
UNIVERSITY OF CALIFORNIA

Los Angeles

Objects to Bits:

Efficient Implementation of Object-oriented Languages on Very Small Devices

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Benjamin Lawrence Titzer

2007

 ii

The dissertation of Benjamin Lawrence Titzer is approved.

David F. Bacon

Babak Daneshrad

Todd Millstein

Mani Srivastava

Jens Palsberg, Committee Chair

University of California, Los Angeles

2007

 iii

TABLE OF CONTENTS

INTRODUCTION...1

1.1. Thesis statement ...4

1.2. State of the Art ...6

1.2.1. Embedded Object Systems ..6

1.2.2. Embedded Languages.. 14

1.2.3. Program Data Compression ... 15

1.3. Three themes .. 19

1.4. Two Systems, Two Perspectives on Reuse.. 21

1.4.1. The ExoVM... 22

1.4.2. Virgil.. 24

1.5. Organization... 26

2. THE EXOVM ... 28

2.1. Overview of the Technique... 30

2.2. Fixed and Proportional Costs .. 32

2.3. Pre-Initialization... 33

2.3.1. Class Initializers... 35

2.4. Closure and Feature Analysis.. 36

2.4.1. Feature Analysis... 37

2.4.2. Constraint-based Analysis .. 39

2.4.3. Entities and VM Types.. 40

 iv

2.4.4. Constraint Sets ... 41

2.4.5. Constraint Forms in Feature Analysis .. 42

2.4.6. Granularity and Natives vs. Sanity ... 45

2.5. Persistence.. 48

2.5.1. Persisting C-based Data Structures .. 49

2.5.2. Compilation.. 51

2.6. Loading a VM Image.. 52

2.6.1. Patching and Rebuilding .. 53

2.7. Experimental Results .. 54

2.7.1. Footprint .. 54

2.7.2. Feature study.. 58

2.8. Experience.. 59

3. VIRGIL ... 62

3.1. Design Principles and Constraints... 63

3.2. Virgil Language Features.. 67

3.2.1. Inheritance Model .. 68

3.2.2. To Object or Not to Object ... 70

3.2.3. Parametric Types ... 73

3.2.4. Components.. 78

3.2.5. Delegates ... 79

3.2.6. Raw Types .. 82

3.2.7. Hardware Registers and Interrupts... 83

 v

3.2.8. Concurrency Model .. 84

3.2.9. Virgil Anti-Features ... 85

3.3. Program Initialization ... 87

3.3.1. Initialization Determinism .. 89

3.3.2. Initialization Garbage .. 89

3.3.3. Code Generation and Runtime.. 90

3.4. Optimization... 90

3.4.1. Reachable Members Analysis ... 91

3.4.2. Classical approaches.. 93

3.4.3. Reachable Members Analysis ... 95

3.4.4. ROM-ization... 100

3.4.5. Metadata Optimizations ... 101

3.5. Experience.. 101

3.5.1. AVR Driver Libraries ... 102

3.5.2. Benchmark Programs... 103

3.5.3. Exploiting Initialization Time - Decoder... 104

3.6. Experimental Results .. 105

3.6.1. Effect of Safety Checks ... 112

3.6.2. Virgil versus C ... 115

4. COMPRESSION... 120

4.1. Pointer Waste ... 122

4.2. Heap Layout ... 123

 vi

4.3. Table-based compression.. 124

4.4. Vertical Object Layout.. 126

4.5. Experimental Results .. 131

5. CONCLUSION ... 142

5.1. Limitations ... 144

5.1.1. Virgil Limitations ... 145

5.1.2. ExoVM Limitations... 148

6. APPENDIX A – VIRGIL GRAMMAR ... 150

7. REFERENCES ... 156

 vii

TABLE OF FIGURES

Figure 2.1: List of modeled VM Types.. 41

Figure 2.2: Example VM-specific constraints .. 45

Figure 2.3: j9max Memory Footprint... 55

Figure 2.4: j9cldc Memory Footprint... 55

Figure 2.5: Microprograms.. 58

Figure 3.1: Virgil Type Parameters.. 78

Figure 3.2: Components and Delegates.. 79

Figure 3.3: Program Initialization.. 87

Figure 3.4: Analysis Comparison .. 95

Figure 3.5: RMA Algorithm.. 96

Figure 3.6: RAM Reduction .. 106

Figure 3.7: Code Size Reduction ... 108

Figure 3.8: Normalized Execution Time.. 109

Figure 3.9: Absolute Code Size ... 110

Figure 3.10: Compilation Time ... 111

Figure 3.11: Normalized Code Size w/o Safety Checks ... 113

Figure 3.12: Normalized Execution Time w/o Safety Checks 114

Figure 3.13: Code Size (C vs. Virgil)... 115

Figure 3.14: Execution Time (C vs. Virgil).. 117

Figure 4.1: Table-based Compression.. 125

Figure 4.2: Vertical Layout ... 128

 viii

Figure 4.3: Object and Class Numbering ... 129

Figure 4.4: Heap Size Decrease ... 132

Figure 4.5: Code Size Increase .. 133

Figure 4.6: Execution Time Increase ... 135

Figure 4.7: Heap Size vs. Execution Time ... 136

Figure 4.8: Code Size vs. Execution Time ... 137

Figure 4.9: Heap Size vs. Code Size.. 138

Figure 4.10: Execution Time with Compression and Inlining 139

Figure 4.11: Code Size with Compression and Inlining ... 140

 ix

ACKNOWLEDGEMENTS

I would like to thank my advisor Jens Palsberg for giving me a tremendous

number of great opportunities and good advice on how to utilize them over the past five

years. He has given me a wide space of freedom to explore my interest, and there are

many things that would not have been successes without his patience and guidance. I am

also glad to count him as a personal friend. I would also like to thank David Bacon for

giving me the opportunity to work at IBM T.J. Watson with him and numerous other

talented and bright people. Thanks to Todd Millstein for comments on papers as well as

advice on presentations and projects over the past three years here at UCLA. Thanks to

Doug Lea for shepherding my OOPSLA paper, which led to important improvements that

substantially increased its quality. Thanks to Simon Han for many discussions at UCLA,

contributions to Avrora, and for porting the MsgKernel application to Virgil. I’d like to

give special thanks to Daniel Lee, who implemented many of the initial AVR driver

simulations in Avrora, and Olaf Landsiedel, who developed the energy model and

framework in Avrora. Undergraduates Keith Mayoral, Adam Harmetz, Ryan Hall, and

Akop Palyan all contributed to either Avrora or Virgil. Other contributors to Avrora

include Evan Barnes, Jacob Everist, Thomas Gaertner, Jey Kottalam, John Regehr,

Bastian Schlich, and John F. Schommer.

During my time at UCLA, I was partially supported by NSF ITR award #0427202

and a research fellowship with the Center for Embedded Network Sensing at UCLA, an

NSF Science and Technology Center.

 x

VITA

1980—Born, Hinsdale, IL.

1994—First C program created.

2001-2002—Undergraduate Research, Purdue University.

2002—Bachelor of Science in Computer Science and Mathematics, Purdue University.

2002, Summer—Research Intern, Sun Microsystems Laboratories.

2002-2003—Graduate Student/Teaching Assistant, Purdue University Computer Science.

2003, Summer—Research Intern, Sun Microsystems Laboratories.

2003, Fall—Transferred to UCLA Computer Science Graduate Program.

2003-2007—Graduate Student Researcher, UCLA.

2004—Master of Science in Computer Science, University of California, Los Angeles.

2004, Fall—Teaching Assistant, UCLA Computer Science.

2006, Spring—Research Intern, IBM T.J. Watson.

PUBLICATIONS

[1] Ben L. Titzer and Jens Palsberg. Vertical Object Layout and Compression for Fixed

Heaps. In CASES ’07, the International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems. Salzburg, Austria. September 2007.

[2] Ben L. Titzer, Joshua Auerbach, David F. Bacon, and Jens Palsberg. The ExoVM

System for Automatic VM and Application Reduction. In PLDI ’07, the ACM

Conference on Programming Language Design and Implementation. San Diego, CA.

June 2007.

 xi

[3] Ben L. Titzer. Virgil: Objects on the Head of a Pin. In OOPSLA ’06, the 21st Annual

Conference on Object-Oriented Systems, Languages, and Applications. Portland, OR.

October 2006.

[4] Olaf Landsiedel, Klaus Wehrle, Ben L. Titzer, and Jens Palsberg. Enabling Detailed

Modeling and Analysis of Sensor Networks. Praxis der Informationsverarbeitung

und Kommunikation, 28(2):10-15. 2005.

[5] Ben L. Titzer and Jens Palsberg. Nonintrusive Precision Instrumentation of

Microcontroller Software. In LCTES ’05, the ACM SIGBED Conference on

Languages, Compilers, and Tools for Embedded Systems. Chicago, IL. June 2005.

[6] Ben L. Titzer, Daniel Lee, and Jens Palsberg. Avrora: Scalable Sensor Network

Simulation with Precise Timing. In IPSN ’05, the Fourth International Conference on

Information Processing in Sensor Networks. Los Angeles, CA. April 2005.

[7] Ben L. Titzer. Avrora: The AVR Simulation and Analysis Framework. Master's

Thesis. Los Angeles, CA. June 2004.

[8] Grzegorz Czajkowski, Laurent Daynes, and Ben Titzer. A Multiuser Virtual Machine.

In The USENIX 2003 Annual Technical Conference. San Antonio, TX. June 2003.

 xii

ABSTRACT OF THE DISSERTATION

Objects to Bits:

Efficient Implementation of Object-oriented Languages on Very Small Devices

by

Benjamin Lawrence Titzer

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2007

Professor Jens Palsberg, Chair

The accelerating digital automation of the world around us has placed increased

focus on the problem of developing reliable and flexible software for microcontroller-

class devices. Today, microcontrollers serve as the primary or auxiliary processor in

products and research systems from microwaves to sensor networks. Microcontrollers

represent perhaps the most severely resource-constrained embedded processors, often

with as little as a few bytes of memory and a few kilobytes of code space. Language and

compiler technology has so far been unable to bring the benefits of modern object-

oriented languages to such processors. In this dissertation, I will establish that advanced

language and compiler technology can bring the benefits of object-oriented programming

to even the most constrained of embedded systems.

 xiii

I present two systems I have developed that significantly advance the state of the

art in this area: Virgil, a new lightweight object-oriented language which I have designed

with careful consideration for resource-limited domains, and the ExoVM, a system that I

built for specializing the IBM J9 Java virtual machine on a per-application basis. These

two systems echo three recurrent themes: pre-initialization, reachability, and

compression. Virgil explores these themes in a pristine setting where the language,

compiler, and applications can be rebuilt from the ground up. To avoid dynamic memory

allocation and the resulting system complexity, Virgil introduces initialization time,

where an application can build complex data structures during compilation. This exposes

the entire heap of the program to the compiler and allows new heap-sensitive compiler

optimizations: reachable members analysis for combined dead code and data elimination,

and reference compression and vertical object layout for more memory-efficient object

representation. In contrast, the ExoVM explores these three key ideas in a scenario where

the primary goal is to reuse a large-scale industrial strength virtual machine, but reduce

footprint by automatically removing dead code in the program and the virtual machine on

a per-application basis.

 1

INTRODUCTION

Microcontrollers are tiny, low power embedded processors deployed to monitor

and control consumer products from microwaves to fuel injection systems, where often

the presence of a computer is not readily apparent. Microcontrollers are gaining increased

attention in the research community because they are an ideal fit for sensor networks,

where programmability, physical size, and power consumption are important design

criteria. A typical microcontroller integrates a central processing unit, RAM,

reprogrammable flash memory, and IO devices on a single chip. They have limited

computational power and memories that are often measured in hundreds of bytes to a few

kilobytes, representing one of the most extreme instances of a software-programmable

resource-constrained embedded system. For example, a popular microcontroller unit from

Atmel, the ATMega128, has 4KB of RAM and 128KB of flash to store code and read-

only data; it serves as the central processor unit in the Mica2 [52] sensor network node.

Microcontrollers allow for software programmability by storing a program’s

instructions in a flash memory that allows infrequent, coarse-grained updates, usually

done only during testing. Software for the smallest of microcontrollers is generally

written in assembly language, but medium to large microcontrollers are often

programmed in C. Generally there is not enough code space or memory to fit a true

operating system that provides both software isolation mechanisms and resource

virtualization; thus most programs run directly on the microcontroller without any of the

protection mechanisms that are common on desktop computing platforms. This complete

 2

lack of traditional software isolation mechanisms complicates the problem of developing

robust software for microcontrollers, since programmers cannot rely on the familiar

mechanisms by which software safety is achieved on typical desktop systems.

In this situation, static detection of errors is best. Modern programming languages

offer two powerful mechanisms for increasing software robustness through static

checking: strong types and software verification. Strong types offer two important

advantages to programmers: the ability to express and document intended invariants on

variables and the ability to enforce these invariants, limiting each variable to a known

(but perhaps unbounded) set of values described by its type. When the type system is

expressed as a formal system and the semantics of the programming language are

formally defined, it is possible to prove a type system is sound, i.e. that a well-typed

program will not generate any of a large class of potentially harmful software faults

(often referred to as “going wrong”). The compiler will reject programs that do not pass

the typechecker and generate an error message that helps the programmer to correct the

problem in order to establish the invariants required by its types. Thus, successful

compilation of the program indicates that it is free of a large class of potential internal

errors. Software verification, however, is the process by which a verification tool such as

a model checker establishes that a program meets an external specification.

