 
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5. CONCLUSION 

This dissertation tackles the problems of developing systems software for very 

small devices with language and compiler technology. I have established my thesis 

statement that advanced language and compiler technology can bring the benefits of 

object-oriented programming to even the most constrained of embedded systems. The two 

systems I have built and described here offer compelling evidence. 

The ExoVM explores a new approach in developing virtual machines for 

embedded systems, employing pre-initialization, closure, and persistence to an existing, 

state-of-the-art virtual machine to reduce memory footprint on a per-program basis. The 

feature analysis technique has exposed a new dimension of modularity in language 

implementations: the cost of a language feature in terms of the reachable virtual machine 

entities that it requires. The ExoVM is one important contribution towards a grand 

challenge in virtual machine construction: a language runtime and compilation model that 

seamlessly adapts across static and dynamic views of execution and scales from 

extremely small systems up to very large systems. The experimental results show that 

pre-initialization coupled with feature analysis can vastly reduce the footprint of the 

JVM’s internal data structures and the VM code size by removing unnecessary entities on 

a per-program basis. 

The ExoVM also has wider applicability because it can provide the basis for 

relating language features to their efficiency considerations more directly. We illustrated 

how the use of constraints in feature analysis has shed light on the interconnectedness of 

the virtual machine and the class library implementation. We believe that this is just a 



 143 

first step to exposing the efficiency implications of feature use to application developers 

to whom footprint matters, such as embedded system programmers. 

Virgil is a major step forward in language technology for microcontrollers. 

Careful attention to detail and adherence to design constraints brings most of the 

expressiveness of object-oriented languages to this most severely resource-constrained 

class of devices, without sacrificing type safety and without requiring any language 

runtime system, imposing only minor metadata overheads. Virgil is the first language to 

recognize that explicitly separating initialization time from run-time at the language level 

leads to a convenient programming model for embedded systems by allowing objects to 

be freely allocated at compile time and then stored for use at run time. The commitment 

to language safety eliminates a large class of pernicious software bugs through strong 

static type safety and some dynamic checks, like Java. In fact, Virgil’s type safety is key 

to efficient implementation, enabling a new class of optimizations that exploit the static 

availability of the program heap. 

The Virgil compiler exploits the design choices and language model to introduce 

an unprecedented level of data optimizations. It represents a significant shift in how we 

should view the compiler’s role in optimizing for heap space, relieving much of the 

burden of optimization from application programmers. The Virgil compiler introduces 

heap-sensitive optimizations that serve to significantly reduce the size of programs by 

removing unused members and object headers, representing reference fields in a more 

compact manner, and making whole program object layout decisions—all without 

changing the programming language semantics or model. 
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Reference compression exploits the type-safe nature of object references to 

achieve significant heap compression without requiring expensive program analysis; 

references can therefore be stored far more efficiently than the standard implementation 

practices of pointer-based languages like C, which cannot compress pointers by type. 

Vertical object layout demonstrates the possibilities of allowing the compiler complete 

control over the data representation of all objects in the entire heap, leading to 

compression techniques that radically alter the memory layout while reducing its size and 

preserving most of the runtime performance—without any manual effort and without 

changing the programming model or semantics. This surprising result leaves us to ponder 

the suggestion that objects, under the control of a highly optimizing compiler, may in fact 

be better than pointers for embedded systems, since the strong types of references and 

objects gives the compiler much richer information for making good layout decisions. 

 

5.1. Limitations 

Any software system of significant complexity that exists in a large design space 

inevitably has tradeoffs, limitations, and pitfalls. This section discusses some of the 

limitations of Virgil and the ExoVM. First, as a new language and compiler system, 

Virgil is very young and has not been fully stressed by the demands of large software 

projects. It does not yet have a large body of code and has not yet faced the common 

feature-explosion stage of language evolution. On the other hand, the ExoVM system 

suffers from many of the same weaknesses as any technique for changing large existing 
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software systems. In particular, it does not address all of the corner cases and does not 

cover the entire JDK or VM internals. 

5.1.1. Virgil Limitations 

Virgil is remarkably useful and expressive for simple programs that do not require 

dynamic memory allocation, but larger applications require allocation and hence, 

automatic memory management. While the use of statically allocated and manually 

managed pools of objects is a partial solution for intermediate size programs, as systems 

become larger, static allocation becomes infeasible. To scale to these larger systems, the 

core Virgil runtime model must offer some form of dynamic allocation. There are 

numerous techniques that could be fruitful, including explicit or implicit regions, stack 

allocation, and various garbage collection techniques. For extremely resource-constrained 

devices such as microcontrollers, efficient automatic memory management remains an 

open problem. 