While strong typing helps in many programming paradigms, statically typed

object-oriented languages have been particularly successful in the past 15 years. Notable

examples include C++ [91], Java [46], and C# [1]. More recently, blending of functional

and object-oriented concepts in a statically typed context have been successful in

 3

languages such as Ocaml [5] and Scala [3][74]. Despite the demonstrable advantages that

these more advanced programming languages and their associated runtime systems offer,

the combination of severe resource constraints and need for low-level mechanisms have

slowed their adoption in embedded systems. In particular, language implementations still

tend to be designed for desktop or server scenarios and often have large, heavyweight

runtime systems that include dynamic code loading, advanced JIT compilers, reflection,

and serialization, all of which increase both the fixed cost of the virtual machine and the

proportional cost of increasing program size. This often makes the total resource

consumption of both the VM and application together unacceptable for very small

devices.

It is often assumed that the steadily increasing memory capacity of computers

across the spectrum will solve this problem, and all devices will eventually have enough

memory to run today’s software. While Moore’s law holds that the transistor density on

integrated circuits doubles every 18 months, allowing larger and larger scale

microprocessors, microcontrollers and the size class that they represent are unlikely to

become obsolete soon. First, the improvements in transistor size through more advanced

process technology can be exploited on several dimensions, including transistor count,

energy consumption, clock speed, and manufacturing cost. While desktop and server

microprocessor manufacturers have focused primarily on transistor count and clock speed

in pursuit of performance, microcontroller applications tend to push vendors to

concentrate more on manufacturing cost and energy consumption. Secondly, several

factors conspire to slow the apparent improvement in process technology at the low end

 4

of chip design, including industry consolidation and the increasing cost of manufacturing

plants, resulting a lag time of several years before top-of-the-line process technology is

employed for embedded chips such as microcontrollers. Thirdly, while microcontroller

vendors continue to increase the memory capacity of their high-end models, they still

manufacture and sell all of their previous lower-end models, because those chips still

meet the needs of both legacy and new applications, since customers will always buy the

smallest model that is capable of running their particular application.

1.1. Thesis statement

This dissertation addresses the problem of matching statically typed object-

oriented languages to very small devices. My thesis can be summed up in one sentence:

Advanced language and compiler technology can bring the benefits of object-

oriented programming to even the most constrained of embedded systems.

This dissertation provides evidence that this statement is true, presenting two

systems that I have built which offer significant contributions to the state of the art in

developing software in higher-level object-oriented languages for small devices.

Before Virgil, it was thought that building systems software in a strongly typed

language was impossible without opening holes in the type system and building a

specialized language runtime that underlies all programs, often including significant

 5

amounts of unsafe code. These runtime systems tended to be large enough that it was

thought to be impossible to develop for microcontrollers. Virgil represents a leap forward

in language technology for this domain, requiring no such loopholes in the type system,

with a fixed cost so low that it rivals C, even running on the smallest of microcontrollers.

Virgil programs compile directly to machine code and require no runtime system; the

language provides access to hardware state sufficient to implement all device drivers

necessary on a microcontroller. Key to achieving these results is a staged computational

model which introduces initialization time, a phase during compilation in which the

Virgil application can execute arbitrary code to allocate and initialize its data structures.

Unlike traditional compilers that focus on code optimizations, the Virgil compiler

performs an unprecedented amount of data optimizations. In this case, the strong type

safety of the language and the availability of the entire program heap make optimizations

easier, allowing the compiler to perform combined dead code and data removal and

compression without sophisticated pointer analyses.

Before the ExoVM, it was thought that developing Java applications for

embedded devices with limited memories required specialized virtual machines that were

specifically designed for small memory footprint. One consequence of that assumption

was that embedded VMs have tended to lag behind the state of the art in performance and

feature completeness. The ExoVM challenges this assumption and presents a system for

reusing an existing large, state-of-the-art virtual machine in smaller footprint scenarios

without requiring intrusive modifications. The ExoVM accomplishes this by applying the

main themes of this dissertation: it pre-initializes the virtual machine, building a

 6

complete representation of the program, applies program analysis techniques inspired by

Virgil to compute the closure of all reachable entities, removing VM data structures and

subsystems that are not used by the Java program, and then compacts the live data

structures into a persistent image file for use at runtime.

1.2. State of the Art

This section describes the state of the art in three categories; embedded object

systems, embedded languages, and program data compression technologies.

1.2.1. Embedded Object Systems

Most object-oriented languages use a virtual machine as their primary language

implementation. By far the most popular language in this category is Java, but others

include C#, Smalltalk, Self, Scala, Python, and Ruby. Virtual machines have important

advantages for developing and distributing software, including a compact machine-

independent object code format for mobile code safety, fluid integration of dynamic code

loading, support for reflective language features, automatic memory management, and

increasingly sophisticated dynamic optimizations. For embedded systems, virtual

machines can offer a number of advantages. In fact, the original development of the Java

language and virtual machine was motivated by the need to develop portable embedded

software for TV set-top boxes [4]. Two advantages are that a compact bytecode format

can reduce the size of the application’s memory footprint and fine-grained software

update can be useful in a scenario where the software on the device changes rapidly,

particularly during testing and development.

 7

In the early days of Java virtual machines, a complete implementation consisted

primarily of a bytecode interpreter, class loader, and simple garbage collector. The

simplicity of the system made the fixed cost of the virtual machine small enough to be

suitable for devices with small memories, but this simplicity came at the expense of

performance and language features. As the Java language evolved and its domain

expanded, many of the original advantages were eroded by the increasing complexity of

the language and virtual machine subsystems in pursuit of performance and features,

usually at the expense of memory footprint. Today, a state-of-the-art virtual machine that

supports dynamic class loading, JIT compilation, advanced garbage collection, and the

complete Java language specification and accompanying class library spans millions of

lines of code and has a memory footprint on the order of several megabytes: simply too

large for many embedded devices.

This upward pressure on virtual machine implementations has led to a backlash

where a number of specialized VMs with fewer language features and simplified

subsystems have appeared. There have been several research systems [27][30][63][97],

and a number of standard library subsets have arisen, for example, the Connected Limited

Device Configuration [2]. Most of these systems target devices with tens or hundreds of

kilobytes of RAM, more than an order of magnitude more than a typical microcontroller.

The Spotless System [97] was developed in 1999 at Sun Labs and later became

the K Virtual Machine (KVM). It was one of the first Java virtual machine

implementations developed from scratch that was specifically designed for small memory

footprint scenarios; the basic RAM footprint was on the order of a few tens of kilobytes.

 8

It achieved this small size by starting from nothing, building the virtual machine in C,

and concentrating on a small (rather than full-featured) class library. It had no JIT

compiler, but a simple interpreter, and had correspondingly low performance, particularly

compared to modern virtual machines, but acceptable in comparison to the mainstream

virtual machines of the time. Like many virtual machines that would follow, the Spotless

System provided a platform for developing embedded applications, but did not address

the problems of writing the actual system software, i.e. the virtual machine and operating

system itself, in a safe language. The KVM [2] evolved into a language platform standard

dubbed J2ME (Java 2 Micro Edition), whose focus was to define a small number of

standard subsets of the Java language and libraries for embedded systems. At that time, it

was simply accepted that a language subset definition was required in order to

standardize the inevitable number of specialized virtual machines that would appear. The

ExoVM presented in Chapter 2 directly challenges this assumption, demonstrating it is

possible to reuse an existing, fully featured virtual machine in a small footprint scenario.

Resource limitations have led to a number of systems that explore moving more

work, including initialization, compilation, and compression to an earlier offline phase.

VM* [63] is a virtual machine construction kit that allows the automatic generation of an

application-specific virtual machine, including only the parts of the interpreter and

runtime system that are needed. VM* targets very small sensor network nodes, and

supports a subset of the Java language. It exposes a native API for operating system and

hardware services, which allows simple sensor applications to be written in Java. VM*

addresses only the application level development of sensor networks; the underlying

 9

operating system services and the VM functionality are all implemented in C. Like many

embedded virtual machines, a bytecode interpreter forms the core. The overhead in

executing application code is between 50 (iadd) and 500 (invokevirtual) machine

cycles per executed bytecode. The total RAM footprint for the system was between 500

bytes and 2 kilobytes for five applications, while code footprint was between 9 and 25

kilobytes. This makes it suitable for smaller applications on larger microcontroller

models, but three problems still exist: poor performance, the virtual machine itself is

implemented in C, and it cannot target the smallest microcontroller models. Later work

[112] on the VM* system improved performance through precompilation and a network-

attached compile server for dynamic compilation based on profiling feedback from

applications on the nodes, a technique first demonstrated by Delsart, Joloboff, and Paire

in [37], but the other two problems remain.

Several research systems have explored moving some of the work of class loading

into an offline phase. Pugh and Weddell [80] describe a number of techniques for

reducing class file sizes by compressing and removing redundant information. A more

aggressive technique is to build the VM’s internal view of classes offline in order to

remove to need to parse the standard class file format. For example, later improvements

to the KVM added support for Java Code Compact (JCC) technology, which preloads

class files against the virtual machine, generating the KVM-internal representation,

emitting a C file that is compiled and linked into the KVM executable. JCC also supports

manually specifying which of the application classes can be removed in this step.

 10

Courbot, Grimaud, and Vandewalle [30] present a more aggressive system. They

describe romization, a technique that loads an application into the virtual machine, pre-

initializing internal data structures, reducing them, and emitting a C file that contains the

Java application with its custom virtual machine. Their system shares important

similarities with the ExoVM presented in this dissertation. First, they employ pre-

initialization, closure, and persistence, which are the keys to the ExoVM philosophy.

Second, they share the view that customizing against a larger, fully featured JVM is

superior to building customized VMs. However, they base their system on the Java in the

Small [6] project, which is (as its very name implies), designed for small footprint

already; they do not base their work on an existing industrial strength virtual machine as

the ExoVM described in this dissertation has. Third, they do not describe their closure

algorithm in detail; the ExoVM’s closure constraint system sheds important light on the

interconnectedness of the underlying virtual machine’s implementation, teaching us

larger lessons and insights into virtual machine design that are identified and described in

this dissertation. And finally, the ExoVM persistence mechanisms faced important real-

world challenges that are of practical importance and informative to later implementers of

these ideas.

Several research projects have focused on simplifying the JIT compiler. Recent

work by Gal and Franz [41] has made important progress by concentrating on compiling

straight-line bytecode sequences. Their system is based around a standard bytecode

interpreter that collects dynamic profile information for bytecode traces. A heuristic

selects profitable bytecode sequences to compile. Optimizing these straight-line trace

 11

code sequences is far simpler than the general case, simplifying many optimizations and

reducing the implementation complexity of the JIT. However, their dynamic compiler

still occupies approximately 150kb of code and data, which is too large for even the

largest of microcontrollers. In contrast, Manjunath and Krishnan [67] use a simple JIT

compiler that compiles basic blocks by concatenating the interpreter’s own code for each

bytecode in the block in succession and then applying peephole optimizations. Their

system occupies approximately 10 kilobytes of RAM. A detailed performance study is

not provided, but it is likely the performance is somewhere between a pure interpreter

and a very simple, non-optimizing compiler.

While virtual machine research has made important advancements in the state of

the art for embedded systems applications, ultimately, virtual machines are an attempt to

address the challenges of embedded systems for the application level, not the system

level. Usually, the virtual machine itself is generally either implemented in a lower-level

unsafe language like C or C++. Thus many of the problems that plague software in these

languages are still present for the systems software. Some attempts have been made to

use higher-level languages such as Java for systems development. However, using Java to

implement virtual machines and operating system kernels, such as in Jikes RVM [15] or

JX [45], generally requires a native compiler that translates Java bytecode to machine

code in order to bootstrap. This often requires magic holes in the type system to be

agreed on by the system and the compiler in order to implement certain language

features. In the end, this provides a convenient Java environment for applications, but

significant challenges still remain for building the VM or OS itself.

 12

The Solo Operating System [49], developed in 1976 by Hansen, was perhaps the

first to investigate the use of type-safe, structured programming languages for kernel and

operating systems development. Solo explored applying Concurrent Pascal to target the

PDP/11, developing a kernel and applications together, with a kernel of about 8KB of

hand-written machine code. The compiler was part of the system; all programs had input

parameter types that were checked at program invocation. Programs communicated via

passing argument values, reading from buffers, and reading and writing from a very

simple file system. Although extremely innovative for its time, it was a research system

that languished in obscurity during UNIX’s viral spread. Unlike Virgil, it was developed

for an interactive console environment and thus included a fully-fledged (though simple)

compiler for Pascal as part of the system to support development of new programs on the

running system. Pascal, especially at that time, was a comparatively simple language, and

typechecking and code generation techniques were simpler in order to be feasible on the

slower machines of the day. In contrast, Virgil has an advanced type system with objects

and parametric types. The Virgil compiler is not meant to run on the actual deployed

hardware device, allowing it to utilize the computational power of the desktop system on

which the Virgil applications are developed and apply more advanced code generation

techniques.

The Singularity Project [51] at Microsoft Research is a recent attempt to build a

complete desktop operating system primarily in C#, eliminating as much unsafe code as

possible. In developing a modern operating system kernel with a safe language, there are

several challenging problems that potentially require unsafe code. For example,

 13

implementing virtual memory requires manipulating MMU mappings, context switching

requires saving and restoring processor state onto and off of program stacks, and locating

certain memory-mapped devices may require scanning raw memory. The garbage

collector implementation potentially requires some unsafe code and special magic tunnels

under, around, or through the type system. The result is that there is still a large amount

of unsafe code.

Embedded object systems can also offer embedded language features as an API or

library on top of an existing virtual machine. For example, Eventrons [88] are a

programming construct introduced in the context of the IBM J9 virtual machine that

represent Java tasks with additional language restrictions. Specifically, an Eventron is

forbidden from reading or writing mutable reference fields, allocating memory, or

attempting locking operations. These tight restrictions enable the Eventron to safely

preempt the garbage collector and achieve a response time that is shorter than the

minimum GC pause time. A runtime verification phase (performed after the Eventron

object is constructed but before execution) enforces the language restrictions. Given the

fully constructed Eventron object within a Java heap, the verifier discovers the methods

and objects reachable from the run() method, checks that each method obeys the

language restrictions, and then pins the reachable objects in memory. While an important

advance for responsiveness, Eventrons are too restrictive because they forbid mutation of

reference fields; they also still require a large runtime system support and therefore

wouldn’t be suited to developing the actual VM or operating system in a safe language.

 14

1.2.2. Embedded Languages

C++ is often cited for its suitability to writing low-level code, but the language

and its implementation have a number of drawbacks [85] that make targeting a

microcontroller difficult; primarily the complexity of the object model, the inefficiencies

of certain language constructs, the runtime and metadata requirements, and a lack of

strong safety mechanisms. C++ lacks the strong type safety guarantee given by Virgil,

and thus some kinds of optimizations for C++ cannot be made sound, such as reference

compression, which is described in Chapter 4 of this dissertation. Despite promises of its

adherents, C++ has not succeeded for microcontroller class systems.

NesC [44] is an extension to C that adds module capabilities and a simple task

model that is based on two-way interfaces which can be configured by “wiring” them

together in a configuration language. NesC inherits C’s weak type system and therefore is

subject to a number of potentially dangerous and difficult to diagnose program errors

such as out-of-bounds memory accesses causing memory corruption, stack overflow, etc.

The primary focus was to simplify configuration of programs through the module system,

but these module capabilities are mostly orthogonal to the deeper language issue of safety

and expressiveness, especially in regard to objects, which nesC does not provide. The

task model is hardwired into the language and implemented underneath by a significant

amount of TinyOS-specific C code. The core language does not provide for allocating

memory, although it’s possible to link in libc and use malloc(). Applications and

modules are expected to statically allocate the memory that they require, but complex

 15

initialization routines are not possible, and a significant amount of code can be required

at device startup.

In the 1970’s, Charles Moore designed Forth [7], a minimalist interpreted

language that has become popular for programming embedded systems. Forth is stack-

based and untyped, exposing the stack to the programmer with its reverse polish notation.

There are many free, reusable implementations available. In fact, its philosophy

encourages building custom, application-specific implementations and extensions, rather

than providing a one-size-fits-all library or compiler. However, its lack of type safety and

constructs for information hiding, data encapsulation, and modularity limit its use in

developing larger systems.

1.2.3. Program Data Compression

In addition to the previously described techniques that seek to remove or reduce

the static program or virtual machine size, researchers have also investigated a number of

compiler and runtime techniques for reducing the memory footprint of the program’s data

structures. Individual program quantities such as pointers, object headers and primitive

values can be subjected to compression, reducing the average or worst case memory

footprint of the heap. Compression of the heap can sometimes help performance as well.

For example, Mogul et al. [68] observed in 1995 that pointer sizes could affect

performance significantly on a 64-bit computer because larger pointers occupy more

space, putting greater stress on the memory system, affecting cache hit ratios and paging

frequency.

 16

Some compiler techniques are purely static. Cooprider and Regehr [31] use static

analysis to analyze C programs with statically allocated heaps. Their technique uses

abstract interpretation and a simple pointer analysis available with the CIL framework

[72] to compute bounds on the range of values for every variable in the program. A

source-to-source transformation packs scalars, pointers, structures, and arrays into fewer

bits using a compression-table scheme. Lattner and Adve [65] use static analysis to

convert and compress 64-bit pointers to 32 bits on a per-data structure basis. Their

technique extends their earlier work on static pool allocation [64] that uses sophisticated

context-sensitive, field-sensitive pointer analysis to assign data structures to pools.

While traditional static compilers do not have the complete heap, dynamic

techniques implemented in the language run-time system can track all objects that have

been created and use the information to dynamically compress pointers. Some research

systems exist that employ dynamic techniques, sometimes assisted by hardware. The

simplest is perhaps that described by Adl-Tabatabai et al. [4], which represents 64-bit

pointers as 32-bit unsigned offsets from a known base; the result is a significant

performance improvement, despite additional instructions.

Many virtual machines employ compression techniques as well, usually on object

headers. In Java, object headers contain such data as type information, a hash code, and a

lock, which can often occupy two or three words of space. Bacon, Fink, and Grove [20]

presented compression techniques that allow most Java objects to have a single-word

object header. Full object compression is possible as well. Chen et al [28] study dynamic

heap compression techniques in an embedded Java VM setting, based on the KVM [97]

 17

reference implementation of the Connected Limited Device Configuration (CLDC) [2],

which is intended for use on devices that have at least 192KB of RAM. The center of

their system is an enhanced garbage collector system that compresses objects when a

traditional compacting collector cannot recover enough space for new objects. Their

collector employs several techniques for tuning the tradeoff in execution time versus

memory size. It uses a simple and fast compression algorithm that operates on the raw

memory values of objects, without considering the types. Dynamic checks are required so

that compressed objects are decompressed upon their first use.

The hardware and operating system can also assist in reducing program data size,

particularly pointers. For example, Zhang and Gupta [115] use special hardware

instructions to help compress pointers and integers on the fly; they use profiling

information to guide what data should be compressed and when compression should be

done. Wright, Seidl, and Wolczko [114] present a memory architecture with hardware

support for mapping object identifiers to physical addresses, thereby enabling new

techniques for parallel and concurrent garbage collection; such an architecture could

support compression of pointers as well. Wilson [111] supports large address spaces with

modest word sizes by using pointer swizzling at page fault time to translate large pointers

into fewer bits.

Ananian and Rinard [17] present a suite of both static and dynamic techniques to

reduce data size for Java programs. They propose field reduction, a whole-program static

analysis that bounds the ranges of values that primitive fields may contain over any

execution in order to reduce their size, unread and constant field elimination, that

 18

removes unused and constant fields, static specialization, which eliminates fields that are

constant by subclass, externalization, which removes frequently constant fields and puts

them in a hash table, and class pointer compression, which is essentially a single

compression table for object headers. Most of these techniques are subsumed by or are

complementary to techniques described in this dissertation.

Tip et al [98] present Jax, a system that employs a number of static techniques for

reducing Java programs, particularly their static footprint in terms of code and metadata

size. Among these are name compression, which replaces long class and method names

with shorter ones, class merging, which reduces the total number of classes, dead code

elimination, which removes unreachable methods, dead field elimination, which removes

unused and write-only fields, and devirtualization of method calls for removal of

associated metadata. Name compression is unnecessary for Virgil because class and

method names are not included in the compiled program. Class merging is also

unnecessary because the Virgil compiler will not generate any metadata (including meta-

objects) for classes that have no objects remaining in the live heap after initialization.

RMA also removes all dead methods and dead or write-only fields, inlining constant

fields with their actual values (which are available after initialization, but may not

necessarily be available to Jax). Like Jax, it also performs devirtualization and removes

all metadata for methods that are completely devirtualized. However, Jax employs a form

of flow analysis in its call graph construction algorithm, which is potentially more

precise, whereas RMA uses a type-based approach with heap liveness information.

 19

Agesen and Ungar [10] in 1994 described a system for extracting Self

applications from their environment. Their system extends previous work by Agesen on

type inference for Self by adding the ability to remove dead slots from objects and persist

them to disk, solving a similar problem to RMA. However, because Self is dynamically

typed, their extractor requires type inference in order to give a sound approximation of

possibly accessed slots of objects. RMA, however, simply uses the static, declared types

of objects. Also, unlike RMA, the three phases of type inference, computation of live

object slots and selection of live objects are distinct and are not iterative, therefore it is

possible that type inference could become more precise after the first iteration. In

contrast, RMA discovers reachable code, objects, and methods on demand in a single

phase. Their experimental results showed their system could reduce image sizes by a

factor of 10, but the resulting images are still more than 300kb in size.

1.3. Three themes

Though Virgil and the ExoVM have different views of code reuse and runtime

infrastructure, they nevertheless echo three recurrent themes: pre-initialization, closure,

and compression.

The first key theme is pre-initialization, where data structures are constructed and

initialized in an offline phase, which exposes them to compiler analysis and optimization.

Unlike traditional compiler problems where the unavailability of the heap and the

inevitability of the halting problem forces analyses to consider approximations of the

possible runtime data structures of the program, pre-initialization exposes a rich new

realm where analyses can use not only the code of the program with an approximation of

 20

the heap, but actual data instances, in its optimization. This theme of pre-initialization is

expressed in Virgil directly in the concept of initialization time, whereby an application

allocates its entire heap during compilation. The further restriction of forbidding dynamic

allocation means that the compiler has a complete picture of the entire runtime heap

during compilation. The ExoVM system clearly echoes the pre-initialization theme with

its approach of first loading the application program into the unmodified virtual machine,

causing the VM to build its internal representation of the program, then resolving inter-

class references, and then further initializing the application itself by executing the static

initializers of its classes. This pre-initialization phase of the ExoVM allows the further

analysis phases to have a complete picture of the VM’s data structures and an initial

picture of the application’s heap.

The second key theme that is echoed in these two systems is the concept of

closure, or computing an approximation of the set of program entities reachable over

execution, both code and data. Virgil introduced this idea in the reachable members

analysis (RMA) optimization that simultaneously computes a closure over live objects in

the pre-allocated heap and the code of the program. This optimization idea appears again

in the ExoVM, where closure over the VM’s initialized data structures, application

objects, VM code, and application code is computed simultaneously. We can consider the

ExoVM closure process to be an extension of RMA that works over not only application

entities, but also virtual machine entities. This idea, while implemented in separate

systems, shares the same core reachability algorithm that can be posed succinctly as

subset constraints.

 21

The third key theme that is explored in this dissertation is compression, where the

typical representation of an application quantity is replaced by a more space efficient (but

perhaps slower) representation in order to reduce the total memory footprint. The Virgil

compiler performs compression on object references using two techniques: table-based

compression and compressed vertical object layout. Both techniques exploit the type-safe

nature of Virgil to represent references in fewer bits than would be required in the

familiar pointer representation of object references. While the ExoVM system does not

employ compression directly, it does however compact the virtual machine’s internal data

structures, which are normally allocated in pools and arenas that can be subject to both

internal and external fragmentation. Compaction in the ExoVM reduces the internal

fragmentation and eliminates external fragmentation, thereby saving overall memory

footprint.

1.4. Two Systems, Two Perspectives on Reuse

The exploration of these two systems in this dissertation offers complementary

views of the three main themes from two distinct perspectives on code reuse. The

ExoVM takes the perspective that we would like to reuse as much infrastructure as

possible that has been invested in developing state-of-the-art language implementations.

In the case of Java, this means reusing an industrial strength virtual machine that includes

advanced compilation and garbage collection technology. Such systems can be millions

 22

of lines of code and represent hundreds of man-years of effort, which should be reused if

possible.

1.4.1. The ExoVM

As discussed previously, the pressure for more language features, libraries, and

performance for Java has led to a vast increase in the size and complexity of virtual

machines with a concomitant increase in memory footprint. The traditional approach has

been to build customized virtual machines, often entirely from scratch, that trade off

feature completeness or performance for memory footprint.

This traditional approach has important disadvantages. First, though a small VM

is comparatively less engineering effort than a fully featured one, software development

and maintenance effort is inevitably duplicated as engineers spend valuable resources

implementing and tuning subsystems that could likely be reused if they were originally

designed to be suitably modular. Secondly, improvements in the state of the art in

implementation technology, which usually first appear in mainline virtual machines,

cannot be automatically utilized in the custom VM. Thirdly, evaluations of research ideas

and implementation techniques inevitably have narrower scope because results are not

immediately comparable across domains that do not share a common virtual machine

infrastructure.