Virgil makes some tradeoffs between efficiency and extensibility. For example, 

the lack of a universal super-class combined with the lack of interfaces allows the object 

model to be implemented simply and efficiently, requiring no metadata for orphan 

objects. However, it makes it somewhat harder to abstract interfaces between software 

modules. Virgil’s parametric type system addresses this problem for collections and 

many other situations, but there are situations where specifying an interface between 

parts of a system is easier with Java-style interfaces or ML-style modules. Here, it may 

be useful to have a mechanism to place restrictions, either Java-style bounds [70], or 
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Haskell-style type classes [58]. The Virgil compiler is somewhat suboptimal in its 

treatment of parametric types; it sometimes duplicates code more than necessary, since in 

many situations (e.g. copying or searching an array) duplicating the code to the 

representation size of the type parameter is sufficient. A more efficient solution that 

preserves the language’s current simple semantics may be important for highly 

parametric code. 

Another important limitation is that the Virgil compilation model currently 

precludes the use of dynamically loaded or updatable code. While this is reasonable for 

devices where the program binary is replaced wholesale, if it all, dynamic extensibility is 

needed in other domains. In the future, Virgil may be able to benefit from a module 

system where initialization and optimization is applied to modules at a time and programs 

are allowed to dynamically load new modules. 

The compression strategies discussed in Chapter 4 have some limitations as well. 

Currently, the Virgil compiler applies one compression scheme to the entire program, so 

that all references are compressed with the same strategy and all objects use either 

horizontal or vertical layout. Results by Cooprider and Regehr [31] suggest that most of 

the execution time penalty for compression is due to a small number of data items that are 

accessed frequently but represent small space savings overall. Therefore selectively 

deciding object layouts or reference compression strategies for different parts of the same 

program could reduce some of the disadvantages of reference compression. For example, 

the compiler may apply the best-performing object model for references that are accessed 

frequently at runtime, while choosing the most space-efficient model for less frequently 
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accessed references. This would allow saving some RAM while avoiding most of the 

execution time penalty.  

 The vertical object layout model has some clear weaknesses as well. Most 

importantly, it requires that no new objects be created at runtime, because object 

allocation would require growing the field tables individually. Maintaining the 

contiguous nature of object identifiers while growing tables might be tricky in the 

presence of subtyping. Further, a garbage collector would need to reclaim entries in the 

field tables and thus add some bookkeeping overhead; it is not clear whether the costs of 

such maintenance would outweigh the benefits. One might instead consider a hybrid 

strategy that uses the vertical layout for those classes that are allocated only at 

initialization time and not at runtime. Another technique might to be to hybridize both 

horizontal and vertical layouts for the same class—for example, only part of an object 

might be stored horizontally, and the rest of the object is stored vertically, with the index 

stored in the horizontal layout for access. Even in the presence of dynamic allocation of 

objects, vertical layout may still be useful for meta-objects if the class hierarchy is 

statically known, which would allow object headers to be compressed. 

 Our compiler detects read-only component fields and object fields and inlines the 

values of those that are constant over all objects, but currently it does not move other 

read-only object fields to ROM. This would be complex in the horizontal layout model 

because an object might be split into a read-only portion stored in ROM and a read-write 

portion stored in RAM. An uncompressed horizontal object reference must point to the 

address of one half of the object, and that half must have a pointer to the other half. 
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However, when compression is applied to the horizontal layout, the compiler can use one 

object index but instead have two compression tables, one that holds the address of the 

RAM portion of the object, and one that holds the ROM address of the object. Even more 

promising is the idea of using vertical object layout to radically simplify moving 

individual fields to ROM. Because an entire field is stored contiguously and object 

indexes are used instead, moving a field array to ROM is trivial; the compiler can 

generate code to access the appropriate memory space at each field usage site. However, 

none of these strategies is currently implemented in the Virgil compiler. 

 

5.1.2. ExoVM Limitations 

The ExoVM also has several important limitations. First, the persisting techniques 

that we used are an artifact of the implementation technology of the J9 virtual machine. 

Much more would be possible if the derivation of constraints and the persistence 

mechanism could be automated. In our work, we did not completely decompose the 

entire virtual machine, but only the core parts that were necessary in order to run the 

benchmark programs. A full-fledged system would need to support the entire language, 

runtime system, and libraries, which would require considerably more manual effort than 

our project could muster. 