Unlike all previous work on state-of-the-art embedded virtual machines, The

ExoVM approach is to reuse an existing industrial strength virtual machine and specialize

it to a particular application by pre-initializing the virtual machine with the target

 23

program. In order to make the system more amenable to automatic specialization, the

ExoVM limits the dynamism of both the program and the virtual machine, making them

as static and predictable as possible. This makes it easier for an automatic program

analysis to include only what is necessary from the virtual machine on a per-program

basis.

The starting point of the ExoVM system is a research configuration of the J9 Java

virtual machine from IBM, a complete industrial-strength JVM implementation and its

associated Java class library. The ExoVM assumes a closed world scenario, which allows

the program and its VM implementation to be viewed in a more static way. Loading the

entire application into the unmodified virtual machine allows the first step, pre-

initialization, where all of the internal virtual machine data structures are created offline.

The next step is to employ feature analysis, a program analysis technique that computes

the closure, or the set of reachable application and virtual machine entities that may be

accessed over any execution of the program. The reachable entities are then copied and

relocated to an image file that serves as a completely pre-initialized snapshot of the

virtual machine with respect to that particular program. At runtime, the image file can be

loaded into a specialized booter VM that is derived from the mainline VM by removing

the dynamic resolution mechanisms and unnecessary subsystems such as the class loader

and byte code verifier.

The ideas embodied in the ExoVM and its prototype implementation represent a

significant step forward in virtual machine construction in general, and the application of

virtual machine technology in embedded systems specifically. The ability to measure the

 24

modularity of the virtual machine with respect to the source language using feature

analysis opens up new possibilities for building more modular virtual machines in the

future. The ExoVM has the potential of closing the gap between embedded virtual

machines and mainline virtual machines by allowing a single infrastructure to span both

domains, reusing important VM subsystems such as the JIT compiler and garbage

collector.

1.4.2. Virgil

Virgil takes a radically different perspective on code reuse and considers the

implications of redesigning the language and compiler from the ground up, free from the

restrictions of any particular language feature or implementation. In contrast to the

ExoVM, which attempts to reuse an existing virtual machine, Virgil approaches the

problem of matching objects to microcontrollers from the language and compiler level,

which allows the additional freedom to add or remove language features in order to meet

the constraints of the microcontroller domain.

Unlike previous work on embedded virtual machines, which only address

application-level programming on embedded systems, Virgil is intended to address the

challenges of developing systems software at the lowest layer, without requiring system

designers to bootstrap a state-of-the-art virtual machine. Virgil is intended to allow both

applications and operating systems to be developed in one language, without any

supporting software. This is appropriate for the microcontroller domain, where

applications are generally written to run in a standalone manner. Here, the simplicity of

the hardware devices, the lack of virtual memory, and the one-stack, single-process

 25

model allows Virgil programs to be implemented completely in safe code and compiled

directly to the bare hardware with no runtime system.

Virgil represents a unique point in the design space of languages for the

embedded domain because it is both freed from the burden of legacy operating system

and driver code yet constrained by the limitations of microcontroller devices. Virgil starts

with the assumption that it will be used to build entire software systems from the ground

up, in one language, without the need to interface to existing code in unsafe languages

like C. Having the entire system in one safe language affords more complete control to

the compiler to make efficient representation choices for objects and object references

since it is not constrained by any external code and is only constrained by the hardware.

This lack of legacy code also eliminates the need for a mechanism to interface between

the two realms and potentially increases the robustness of the system.

While the potential language design space is large, memory limitations are so

severe on microcontrollers that Virgil is forced to avoid those language features that have

large runtime cost in order to fit on the tiniest of devices. In fact, Virgil is designed to

require no runtime system or library of intrinsic classes. It jettisons many language

features that are common in object-oriented languages such as first-class metadata

(“class” objects), a universal super-class (Object class), and reflection because their

space costs are too high. All of Virgil’s features are designed to make the proportional

cost of using Virgil’s features as low as possible so that a small change in the program

size produces a small change in its footprint in a predictable manner, which increases

programmers’ ability to make intelligent resource tradeoffs.

 26

Memory allocation during runtime on the device is forbidden, removing the need

for a garbage collector with its associated performance and footprint overheads. Instead,

Virgil introduces initialization time, where programs can allocate and initialize objects

during compilation for use at runtime. After initialization time, the entire runtime heap of

the program is available to the compiler before generating code. This allows the compiler

to ensure that memory is not exhausted and provides an opportunity for novel heap-

sensitive optimizations. The Virgil compiler employs reachable members analysis, a

sophisticated dead code and data elimination, and several techniques for reference

compression that represent object references in a more compact way in order to save

RAM.

1.5. Organization

The remainder of this dissertation is organized into three main chapters that

describe in detail the systems I have built and their contribution to the field. Chapter 2

gives the technical development of the ExoVM system for J9 and corresponds closely to

the paper published in PLDI 2007 [102]. Chapter 3 discusses the design of the Virgil

language and the reachable members analysis optimization, containing most of the

material from the OOPSLA 2006 paper [101] with added sections on raw and parametric

types, as well as a more thorough experimental evaluation with new benchmarks drawn

from Virgil driver code. Chapter 4 focuses on compression optimizations and includes

some material from the OOPSLA 2006 paper as well as all of the material in the recent

 27

CASES 2007 paper [104], which introduced vertical object layout. Chapter 4’s

experimental evaluation mirrors that of Chapter 3, using the same benchmarks from the

recently completed Virgil drivers. Chapter 5 gives the overall conclusion.

 28

2. THE EXOVM

This chapter describes the details of the ExoVM system, which exists in a

scenario where we would like to reuse the investment in a state-of-the-art virtual machine

for an embedded device with a smaller memory footprint. The ExoVM establishes part of

the thesis by showing that advanced virtual machine technology can be reused in more

resource-constrained embedded systems. This chapter shows that the main themes of this

dissertation, particularly pre-initialization and closure, help to achieve this goal when

applied to an unmodified virtual machine.

The Java programming language and platform offer compelling advantages for a

large class of embedded systems applications, including cross-platform compatibility,

mobile code safety, automatic memory management, and a compact code distribution

format. However, embedded Java virtual machines lag significantly behind the state of

the art, particular in terms of performance and garbage collection technology. One of the

primary reasons for this is that embedded virtual machines are often developed

independently of standard “mainline” implementations and focus on small memory

footprint rather than performance or feature completeness. Most embedded virtual

machines have a completely separate source code base that is maintained independently,

although some larger virtual machines have clumsy and ad-hoc configuration

mechanisms that allow coarse-grained removal and replacement of subsystems.

The ideal solution to the disparity would be a single VM implementation that

spanned both domains. In theory, such a system would be able to seamlessly adapt

between server situations with long-running, massively parallel and enormously memory-

 29

intensive tasks, desktop situations with focus on user interactivity and media, and

embedded scenarios with limited footprint and even real-time requirements. We believe

this is a grand challenge in virtual machine construction that has not yet been solved,

indicated by the proliferation of single-domain systems which each have their particular

strengths and weaknesses.

The ExoVM approaches the embedded virtual machine problem from a new

perspective and contributes positively to this grand challenge by applying the three main

themes of this dissertation. Instead of building a new, specially designed virtual machine,

we attempt to reuse an existing industrial strength virtual machine (IBM’s J9 virtual

machine as the case is here), thus benefiting from the development effort already invested

in building and tuning the “mainline” virtual machine. Our work highlights important

deficiencies in the system we decided to adapt to our purposes and gives important

lessons for virtual machine design in the future. Our approach is to apply pre-

initialization to build the initial program representation within the VM and resolve

references, closure to compute the reachable entities over any execution of the program,

and persistence to compactly store the live data structures for use at runtime. The result is

a vast reduction in the fixed cost of the virtual machine and sizeable footprint savings.

We based the ExoVM implementation on the CLDC 1.1 MT version of J9 and

additionally included some minimal Java reflection support that is required to implement

ExoVM pre-initialization and closure computation, thus our configuration does not

precisely correspond to any particular IBM product. We studied two variants of this VM:

 30

one using the CLDC class library (j9cldc, approximately 190kb), and another using a

much larger class library that approximates the J2SE 1.4 (j9max, approximately 1.6mb).

2.1. Overview of the Technique

The first step of the ExoVM is to pre-initialize the unmodified virtual machine by

loading the target application using the virtual machine’s own internal class loading

mechanisms. This does not require intrusive modifications and causes the virtual machine

to initialize itself and build its own internal data structures as well as data structures that

represent the program, including its classes, methods, threads, etc. Part of this step is to

resolve all internal and inter-class references that would normally be resolved

dynamically while executing the program. If we assume a closed world scenario where

all the code of the application is available, the pre-initialization phase can resolve all

references statically and build a representation of the entire program, allowing the

metadata that is associated with lazy resolution of references (as well as the mechanisms

themselves) to later be removed.

The second step of the ExoVM is to compute a closure over this pre-initialized

virtual machine, including entities from both the internals of the VM and from the Java

program itself. This closure may contain live VM data structure instances, Java objects,

methods, and VM code. This echoes the second main theme of this dissertation, to use

program analysis techniques to compute the set of reachable entities over any execution

of the program. The computation of the closure relies on an approximation of the runtime

behavior of the program, since the closure must identify all entities that might be

accessed during any execution. In particular, the analysis needs to relate Java-level

 31

operations and entities to VM-level operations and entities. To accomplish this, we apply

feature analysis, which uses a constraint system that relates Java language features to

their implementation in the J9 virtual machine.

The third step of the ExoVM is to persist the closure of data structures and Java

code that was identified in the feature analysis step into a compact, ready-to-use image.

This closure may contain Java methods, classes, and objects, as well as virtual machine

data structure instances and native methods. We developed a system that understands the

layout and composition of all important VM data structures and is able to copy and

relocate actual data structure instances from inside the virtual machine’s internal memory

to a specialized image file. The image file contains a complete, ready-to-go virtual

machine snapshot that has the target program loaded into it and contains only the data

structures necessary to execute that particular program.

The last step, runtime, is accomplished by using a customized “booter” VM that is

derived from the unmodified virtual machine by simply removing the dynamic loading

and resolution mechanisms, virtual machine initialization routines, as well as other

unnecessary subsystems like the bytecode verifier. When mated with an image file that

contains all of the data structures necessary, ready and initialized, the booter VM can

simply memory map the image file and begin executing the Java program beginning at

main().

 32

2.2. Fixed and Proportional Costs

The dynamic memory footprint of a Java application is comprised not only of its

own code and data, but also that of the virtual machine and class libraries. We can

classify the memory usage into two main quantities: a fixed cost and a proportional cost.

The fixed cost corresponds to the code and data of the VM that is independent of the

application, such as a garbage collector, runtime class loading mechanism, interpreter,

JIT compiler, etc. The proportional cost corresponds to program’s code and heap—e.g.

the internal representation of its classes, bytecodes, dispatch tables, compiled code, object

type information, method exception tables, Java objects, etc. Like the VM, the Java class

library has both proportional and fixed costs, since many core classes are needed for any

program and others are only loaded as necessary, though the exact breakdown is not

clearly delineated or typically well-understood.

For many embedded applications, the fixed cost of the JVM runtime system and

its data structures may dwarf the size of the application. For example, the j9cldc VM

executable has more than 600kb of native code, 40kb of static data, and 190kb of Java

classes, while none of the 6 EEMBC benchmarks (Section 6) requires more than 120kb

for its own class representations, and 5 of 6 execute successfully with a heap less of just

128kb. In this case, it is most important to reduce the fixed cost of the virtual machine.

However, for larger applications, the fixed cost of the VM becomes amortized, and

eventually the proportional cost will dominate. If we were to envision an ideal solution,

we would want the fixed cost to be as small as possible to avoid penalizing small

programs, and we would want the proportional cost to be directly related to the size and

 33

characteristics of the application so that simplifications and reductions of large programs

produce predictable reductions in total footprint.

Our insight is that the virtual machine can be divided into more fine-grained

pieces of functionality that can be related to features in the Java programming language,

and that the fixed cost of a state-of-the-art virtual machine is not as fixed as previously

thought. Dividing the VM along feature lines allows costs that were previously fixed to

become proportional to the feature usage of the program. Automated program analysis

can then produce the set of features used in a particular application and therefore allow a

customized Java VM with a smaller fixed cost to run the application.

2.3. Pre-Initialization

Many large programs have complex initialization routines that build data

structures for use throughout the life of the program. In the case of a Java virtual

machine, there are data structures to represent and manage the program and the

program’s state, including threads, Java classes and methods, locks, the garbage collector,

JIT compiler, the Java heap, etc. The insight of pre-initialization is that these complex,

often long-lived data structures that are normally built at the beginning of the program

execution can instead be built offline and saved for use when the program begins

execution. If the data structures are pre-built, then the code for the initialization routines

can simply be removed, saving both in memory footprint and startup time.

We began studying our unmodified virtual machine’s startup routines with the

intention of building a separate pre-initialization phase that would build the initial data

 34

structures offline and save them. However, we soon discovered that the mechanisms that

build and maintain internal data structures both at startup and throughout the execution of

the program (e.g. resolving and loading a class) were simply too complex to replicate for

our purposes. A far more elegant solution is to simply reuse the existing initialization

routines by running them without modification until they reach a consistent state, and

then taking a snapshot of the resulting data structures.

The ExoVM system implements this solution by loading the program into the

fully featured virtual machine using the standard startup and loading routines already

built into the internal API. This naturally and nonintrusively causes the virtual machine to

initialize itself to a state that is ready to begin executing the program. In particular, the

VM has already built the internal representation of the first of the program’s classes and

methods as well as parts of the class library. The initial threads data structures are

allocated, and some Java objects have been created as a side effect of resolving some

string constants. Important Java classes needed in the internal implementation of certain

language features are already resolved. Thus the ExoVM analysis system has a complete

picture of the initial data structures that are required to begin executing the program.

Normally, the virtual machine would dynamically resolve and load new classes, but the

closed world assumption of pre-initialization allows the VM to load all of the application

classes over any execution. Therefore the VM has built the internal representation of all

of the application classes and the class loading mechanisms are no longer necessary at

runtime.

 35

2.3.1. Class Initializers

In Java, a class may define an optional class initializer (also called a static

initializer), a static method that is executed upon the first use of the class while the

program is executing. While lazy initialization gives rises to some semantic problems

such as nondeterminism in initialization, exceptions in initializers, cyclic dependencies,

and dynamic incompatible class change exceptions, the dynamic resolution of class,

method, and field references in Java code has definite implementation costs. First, it

requires that the constant pool references include the metadata needed for dynamic

resolution, including the string names of methods, fields and classes. Second, dynamic

resolution may trigger class loading and initialization. Third, the VM must also maintain

more metadata for every declared class, field, and method in anticipation of new

references to them in the future. Fourth, resolution mechanisms inevitably include hash

tables and other such fast search data structures that consume space.

While dynamically loading application classes may reduce the average case

footprint for some applications, we consider dynamic resolution and initialization of

classes as unwarranted complexity and resource consumption, leading us to explore the

implications of changing the model according to our original design philosophy of

making the program more static. Therefore, the ExoVM aggressively executes all class

initializers for the live classes of the program and resolves all constant pool references to

classes and methods as part of the pre-initialization phase.

Changing the model has advantages as well as disadvantages. First, it ensures that

class initializers will not need to be executed at runtime, which allows their code to be

 36

removed. Second, no dynamic resolution of class, method, or field references will occur,

so the metadata that is needed for dynamic resolution can be removed, and the

mechanism can be removed from the VM. Third, this allows a program written with the

model in mind to pre-allocate needed data structures in its static initialization routines,

which are discarded before runtime, yielding a staged computation model closer to

Virgil’s initialization time, which is discussed in Chapter 3.

One disadvantage of this approach is that it subtly alters the semantics of Java’s

class initializers, which some programs may depend on. Also, eager initialization could

trigger the execution of routines that might not be triggered at runtime, which might

allocate large data structures that waste space, destroy the state of other classes, and

generally interact in unintended and unpredictable ways. However, we believe that most

programs for this domain do not depend on the order or laziness of initialization. For

example, in the EEMBC benchmark suite, only one program, Parallel, appears to do

significant computation in its class initializers. This initializer does not depend on other

classes, but simply allocates and initializes a static matrix of data that is used during the

benchmark. Moreover, we believe that the closure technique described in the next section

will automatically remove many data structures that are allocated by the initialization

phase but are unused at runtime.

2.4. Closure and Feature Analysis

To ensure the smallest possible program footprint, we would like to automatically

compute the smallest set of classes and methods that are reachable over any execution of

the program. There are a number of whole-program techniques to address this problem,

 37

including RTA [21], CHA [32], RMA [101], and flow analyses such as 0-CFA, as well as

whole-module analyses such as that used in Jax [98]. All of these techniques share a

common conceptual approach to the problem, beginning at some entrypoint method(s) in

the program and building a static call graph that approximates the reachable code in the

program. Typically a closed world assumption is made, allowing code that is not

reachable to be safely removed, but if an open world is assumed, constraints can be added

to prevent unsafe removal of possibly live code while still allowing for some dead code

to be removed (e.g. unused private members).

In the ExoVM system, we must compute reachability over not only classes and

methods in the Java program, but over the initial Java heap as well as the data structures

and code in the virtual machine. Our analysis builds on both RTA and RMA and extends

the class of whole-program, closed world techniques that include live heap objects in the

analysis. While RMA, which is described in Chapter 3, computes closure over a complete

Virgil program, which does not require a runtime system, the ExoVM requires three new

types of constraints that relate entities at the Java level to runtime entities at the virtual

machine level.

2.4.1. Feature Analysis

Feature analysis extends the traditional approach of analysis over program entities

to include analysis of entities that are the explicit implementation of language features

within the virtual machine. We will use the term entity to refer to a single data structure

instance, Java object instance, Java method, string constant, or VM native method that

consumes either code or data space. Our analysis makes entities in the virtual machine

 38

explicitly analyzable and will only include entities in the final program image if they are

used over any execution of the program. In discussions of programming languages,

feature is perhaps the most loosely used term and most poorly defined concept. In order

to be more precise in our discussion, we will use the term feature to refer to the members

of or operations on entities.

Once we restrict our attention to entities and features that have an isolatable

implementation in the virtual machine, we can reason more concretely about the language

in terms of these implementation artifacts. For example, a large, coarse-grained service

might be garbage collection. By studying its implementation, we can break this service

down into a small, well-defined set of entities and features that require metadata about

classes, objects, methods, and threads. Another example might be the getClass()

method in java.lang.Object, which allows inspection of the run-time type of an

object. This feature also has an identifiable implementation which accesses the object

header and exposes a representation of the class to the program when it calls this method,

both of which can be modeled as features. Another example is the use of the

Class.forName() static method; this method’s implementation requires the VM to

have a mapping between string names and class representations, as well as the ability to

search for a class if it is not already loaded. If the program does not invoke this method at

any point, then the data structures corresponding to implementing this feature can be

removed. Other, finer-grained examples are floating point arithmetic, explicit casts,

synchronization operations, weak references, JNI, reference arrays, static initializers, and

exceptions.

 39

Many features correspond almost directly to Java bytecodes (and therefore

source-level Java language features), and some correspond to Java library methods and

classes. But internal virtual machine features become apparent after some study of the

VM implementation, such as the ability to search for a method by its name in a particular

class, or to resolve constant pool entries. Most such internal features do not have a direct

language expression but are demanded by the implementation of other features. For

example, the ability to search for a class by its name is necessary for the VM to resolve

some internal Java classes such as those representing language-level runtime exceptions.

The key idea behind feature analysis is that by exposing all of these VM data

structures as first class entities in the closure process, just like Java classes, objects and

methods, the analysis of language features can be expressed as relations on members and

features of these entities. The problem of computing reachability over entities then

becomes analogous to the familiar notion of reachability over heap objects; an entity is

only reachable if it is referred to by another reachable entity through a feature. If an entity

is not reachable through a chain of feature uses in the program and the virtual machine,

then it is not used during any execution of the program and can be safely removed.

2.4.2. Constraint-based Analysis

Constraint-based program analyses separate the specification of a correct solution

to a program analysis problem from the implementation of the algorithm that computes

the best solution [11]. For example, in a program analysis problem such as flow analysis

or pointer analysis, the primary goal is to compute sets of program quantities, such as

“what variables may this pointer refer to over any execution of the program?” or “what

 40

method implementations are reachable at this call site in the program?”. Constraint-

based analyses usually have the property that there is always a default, correct, but overly

conservative solution such as “this pointer might point to anything”. The art of getting a

good and verifiably correct solution to the analysis problem is deriving a rule set that

describes the minimal properties of a correct solution. Typically, the analysis inspects the

program once and generates a complete constraint system that is fed as input to a general

constraint solver. The constraint solver then computes the least solution to the constraints,

giving the most precise answer.

2.4.3. Entities and VM Types

The overall goal of our analysis is to compute the set of all live entities needed to

implement the program, both at the Java level and at the VM level. In our analysis, each

entity has an associated type, each type has an associated live entity set, and an entity and

is considered live if it is contained in its type’s set of live entities. The overall solution is

the union over all types of live entities. Our analysis models Java-level entities such as

methods, classes and objects in a manner that is similar to RMA. To simplify the

constraints, Java methods with implementations have type method, classes have type

Class, and each object instance’s type is its dynamic Java type. Note that each of these

Java-level entities may have one or more associated VM-level entities, not all of which

may be ultimately considered live.

In addition to the Java types from the program, our implementation models 24

different VM data structure types that are listed in Figure 2.1. Among these types are:

VMNative, which models the native code implementations of Java methods such as

 41

Object.hashCode(); VMClass, the in-memory representation of a Java class;

VMMethod, the in-memory representation of a method; VMROMClass, the on-disk and

in-memory representation of the read-only portion of a Java class such as string names,

the constant pool, declared methods; VMThread, a representation of a Java thread; and

the all-important VMJavaVM data structure, which contains pointers to important classes,

the heap, collections of classes, threads, and at least a dozen other subsystems.

Each pointer field within a

native data structure is modeled

as a feature. This allows fine-

grained precision in the analysis

of the data structures of the VM.

Our analysis models dozens of

features for these types; space

limitations preclude a complete list.

2.4.4. Constraint Sets

Our constraint formulation uses two kinds of sets. The first kind of set, an E

(entity) set, contains live entities such as Java objects, VM data structure instances, or

Java method implementations. For example, for a Java class C, the set EC represents the

set of all reachable objects of exact dynamic type C in the initial heap.

The second kind of set is an F (feature) set, which contains the used features of a

particular type. The set FC for a Java class C contains the declared fields and methods of

VMNative VMStackWalkState
VMJavaVM VMHashTable
VMClass VMMemorySegment
VMArrayClass VMMemorySegmentList
VMClassLoader VMPortLibrary
VMROMClass VMThreadMonitor
VMMethod VMJavaLangString
VMROMMethod VMJavaLangThread
VMConstantPool VMInternalVMFunctiona
VMROMConstantPool VMMemoryManagerFunctions
VMITable VMInternalVMLabels

Figure 2.1: List of modeled VM Types.
Native data structures are modeled in the analysis, and each
has its own set of features. For example, the VMNative
entity type models implementations of Java native methods
from the class library that are supplied by the VM.

 42

C that have been used explicitly within the program. Similarly, the FT set for a VM type T

contains the declared fields of T that are used by the program and the VM. Consider the

VMMethod type. It has declared fields name and signature that reference UTF8

strings. These fields are modeled as features of the VMMethod type, and if the fields

(features) are used, then they will be added to the FVMMethod set. Further constraints will

ensure that the strings to which these fields refer will be included in the closure.

There is one EC set and one FC set for every Java class C in the program and one

ET set and one FT set for every type T of VM data structure types. To simplify the number

of different types of constraints, our analysis models a Java method implementation (i.e. a

method that contains code) as an entity of type method, and the set of all reachable

method implementations with Emethod.

2.4.5. Constraint Forms in Feature Analysis

Our analysis generates 8 forms of constraints. Most of these constraint forms

should be familiar to readers who have prior experience with analyzing Java code with

constraints.

(1) Base case for entities: expresses initially reachable entities. If an entity e of

type T is present at the beginning of the program execution, for example the

main method, then e is reachable.

e ∈ ET

 43

(2) Call site: analyzes call sites in the code of reachable methods in the program.

For each method M and each call site e.p() in the code of M, where the static

type of e is C, we have the constraint:

M ∈ Emethod ⇒ p ∈ FC

(3) New object: analyzes allocation sites in the code of reachable methods in the

program. We use dummyC to denote a dummy entity of type C. For each method

M and each new C() in the code of M, we have the constraint:

M ∈ Emethod ⇒ dummyC ∈ EC

(4) Feature use: approximates the result of using a feature of a type by using the

feature on all live instances of that type. Specifically, if the entity e0 of type S is

live, and the feature f of type S is live, then the entity referred to by e.f is also

live:

f ∈ FS ∧ e0 ∈ ES ⇒ e0.f ∈ Etypeof(e0.f)

(5) Subtyping: establishes the relationship between used features in a supertype

to the used features in a subtype. Specifically, for types S and T in the Java

program, where S is a subtype of T, we have the constraint:

FT ⊆ FS

(6) Feature implication: expresses cases where the use of a feature entails that

some other feature is also used. Specifically, for a type S with feature f, and a

type T with feature g we may have a constraint of the form:

f ∈ FS ⇒ g ∈ FT

 44

(7) Entity implication: expresses cases where the reachability of one entity

implies the reachability of some other entity. Specifically, for an entity d of type

S, and another entity e of type T, we can have constraints of the form:

d ∈ ES ⇒ e ∈ ET

(8) Entity implies feature: expresses cases where the reachability of one entity

entails the use of a feature of some other type. Specifically, for an entity e of

type S, and for a type T with feature f, we may have the constraint:

e ∈ ES ⇒ f ∈ FT

The constraints (1), (2), and (3) are basically equivalent to rapid type analysis,

which maintains a set of possibly instantiated classes RTAC and a set of reachable method

implementations RTAM. We can take this view if we consider the existence of dummyC in

EC is equivalent to C being in the live set RTAC maintained in RTA. However, constraints

(4) and (5) extend this basic view with live entity sets that are similar to those maintained

in the RMA analysis. The key insight is that the new constraints (6), (7), and (8) extend

the power of the analysis even further, allowing us to specify per-language and per-VM

constraints that relate Java entities to their implementation and vice versa.