There are more opportunities for static optimization that we could not explore due 

to either time constraints of the limitations of the underlying programming model. For 

example, in the ideal static closed-world scenario, the imaging process should be able to 

copy both the application’s code, the internal data structures of the VM, and also the live 
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code of the VM into the image, producing a completely customized VM compiled 

together with the application into a standalone program. This would allow the VM and its 

JIT compiler to be reused as a static compilation system, perhaps allowing it to employ 

sophisticated compiler optimizations like partial evaluation or static specialization to 

itself and the application code together. The ExoVM cannot currently achieve this 

because of the limitations of the linking model of C and C++. 

The ExoVM was designed for a very static world, but a dynamic scenario may 

also benefit from a more flexible VM infrastructure. For example, it might be possible to 

employ a dynamic feature analysis so that parts of the program and VM infrastructure are 

loaded as needed by the program. The VM might reduce the granularity of dynamic 

loading to single methods rather than single classes, only loading methods as they are 

used. Similarly, the VM might defer the construction of internal data structures until they 

are demanded by the first use of a particular programming language feature. This may 

significantly improve performance for small dynamic programs and help combat large 

class libraries. The ExoVM system is currently not able to support any such techniques 

because the analysis mechanisms are not built into the loading mechanisms themselves. 
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6. APPENDIX A – Virgil Grammar 
 
Module ::= ( ProgramDecl )? ( TypeDecl )* <EOF> 

 

ProgramDecl ::= "program" <IDENTIFIER> "{" ( ProgramMember )* "}" 

 

ProgramMember ::= EntryPoint 

                | ComponentList 

 

EntryPoint ::= "entrypoint" EntryPointName "=" <IDENTIFIER> "." 
<IDENTIFIER> ";" 

 

EntryPointName ::= <IDENTIFIER> 

 

ComponentList ::= "components" "{" ComponentRef ( "," ComponentRef )* 
"}" 

 

ComponentRef ::= <IDENTIFIER>  

 

TypeDecl ::= ( ClassDecl | ComponentDecl ) "{" ( Member )* "}" 

 

ClassDecl ::= "class" <IDENTIFIER> ( TypeParamDecl )? ( "extends" 
TypeRef )? 

 

ComponentDecl ::= "component" <IDENTIFIER> 

 

Member ::= MethodDecl 

         | FieldDecl 

         | ConstructorDecl 

 

MethodDecl ::= MethodModifiers "method" <IDENTIFIER> ( TypeParamDecl )? 
FormalParams ( ":" TypeRef )? MethodBody 

 

MethodModifiers ::=  ( "private" )? 

 

FieldModifiers ::= ( "private" )? 

 

FieldDecl ::= FieldModifiers "field" oneFieldDecl ( "," oneFieldDecl )* 
";" 

 

ConstructorDecl ::= "constructor" FormalParams SuperClause MethodBody 
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SuperClause ::= ( ":" "super" Arguments )? 

 

oneFieldDecl ::= <IDENTIFIER> ":" TypeRef ( "=" Initializer )? 

 

Initializer ::= ( ArrayInitializer | Expr ) 

 

ArrayInitializer ::= "{" ( InitializerList )? "}" 

 

InitializerList ::= Initializer ( "," Initializer )* 

 

FormalParams ::= "(" ( ParamDecl ( "," ParamDecl )* )? ")" 

 

ParamDecl ::= <IDENTIFIER> ":" TypeRef 

 

MethodBody ::= ( ";" | Block ) 

 

Block ::= "{" ( BlockStmt )* "}" 

 

BlockStmt ::= LocalVarDecl ";" 

            | Stmt 

 

LocalVarDecl ::= "local" oneLocalVarDecl ( "," oneLocalVarDecl )* 

 

oneLocalVarDecl ::= <IDENTIFIER> ( ":" TypeRef )? ( "=" Initializer )? 

 

Expr ::= ConditionalExpr ( ( “=” Expr ) | ( <TK_CASSIGN> Expr ) )? 

 

ConditionalExpr ::= ConditionalOrExpr ( "?" Expr ":" ConditionalExpr )? 

 

ConditionalOrExpr ::= ConditionalAndExpr ( "or" ConditionalAndExpr )* 

 

ConditionalAndExpr ::= InclusiveOrExpr ( "and" InclusiveOrExpr )* 

 

InclusiveOrExpr ::= ExclusiveOrExpr ( “|” ExclusiveOrExpr )* 

 

ExclusiveOrExpr ::= AndExpr ( “^” AndExpr )* 

 

AndExpr ::= EqualityExpr ( “&” EqualityExpr )* 
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EqualityExpr ::= TypeQueryExpr ( ( “==” | “!=” ) TypeQueryExpr )* 

 

TypeQueryExpr ::= RelationalExpr ("<:" TypeInExpr )? 