 45

Figure 2.2 gives examples

of some constraints that handle

native method implementations

in the class library. These

constraints model the fact that

native methods can trigger Java-

level features such as creating

new Java objects and arrays, as

well as directly manipulating the

VM’s internal data structures.

Consider the example constraint (e) in Figure 2.2, which models the need for the

class table, a hashtable that maps strings to class representations in implementing the

Class.forName Java native method. If this native method is never called (i.e. it never

is added to the set EVMNative), then the classTable pointer need not be analyzed, and

consequently, this data structure can be removed.

2.4.6. Granularity and Natives vs. Sanity

In our experience, writing the constraints for all of Java’s bytecodes was

comparatively little effort, as this problem is generally well understood and has already

been explored in many previous analysis techniques. If we make the assumption that the

constant pool entries are resolved and that classes are loaded and initialized, then most

bytecodes amount to little more than manipulating Java objects and the stack and

performing calls to some simple VM services such as the allocator. At the bytecode level,

(a) fillInStackTrace ∈ EVMNative

⇒ dummy[I ∈ E[I

(b) fillInStackTrace ∈ EVMNative

⇒ classSegmentList ∈ FVMJavaVM

(c) startThread ∈ EVMNative

⇒ run ∈ Fjava.lang.Runnable

(d) startThread ∈ EVMNative

⇒ J9VMInternals.threadCleanup ∈ Emethod

(e) forName ∈ EVMNative

⇒ classTable ∈ FVMClassLoader

(f) indexOf ∈ EVMNative

⇒ bytes ∈ Fjava.lang.String

(g) javaVM ∈ EVMJavaVM

(h) e ∈ EVMJavaVM

⇒ mainThread ∈ FVMJavaVM

(i) m ∈ Emethod

⇒ repof(m) ∈ EVMMethod

Figure 2.2: Example VM-specific constraints
Natives can (a) allocate new Java objects (b) use features of VM
structures (c) invoke Java virtual methods, (d) invoke Java static
methods (f) use fields of Java objects. Default constraints assert
certain entities (g) and features (h) to be live. The constraint (i)
ensures that if a Java method implementation is live, then its
representation in the VM is live.

 46

it is easy to have confidence that our analysis constraints for each bytecode will force the

inclusion of the necessary data structures into the image, and that “pure Java” programs

will execute without problems on the ExoVM.

However, the bulk of Java—its class library—is not so simple. Java has dozens of

classes in its standard library that are wormholes into the VM; many have native methods

that manipulate internal VM data structures directly. In the case of J9, the VM and the

native code that implements the class library are developed separately but significantly

interdependent. In the j9cldc class library, there are 75 such native methods, many of

which are implemented in assembly code. In the J2SE (j9max) class library, there are

more than 200. Some use JNI or internal services to call back into Java code or allocate

Java objects. Each of these methods requires constraints that trigger the inclusion of Java

code and VM structures that are needed to implement them. We were able to derive

constraints for many of the most important ones. For some we simply coarsen the

granularity of the analysis of data structures and conservatively include some possibly

unreachable data structures. Otherwise, we forbid native methods that we do not yet

support by dynamically trapping calls to them.

An example of tuning the analysis between fine-grained and coarse-grained is the

idea of modeling every pointer in every data structure in the virtual machine as a feature

that is only used when certain constraints are triggered, such as the use of a particular

native method or VM service. While the most fine-grained approach is attractive because

it allows the maximum possible reduction of data structures, only including them under

the most specific circumstances, the VM is complex enough that determining the most

 47

specific constraints for each pointer becomes infeasible. For many pointers, we were

forced to simply assert them either dead or live. Asserting them live is always

conservative and correct, provided that the data structure that they refer to is correctly

identified and copied into the image, but of course this may include many unnecessary

data structures. However, asserting a pointer to be dead is too aggressive if the associated

language feature or service is needed at runtime, in which case the virtual machine or

native libraries will crash due to the missing data structures.

Our approach has taken the middle of the road, asserting many pointers to be dead

that correspond to VM features that we do not intend to support, such as dynamic class

loading, and asserting some pointers live and always copying the referred data structures

because the right constraints may be elusive. Some data structures are always necessary,

such as the VMJavaVM data structure and the VMThread structure for the main Java

thread. To guide our effort, we developed a suite of micro-programs that target individual

features, including the basic bytecode set and specific native methods. This proved to

greatly expedite testing and debugging, allowing us to pinpoint the usage of many

pointers of VM structures and relate them directly to language features. For more

complex correctness validation including native methods, we rely on running larger

benchmark programs and verifying that each program computes the same results as it

does on the complete JVM. An industrial scale, feature-complete implementation of our

technique would have to test against the Java language compliance kit, since we do not

believe that it is possible to directly prove the correctness of the analysis technique due to

the sheer size and complexity of the virtual machine.

 48

2.5. Persistence

Persistence is the process of taking a snapshot of the fully initialized virtual

machine, including the data structures that represent the program and the program’s state,

and saving it to an image file or other persistent store to be loaded later. Persistence has

been studied widely in programming languages and database systems [18] and has a

number of compelling advantages for programming systems. Key issues are the

transparency and efficiency of the persistence mechanism, as well as data evolution and

versioning.

In our system, we perform imaging of the VM only once as part of an offline

analysis, so the efficiency considerations do not apply, and we do not support data

evolution simply because the kinds of data we are saving are heavily tied to one

particular VM implementation. As such, our persistence framework, which we refer to as

the imager, need not be as general as that in previous systems. After the closure process

has computed a set of reachable Java methods, classes, objects, and VM data structures,

the imager copies and relocates the data structures that exist inside the virtual machine to

a special region of memory which is then saved to the disk. This image file is a

compacted snapshot of the VM data structures that represents only the reachable parts of

the program. The image file contains essentially a complete ready-to-go VM that can be

used immediately by simply mapping it into memory.

 49

2.5.1. Persisting C-based Data Structures

Once the closure process has computed the set of reachable data structures of the

VM that are needed to correctly execute the program, the imager must copy and relocate

these data structures to persistent store. These data structures are declared in C but are

manipulated by C, C++, and assembly code. The imager therefore needs to persist C data

structures in a way that preserves the invariants that are implicit in the code that

manipulates them. We began studying the layout of these data structures and the code

that manipulates them, discovering that many were more complex than we initially

thought and had many implicit constraints. This manual process represents a particularly

unromantic but significant amount of our development time, approximately 3-5 man-

months. From our efforts we were able to develop a description of each important data

structure: its layout, address alignment constraints, contents, and its pointers to other data

structures. The imager uses the description to determine how to copy and relocate VM

data structures of each type, which includes computing the size and layout of a particular

instance and where pointers to other data structures lie within the structure. This is

similar to the description of a Java object that a garbage collector needs in order to scan a

Java object for references to other objects, but can be considerably more complicated. We

discovered a number of implicit constraints on data structures. Two constraints of note

are implicit adjacency/layout requirements, and strangely encoded pointers.

Many kinds of data structures are segregated into segments, which allows mass

allocation and deallocation as well as fast traversal over all data structures of a given

type. The dependence on this layout is buried deep in the assembly and C code of the

 50

VM; to reuse this code without modification requires preserving the invariants it expects.

This requires the imager to collect certain structures into new segments during the copy

process.

Some data structures have grown very complex as they evolved over time. For

example, the J9 representation of a class has numerous adjacent, embedded members of

variable size; code throughout the VM relies on being able to find known structures at

computed offsets from the beginning of the structure. Worse, other data structures

throughout the VM point into the middle of the class structure. A correct description of

this data structure for the imager required tedious manual analysis of the code to

determine its undocumented layout and implicit constraints.

Many virtual machine techniques pack extra information into pointers in the high

or low-order bits, such as in implementation tricks for monitors [73], virtual tables, and

object headers, etc. These pointers are assumed to point to structures aligned on addresses

that are particular powers of two (most often 8, 16, and 256 bytes), which allows the

lower bits to be reused. To address this common undocumented tendency, the description

of each data structure in the imager contains alignment constraints that are used when the

imager chooses a new address for a data structure, making the undocumented constraints

explicit. Similarly, pointers that contain extra information bits have special types that

instruct the imager to preserve the appropriate low-order bits; the type makes it obvious

that the pointer contains extra information.

Another problematic feature of the system is the use of self-relative pointers

within some data structures; a self-relative pointer stores an offset instead of an actual

 51

address; instead, code that uses the pointer computes the actual address of the target by

adding the pointer’s value to the pointer’s location. This allows some data structures to be

copied to and from disk and shared across processes without relocation, as long as the

entire data structure containing the self-relative pointers are moved as a unit. Because our

imager may move pieces of these data structures around independently, it must encode

and decode self-relative pointers correctly. Like pointers with extra bits, self-relative

pointers have a special type in the data structure description that documents this fact and

allows the imager to handle these pointers with equal ease as normal pointers.

2.5.2. Compilation

By completely initializing the VM before imaging, the system can also save any

compiled code of the application that has been produced by the JIT. In fact, because of

the offline nature of the imaging process, we can simply compile all of the reachable

methods with the JIT compiler ahead of time. The JIT and its data structures can then be

removed completely from the ExoVM, effectively turning the original VM into a static

compiler – albeit one which may generate superior code because all classes are resolved

and initialization code has already been executed. Because the compilation takes place in

a closed-world scenario, there is no need to invalidate code and recompile. In most cases

the bytecode of compiled methods can be discarded, though sometimes looking up

exception handlers and generating a source-level stack trace requires bytecode-level

information.

In our case, supporting pre-compilation required some small modifications to the

JIT compiler. First, we had to direct it to generate code into the image, rather than into

 52

internal code buffers, and we had to disable mechanisms that trigger recompilation of

methods. Also, the JIT often writes the absolute address of data structures and functions

that it assumes do not move into the compiled code; the imager must make sure that these

pointers are found and relocated before the image is finished. We instrumented the JIT to

record where it writes absolute addresses into the compiled code, and then patch the

addresses at image load time. With this approach, there is no need to alter the machine

code that the JIT generates. This feature was fully operational in an earlier version of the

ExoVM but our experimental results here use the interpreter and do not include any

compiled code. Of course, the size of the compiled code depends on the quality of the JIT

compiler and the total amount of reachable code of the program. Our early experience

was that the size of the compiled code was roughly comparable to the size of the class

representations.

2.6. Loading a VM Image

Although the imager is capable of producing an image that contains a complete

collection of data structures that represent the program and the VM needed to run the

program, the imager is not capable of actually copying the machine code of the VM into

the image because the linking model of C and C++ precludes this. For example computed

jumps and branches within machine code cannot be supported without linking

information. Our approach to this problem is to separate the data structures (which are

stored in the image file) from the boot VM, a specialized offline build of the fully

featured VM that contains little or no internal data structures. The boot VM lacks the

normal VM initialization routines that build these internal data structures, as well as

 53

mechanisms such as the JIT compiler and dynamic class loader, but instead only contains

VM subsystems that will be needed at runtime for each application, such as the

interpreter, garbage collector, natives of the class library, etc. The boot VM loads all of

the needed data structures from the image.

Our imager produces image files that are intentionally not relocatable; i.e. all of

the internal data structures and code within an image file contain absolute pointers to

each other that assume the image starts at a fixed memory address. This simplifies both

the imager and the boot VM, allowing the boot VM to simply memory map the image

from the file to the specific address and thus begin using the image in memory without

relocating any internal pointers. Additionally, the image header contains pointers to the

main class, the main method of the program, and to important global VM data structures

so that the boot VM need not search the image for where to begin execution.

2.6.1. Patching and Rebuilding

The separation between the code and data of a VM instance is not perfectly clean,

and many internal data structures that are saved in the image contain pointers to internal

VM functions that do not exist in the image. The boot VM must supply the

implementation of these functions by patching these pointers when the image is loaded

into memory. For example, a VMMethod instance contains a pointer to code that

implements the calling convention for that method. An interpreted method contains a

pointer to machine code in the interpreter to set up the interpreter state, while a

synchronized method has a pointer to code that obtains the lock on its receiver object

before executing the method, and so on. When the imager copies a data structure and

 54

encounters pointers to VM machine code or a C function, it uses a table of known VM

routines to identify the target routine. At load time the boot VM loads the image and

replaces these pointers with pointers to its implementation of the corresponding routines.

One further complication with the imaging process is that not all internal data

structures can be persisted. In particular, the VM has data structures that correspond to

operating-system level resources such as threads that are not transferable from one

process to the next. The boot VM rebuilds certain data structures as necessary when it

loads the image into memory.

2.7. Experimental Results

2.7.1. Footprint

We have implemented pre-initialization, closure, and persistence in a J9-based

virtual machine with the j9cldc and j9max class libraries to investigate the memory

footprint of the VM and the application in an embedded scenario. These numbers are

obtained on the x86 build of J9 running on Linux 2.6. We did not specifically measure

the execution time for the imaging process, but even with our completely untuned

implementation written mostly in Java and running in interpreted mode, the entire

loading, initialization, closure, and copying process of the ExoVM took less than 5

seconds on a fast Pentium IV workstation for all our benchmarks.

To evaluate the effectiveness of the ExoVM approach, we measured a number of

footprint factors for our benchmark programs. First, we evaluate the fixed cost of the VM

in terms of the VM’s static code and data footprint for the two original VM

 55

configurations and the ExoVM specialized boot VM. The j9cldc configuration consists of

600kb of compiled VM code and natives, 260k of read-only data (of which 190kb is the

class library compiled into the executable), 20kb of initialized data and 17kb of

uninitialized data. The j9max configuration consists of 750kb of compiled VM code and

natives, 90kb of read only data, 25kb or initialized data, and 17kb of uninitialized data.

To reduce the size of the boot VM, we statically compiled out some subsystems,

including the JIT compiler, bytecode parser and verifier, zip library support, and some

initialization routines, saving about 200kb of compiled code. We believe that there is

more code that can be removed from this specialized VM, but linking issues and time

constraints limited our ability to explore this.

In Figures 2.3 and 2.4, we compare the dynamic memory footprint measurements

for the data structures and loaded classes across our benchmarks for the j9cldc and j9max

configurations. The first row of each benchmark contains the measurements of several

footprint factors on the unmodified VM running the applications with the corresponding

 CLIB ROCL RWCL INH NHA IHEAP total
Chess 0 597 162 0 557 0 1316
 -exo 0 619 172 27 10 171 999
Crypto 0 595 163 0 591 0 1349
 -exo 0 615 173 26 10 195 1019
kXML 0 588 159 0 646 0 1393
 -exo 0 610 169 26 11 204 1020
Parallel 0 574 147 0 549 0 1270
 -exo 0 0 0 0 0 0 0
PNG 0 549 148 0 504 0 1201
 -exo 0 577 160 25 11 181 954
RegExp 0 571 156 0 518 0 1245
 -exo 0 598 168 26 11 173 976

Figure 2.3: j9max Memory Footprint

Dynamic non-heap memory footprint for six
benchmarks on the j9cldc configuration. Each
benchmark has two rows: one for its footprint in
the standard VM, and the next row for its
footprint using the ExoVM system.

 CLIB ROCL RWCL INH NHA IHEAP total
Chess 188 74 60 0 394 0 716
 -exo 0 113 42 33 10 14 212
Crypto 188 70 62 0 466 0 786
 -exo 0 114 46 25 10 41 236
kXML 188 56 58 0 483 0 785
 -exo 0 113 45 27 11 50 246
Parallel 188 49 45 0 415 0 697
 -exo 0 87 26 30 89 33 265
PNG 188 26 48 0 383 0 645
 -exo 0 74 32 23 11 30 170
RegExp 188 47 55 0 389 0 679
 -exo 0 98 41 26 11 21 197

Figure 2.4: j9cldc Memory Footprint

Dynamic non-heap memory footprint for six
benchmarks on the j9cldc configuration. Each
benchmark has two rows: one for its footprint in
the standard VM, and the next row for its
footprint using the ExoVM system.

 56

class library. These footprint factors are CLIB; the size of the class library which is

compiled into the binary executable (applicable only to j9cldc); ROCL, or read-only

portions of the application classes (VMROMClasses); RWCL, or the read-write portions

of these same application classes (VMClasses); NHA, or non-heap allocations, which

are data structures allocated by the VM that are not Java objects and thus not part of the

heap. Each of these numbers is given in kilobytes. The two remaining footprint factors

apply only to ExoVM images. These are INH, or imaged non-heap data structures, which

are non-heap data structures that were allocated during pre-initialization and have been

persisted; and IHEAP, which is the initial heap of Java objects, consisting of everything

from string constants to application objects that have been determined to be reachable by

the closure process. Note that we do not measure the dynamic heap of the program here;

we were able to successfully execute the benchmarks with just 128kb of heap (except

kXML, which required 512kb), which makes the VM data structures by far the

dominating factor.

These measurements show the effectiveness of pre-initializing the virtual machine

and the application. With a completely built image, the ExoVM has no need of an

external class library (CLIB). Feature analysis detects that a number of classes are unused

and removes them, showing a moderate reduction in the size of the read-write class

representations (RWCL). The size of the initial heap (IHEAP) generated by running the

class initializers in the virtual machine is relatively small. But by far the biggest factor is

the reduction of the VM’s dynamic non-heap memory allocations. This shows that pre-

initialization of the VM and feature analysis allow the ExoVM to remove the dominant

 57

factor of space consumption in these benchmarks. The reduction of nonheap memory

allocations is between 62 and 73% for these six benchmark applications.

Figure 2.3 shows the result of the same experiment with the j9max configuration,

which consists of the same VM, but a more complex, fully featured class library. In this

scenario, the class library is much larger and not compiled directly into the virtual

machine’s binary. However, we can see that the dominant cost is now the size of loaded

classes, because the more fully featured class library has many more interdependencies

that force many classes to be loaded and initialized.

The most surprising result is that running the feature analysis to produce an image

for each of these programs does not yield a smaller ROM or RAM class footprint. We

investigated the reason for this and discovered that the j9max’s Class.getName()

implementation uses a HashMap that maps a class representation to its String name.

Because our analysis is partly written in Java and runs on this underlying class library to

compute the closure, if the program being analyzed calls the Class.getName()

method, then the analyzer will discover that this HashMap is reachable, and begin

analyzing its contents. Because these classes are reachable through Java references, it

therefore concludes that all loaded classes are live, and none are removed from the image.

We were not able to successfully run the Parallel benchmark on the ExoVM

because the larger class library demanded an implementation of protection domains

which were beyond our resources to support. This highlights another problem with a

larger class library. Adding a security layer tends to demand reflective features from the

VM that vastly increase the complexity of the virtual machine.

 58

2.7.2. Feature study

During the course of developing the ExoVM system and testing feature analysis

for correctness, we wrote a large number of Java micro-programs that each uses a

specific language feature, such as virtual dispatch, throwing an exception, calling API

methods, running threads, etc. While primarily

intended for our internal use in testing correctness,

they had the side effect of exposing just how much of

the class library and VM is tied to a particular

language feature. Though we don’t claim that our

micro-program suite is fully comprehensive of the

Java language, it did highlight important issues.

Our micro-programs were all less than 25 lines of code and primarily target a

single language-level feature. We found a good approximation of the cost of a feature to

be the size of the image generated by our analysis, which includes not only VM data

structures, but also persisted classes and objects. As a starting point, we tested how small

an image our system could generate for the empty program; i.e. a single static main

method that just returns. On both j9cldc and j9max, our system generates a 5kb image

that contains the main class (1kb), java.lang.Object (1kb), the VMJavaVM

structure (1.3kb), a thread (0.6kb), and a small number of other data structures. This is

enough to reuse the existing VM code unmodified and execute successfully.

From this starting point, we investigated the incremental cost of supporting

individual languages features; Figure 2.5 shows several microprograms and the resulting

 cldc max
empty 5 5
arrays 38 225
checkcast 42 228
constructors 13 31
floating point 7 7
nullptr 13 31
.getClass() 30 872
refarray 40 226
Hello world 75 872

Figure 2.5: Microprograms
Resulting image sizes for several
different microprograms, where each
stresses a single language feature.

 59

image size for the j9cldc and j9max configurations. From the table, we can see that

several of the programs that generate small images on the j9cldc configuration have large

images on j9max.

We were able to pinpoint the problems that cause this phenomenon of “feature

explosion” in j9max by using these unit feature tests. Our analysis revealed that the larger

class library contains a small number of “precarious” dependencies, such as the

HashMap in the Class.getName() implementation mentioned previously. When

one such dependency is triggered, it tends to pull in a large subset of the class library as a

whole. This can be seen in the tests that construct and print exceptions: they tend to pull

in a large portion of the class library, which ultimately dwarfs their small size. Our

conclusion from this study is that future design of class libraries and careful

implementations should strive for modularity in features so as to avoid penalizing small

programs and avoid precarious dependencies. Another approach might be to embed more

special knowledge into analysis about the Java-level entities that implement Java

features, such as introducing a special case for the Class.getName()’s internal data

structures. This remains as future work.

2.8. Experience

In our experience developing the ExoVM system in J9, we learned important

specific lessons about its implementation and virtual machine design in general that we

think are valuable to others. The first is that complex and arcane data structures frustrate

automated imaging techniques, and judging from the implementation complexity that

seems to replicate itself over and over throughout the virtual machine, we simply do not

 60

believe they are worth whatever gain they intend. By far most of our manual effort was

inferring implicit constraints of data structures and fixing problems with pointers and

layout tricks, working backwards from VM crashes. Although certain techniques have

advantages for performance or space usage, our overwhelming sense after studying the

code is that the most complicated data structures have evolved by accretion and they

survive because their deep entanglement with the VM makes them particularly dangerous

to migrate or refactor. We think that our work shows the value of persisting the internal

VM data structures for an embedded domain, and simpler, more regular data structures

make this technique far easier.

The second lesson we learned from our experience is that there appears to be

more modularity to source-level language features than previously thought. This

dimension of modularity does not seem to be borne out in current virtual machine design

and class library implementations, including J9 and those with which the authors have

previous experience. We believe that this dimension of modularity has important

applications in the embedded domain, and that valuing it more highly in the design of

new virtual machines will have positive consequences for the ability to scale from small

devices to server class machines.

The third lesson that we learned is that the implementation technology of the

virtual machine itself matters considerably. We cannot achieve our ultimate goal of total

automatic VM specialization given J9’s current implementation technology, in particular

the static linking model inherent in C and C++ applications. A large amount of our

development effort has been spent in recovering implicit usage patterns of data structures

 61

in the virtual machine, which is difficult to automate in these languages. Given our

experience in program analysis for large applications written in higher-level, statically

typed languages like Java, we believe that much analysis can be streamlined, if not

automated completely, if the VM itself were implemented in a language that is more

amenable to disciplined program analysis.

Not surprisingly, we found that complexity of the class library makes an

important difference to the footprint of an application, especially with the implementation

of the basic language features such as exceptions. The CLDC implementation of the class

library contains not only fewer classes over all, but the implementation of basic classes

such as exceptions has fewer dependencies, resulting in smaller image sizes. The

implementation of exceptions and I/O, particularly international formatting of strings, is

significantly more complex in the j9max library, which results in many more live classes

and consequently more used language features. For this technique to work well on such

class libraries, more modularity in these implementations seems to be necessary, or the

analysis must be improved.

Java’s dynamic invocation of class initializers may work well for a bigger

domain, but our results with pre-initialization of the classes in an image tends to suggest

that for this domain, significant gains can be made by changing the model.

 62

3. VIRGIL

This chapter describes the Virgil programming language and compiler system.

Unlike the ExoVM, which seeks to reuse an existing virtual machine, the Virgil language

and compiler are developed in a scenario where we have the freedom to rethink the

language syntax and semantics and have the opportunity to rebuild all of the software,

from the drivers to the operating system. Virgil establishes part of the thesis by showing

that advanced language and compiler technology can bring the benefits of object-

oriented programming to developing microcontroller software.

Microcontroller-class devices represent an extreme setting for the challenges

inherent in building embedded systems. These challenges include not only resource

constraints such as code space, data space, and CPU performance, but also the lack of

supporting software and hardware mechanisms to enforce safety, the need to access low-

level hardware state directly, and the concurrency introduced by handling hardware

interrupts. This chapter considers the question of how object technology can benefit

developing software in this domain when not constrained by legacy code or backwards

compatibility. Objects have much to offer embedded systems software where events,

queues, packets, messages, and many other concepts exist that lend themselves naturally

to being expressed with object concepts. Unfortunately the domain constraints have thus

far limited the adoption of object-oriented languages.

The Virgil programming language addresses the challenge of bringing object

technology to microcontrollers through language and compiler techniques. The most

important design consideration when taking this approach is the space overhead that

 63

language features add to the program implementation. This space overhead can be

divided into two categories: runtime, which consists of libraries, routines and subsystems

needed to implement language features like garbage collection, class loading, reflection,

dynamic compilation, and serialization; and metadata, which consists of data structures

added to the program such as dispatch tables, string constants, type signatures, and

constant tables. Virgil avoids heavyweight features that require a runtime system or

significant metadata and selects features that admit a straightforward, low-overhead,

constant-time implementation that is both clear to programmers and can be accomplished

without sophisticated compiler analyses. The lack of supporting hardware and software

mechanisms for enforcing safety is overcome by enforcing strong type-safety at the

language level with some dynamic checks. Finally, Virgil’s compilation model allows for

complex application initialization at compile time and enables three new aggressive

optimizations that further increase application efficiency.