 

RelationalExpr ::= ConcatExpr ( RelationalOp ConcatExpr )* 

 

RelationalOp ::= ( "<" | ">" | ">=" | "<=" ) 

 

ConcatExpr ::= ShiftExpr ( “#” ShiftExpr )* 

 

ShiftExpr ::= AdditiveExpr ( (“<<” | “>>”) AdditiveExpr )* 

 

AdditiveExpr ::= MultiplicativeExpr ( (“+” | “-“) MultiplicativeExpr )* 

 

MultiplicativeExpr ::= TypeCastExpr ( (“*” | ”/” | ”%”) TypeCastExpr )* 

 

TypeCastExpr ::= PostIncDecExpr ( "::" TypeInExpr )* 

 

PostIncDecExpr ::= UnaryExpr ( “++” | “--” )? 

 

UnaryExpr ::= ( NegativeLiteral | UnaryOp UnaryExpr | PreIncDecExpr | 
Term ) 

 

NegativeLiteral ::= “-” <DECIMAL_LITERAL> 

 

PreIncDecExpr ::= ( “++” | “--” ) UnaryExpr 

 

UnaryOp ::= ( “~” | “!” | “+” | “-” ) 

 

Term ::= ( ( TermPrefix ( Suffix )* ) | ( NewExpr ( NewSuffix )* ) ) 

 

Suffix ::= ( NewSuffix | IndexSuffix ) 

 

NewSuffix ::= ( MemberSuffix | AppSuffix ) 

 

TermPrefix ::= ( ( VarUse ) | ( Literal ) | ( "(" Expr ")" ) ) 

 

VarUse ::= <IDENTIFIER> 

 

Literal ::= <ZERO_LITERAL>  

          | <BIN_LITERAL>  
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          | <OCTAL_LITERAL>  

          | <DECIMAL_LITERAL>  

          | <HEX_LITERAL>  

          | <STRING_LITERAL>  

          | <CHARACTER_LITERAL>  

          | "null"  

          | "this"  

          | "true"  

          | "false" 

 

NewExpr ::= ( "new" TypeRef ) ( NewArraySuffix | NewObjectSuffix ) 

 

NewArraySuffix ::= ArrayDims 

 

NewObjectSuffix ::= Arguments 

 

ArrayDims ::= ( "[" Expr "]" )+ 

 

MemberSuffix ::= "." <IDENTIFIER> 

 

AppSuffix ::= Arguments 

 

IndexSuffix ::= "[" Expr "]" 

 

Arguments ::= "(" ( ListExpr )? ")" 

 

ListExpr ::= Expr ( "," Expr )* 

 

Stmt ::= Block  

       | EmptyStmt  

       | BreakStmt  

       | ContinueStmt  

       | ReturnStmt  

       | WhileStmt  

       | ForStmt  

       | IfStmt  

       | DoWhileStmt  

       | SwitchStmt  

       | ExprStmt 
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IfStmt ::= "if" "(" Expr ")" Stmt ( "else" Stmt )? 

 

SwitchStmt ::= "switch" "(" Expr ")" "{" ( SwitchCase )* "}" 

 

SwitchCase ::= ValueCase 

            |  DefaultCase 

 

ValueCase ::= "case" "(" ListExpr ")" Stmt 

 

DefaultCase ::= "default" Stmt 

 

ForStmt ::= "for" "(" ( ListExpr )? ";" ( Expr )? ";" ( ListExpr )? ")" 
Stmt 

 

ExprStmtList ::= ExprStmt ( "," ExprStmt )* 

 

ExprStmt ::= Expr ";" 

 

EmptyStmt ::= ";" 

 

BreakStmt ::= "break" ";" 

 

ContinueStmt ::= "continue" ";" 

 

ReturnStmt ::= "return" ( Expr )? ";" 

 

WhileStmt ::= "while" "(" Expr ")" Stmt 

 

DoWhileStmt ::= "do" Stmt "while" "(" Expr ")" ";" 

 

TypeRef ::= ( NestedType | ParameterizedType | SimpleType | FuncType ) 
( "[" "]" )* 

 

NestedType ::= "(" TypeRef ")" 

 

FuncType ::= ( "function" "(" ( TypeList )? ")" ( ":" TypeRef )? ) 

 

TypeParamDecl ::= "<" TypeParam ( "," TypeParam )* ">" 

 

TypeParam ::= <IDENTIFIER> 
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ParameterizedType ::= <IDENTIFIER> "<" TypeList ">" 

 

TypeList ::= TypeRef ( "," TypeRef )* 

 

TypeInExpr ::= ( SimpleType | NestedType ) 

 

SimpleType ::= ( SingularType | RawType ) 

 

SingularType ::= <IDENTIFIER> 

 

RawType ::= <DECIMAL_LITERAL> 
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