3.1. Design Principles and Constraints

This section explains the design principles that have guided the design of Virgil

language as well the design constraints that the domain imposes. While the overall goal is

to ease the development of modular and robust programs, design principles translate the

goal into a set of concrete, desirable properties that the language should have. Virgil’s

four main design principles are:

i. Objects are a good fit. The object-oriented programming paradigm has

successfully led to better designed programs that are more modular, flexible, and

 64

robust. Embedded software often uses events, queues, packets, and messages;

objects are a natural fit to represent such entities.

ii. Static detection of errors is best. Strong static type systems catch a large

class of errors that are still embarrassingly prevalent in embedded systems

software. The weak type systems in languages like C and C++ fail to catch an

avoidable class of bugs in the interest of allowing direct control over data

representations, manual memory management, and access to hardware state for

software at the lowest level. Ironically, these kinds of systems have the greatest

need for static checking, because errors are the hardest to find and the most

damaging. Strong static safety guarantees in this domain are paramount.

iii. Objects are not always perfect. Although object-oriented concepts are a

good fit for many tasks, new expressiveness problems continually stress object-

oriented constructs. For some problems, functional or procedural programming

styles still have important advantages that should not be overlooked. The

language should afford programmers some degree of flexibility to seek elegant

solutions.

iv. Some dynamic checks are OK. An object-oriented language cannot usually

avoid all potential safety problems statically, particularly when indexable arrays,

null references, or type casts are allowed. In this case the language must fall back

on some dynamic checks that may generate language-level exceptions. Although

microcontrollers often lack hardware safety checks and thus require explicit

 65

checks to be inserted by the compiler, modern compiler optimizations are now

advanced enough that this overhead is usually acceptably small.

Design principles outline desirable properties that Virgil should have, while the

limitations of microcontrollers impose an important set of constraints. The resource

challenges of an embedded system require a systematic design approach that avoids

introducing unacceptable resource consumption in implementing the basic language and

libraries. One of the primary efficiency considerations for Virgil is to ensure that

overheads introduced by the language are small and proportional to usage in the program.

This affords programmers control over resource consumption by avoiding uncontrollable,

fixed costs like a large runtime system. Where and when language feature overheads

occur will be apparent to moderately skilled programmers and therefore can be reduced

or avoided by restructuring the program if needed. This leads to the imposition of the

following design constraints on the language and compiler:

i. No runtime. First, any large, fixed cost that is beyond the control of the

programmer should be avoided. Secondly, Virgil programs will run as the lowest

layer of software, so the notion of a language runtime underlying a Virgil program

is problematic; the runtime is often implemented “under the language” and is

typically not under control of the application or system programmer.

Microcontroller programmers usually need to have control over all of the code

that will end up on the device.

 66

ii. No intrinsics. Intrinsics are library code and types, other than primitives, that

are needed to implement basic language features and are generally established by

a language standard. For example, in Java, the entire java.lang.* set of classes are

needed by both the compiler and runtime system to implement a Java program.

Transitively, these classes pull in a nontrivial part of the JDK. Despite the positive

effect that standardizing basic libraries can have, like a runtime, the

implementation of intrinsics isn’t supplied by the programmer, and thus

represents yet another uncontrollable source of resource consumption.

iii. No dynamic memory allocation. Manual memory management, aside from

concurrency, is perhaps the most error-prone part of software. Modern languages

employ automatic memory management, often in the form of a general-purpose

garbage collector, which eliminates most of the problem. But even the best

garbage collectors impose significant space overhead on programs, often

requiring two to three times as much heap space in order to achieve good

performance, as well as significant metadata to support precise collection. In the

microcontroller domain, static pre-allocation of all necessary data structures is

very common, in fact, one of the nesC [44] language’s primary design criteria was

that dynamic memory allocation is unnecessary for the targeted class of systems.

iv. Minimal metadata. Metadata associated with a program, such as runtime

type information, virtual dispatch tables, and object headers should be small and

proportional to the program’s complexity. This allows the programmer to trade

some space for better language features at his or her discretion, provided the

 67

overhead is acceptably small and readily apparent during implementation and

tuning.

3.2. Virgil Language Features

In this section, we examine the features of the Virgil programming language, both

those features selected for inclusion and those rejected. In this design space there is

significant tension between expressiveness and its runtime cost, with RAM usually the

scarcest resource. For example, embedded programmers have often felt the need for

explicit control of data representations in order to save space, while to save execution

time and code space, they often shy away from language constructs that appear

inefficient. The common rule of thumb in C++ is “you get what you pay for,” which

leads programmers concerned about efficiency to avoid exceptions, runtime type

information, templates, and many other language features. Most microcontroller

programmers avoid higher-level languages altogether, preferring C because developing a

standalone program is relatively easy, and C is perceived as an inherently efficient

language because it is very low-level. Worse yet, some microcontrollers are so tiny they

are still developed primarily in assembly language.

Virgil balances this design tension at a unique point, carefully selecting features

according to the design principles and constraints, increasing expressiveness while

retaining an efficient implementation that builds programmer trust. Each feature is

considered carefully against the efficiency and straightforwardness of its implementation.

This will allow a programmer to trust that a basic compiler will implement objects

 68

efficiently. Advanced optimizations presented later in this chapter and in Chapter 4 will

further reduce program footprint, lightening the burden on the programmer, leading to

higher productivity and more robust systems.

3.2.1. Inheritance Model

Virgil’s inheritance model is motivated primarily by the need to allow a

straightforward and very efficient object implementation with minimal metadata, while

retaining strong type safety. Because programmers in this domain often face tension

between program flexibility and implementation efficiency, Virgil makes the efficiency

tradeoff more explicit and controllable.

Virgil is a class-based language that is most closely related to Java, C++ and C#.

Like Java, Virgil provides single inheritance only, with all methods virtual by default,

except those declared private, and objects are always passed by reference, never by

value. However, like C++ and unlike Java, Virgil has no universal super-class akin to

java.lang.Object from which all classes ultimately inherit. But Virgil differs from

C++ in two important ways; it is strongly typed, which forces explicit downcasts of

object references to be checked dynamically, and it does not provide pointer types such

as void*. The implications of lacking an Object class are explored in the next

subsection.

Java provides limited support for multiple inheritance through the use of

interfaces, which increase the flexibility of object classes. However, the implementation

efficiency of interfaces can be troublesome, particularly in terms of the metadata needed

 69

for interface dispatch. In some cases, altering a single class to implement a new interface

can result in a significant increase in the size of dispatch tables across multiple types.

Alpern et al [4] discuss efficient implementation techniques for Java interface dispatch in

the Jikes RVM; their technique uses a hashing scheme that works well in practice, but

can require generating code stubs that perform method lookup. In general, most interface

dispatch techniques are either constant-time (e.g. two or three levels of indirection), or

space-efficient (e.g. linear search, hashing, caching), but not both. Because of these

limitations, Virgil does not support interfaces.

Restricting Virgil classes to single inheritance and removing features such as

interfaces and monitors reduces the amount of metadata needed for each class and each

object instance. A Virgil object requires only a single-word header that is a pointer to the

meta-object of its class. Because Virgil has no universal super-class, a root class inherits

nothing and its meta-object contains only a type id and the slots for virtual methods

declared in the class (although Chapter 4 discusses more advanced and efficient object

layouts). Further, because Virgil meta-objects have no mutable state, they can be stored

in ROM in order to save precious RAM space.

Single inheritance also allows subtype tests to be implemented by using the well-

known range-check technique where each class is assigned a type id and range of type ids

that contains its subclasses. A dynamic type test of object O against type T is

implemented as a check of O’s type id against the range of type ids for T. For leaf types

T, only one comparison is necessary. This approach, first presented in [86], is more

efficient than dynamically searching O’s list of parent types, but requires the availability

 70

of the complete inheritance hierarchy. This technique is a good fit for Virgil; it

guarantees every cast is a constant-time operation, regardless of the depth of the class

hierarchy, and requires at most one integer type id per meta-object. Virgil’s compilation

model ensures the entire class hierarchy is available at compile time.

3.2.2. To Object or Not to Object

One important design choice in Virgil is the lack of a universal super-class such

as Object that all classes implicitly extend. In Java, Object includes a host of features

including monitors, first-class meta-objects (the getClass() method), hashing,

equality, etc. A number of these services require space in each object header, in addition

to mark bits needed by the garbage collector. Bacon et al [20] discuss in detail the

challenges inherent in implementing the Java object model efficiently. Even in high

performance virtual machines, two or more words of space are usually needed for object

headers. Class-based inheritance requires the meta-object for a class to be at least as large

as that of its super-class. In Java 5, Object contains 11 virtual methods, forcing every

meta-object in the program to be at least as large.

As an alternative to the Java model, one could consider an empty Object that

contains no methods and no capabilities. An empty Object that is the root of the

hierarchy would prevent bloating of all meta-objects and allow generic collections such

as a list to hold any kind of objects, at the cost of forgoing the convenience of default

functionality. At first, this seems like a reasonable tradeoff. However, this still forces all

objects to retain a header that contains type information because objects can be implicitly

 71

cast to Object and then later explicitly downcast, which requires type information for a

dynamic safety check.

The decision to eliminate the universal super-class in Virgil allows some objects

to be implemented without any metadata. Virgil programmers can write what are termed

orphan classes: classes that have no parent class and no children classes. An instance of

an orphan class is a degenerate case of an object; it can be represented as a record without

any object header, like a C struct, since it is unrelated to any other classes. Because

the Virgil type system rejects casts between unrelated classes (as in Java), an object of an

orphan class never escapes to a point where its exact type is not known. The compiler can

also statically resolve method calls on orphan objects, removing the need for a virtual

dispatch table.

Orphan classes can arise intentionally and unintentionally in a Virgil program; a

programmer need not restrict a class to be an orphan explicitly. In fact, each class is an

orphan by default, unless it extends some other class, in which case neither class is an

orphan. Personal experience with large applications in Java gives tends to suggest that a

substantial number of classes tend to be orphans without purposeful contemplation. The

Virgil compiler extends this tendency to a guarantee that orphan instances will be

represented without an object header. Orphans therefore give the careful programmer a

way to extract maximum efficiency, at some cost to the program’s flexibility.

The advantages of this lack of a universal super-class and the special support for

orphans include:

 72

i. Removes the need for intrinsics. There is no need for a special root class that

is built into the language. Such special built-ins have a tendency toward feature

bloat, which reduces the programmer’s ability to make efficient implementation

decisions and goes against the design criteria of Virgil.

ii. Orphan objects are very efficient. Orphan instances require no object header

and no meta-object that contains runtime type information for the class. A

programmer can use objects like structures without penalty in a way that is

statically type-safe.

iii. Improves type-based analysis. Several compiler analyses use the static type

information as an approximation of aliasing and flow information [35][77] and

lose precision when references are typed Object. Such analyses get a precision

boost by the virtue that objects cannot escape beyond their ultimate root class.

iv. Lightweight confinement. Virgil’s strong type system affords a kind of

lightweight confinement. By introducing a new class hierarchy unrelated to the

rest of the program, the programmer can confine objects to a region of code,

because such objects cannot escape through implicit casting to super-classes.

Confinement, in addition to security benefits, helps modularize program

reasoning for programmers and tools [108][116].

v. Documentation and understanding. Static types of fields and parameters

provide valuable documentation to programmers. When finding uses of a class in

a Virgil program, the programmer need only consider places where the class is

 73

mentioned by name and need not reason about objects escaping through

subsumption.

vi. Reference compression. Covered in detail in Chapter 4, the compiler can

exploit the confinement properties of disparate class hierarchies to compress

object references in order to save RAM.

On the other hand, the lack of a unifying super-class has important disadvantages

if the language lacks other mechanisms for polymorphism. First, it is difficult to write

generic collections and data structures such as lists, maps, and sets that work with any

kind of objects. A library might address this problem by reintroducing a base class for

“collectible” classes that client code must extend in order to use the functionality—its

own Object class, for example. Classes that choose to extend this Object class would

forgo the efficiency benefit of orphans. A second problem is that as different libraries

emerge, competing versions of Object could complicate programs that use multiple

libraries. Another approach is to employ the Adapter [43] pattern by writing wrapper

classes to adapt their classes to the API of various libraries. Delegates (covered later in

this section) reduce this problem by allowing limited functional programming. The best

solution overall is parametric types [22], which are discussed next.

3.2.3. Parametric Types

Many reusable data structures are type-agnostic, meaning that they are intended to

store program data without regard to its type. For example, a linked list simply stores a

 74

sequence of data items, and its fundamental structure does not depend on the

representation size or operations that the data type supports. Similarly, a hash table that

maps values of one type (a “key” type) to another type (a “value” type) typically does not

depend on any aspect of the value type, and only requires hash and equality routines for

the key type. Maximizing code reuse for these basic data structures removes the need for

programmers to re-implement each data structure for every combination of types.

The traditional object-oriented way to solve this problem is to implement the

linked list or hash table using an overly general “top” type (such as Object in the case

of Java). Because this type is the root super-class of all classes, the data structure can

store any type of objects, but not primitives. Worse, the information about which data

type a particular collection instance contains is lost; a list of strings has the same type as a

list of integers because both use the same implementation that internally uses the

Object type. It is then the responsibility of the programmer to remember which data

types are in which collection. In a statically typed language like Java, the programmer is

forced to insert a cast to the expected type when retrieving data from the collection. The

cast is dynamically checked; it may fail at runtime if the programmer has made a mistake.

In a dynamically typed language, no explicit cast is required, but the implicit dynamic

type test can still fail. The underlying problem is that the use of the collection causes a

loss of static type information.

Functional languages beginning with ML recognized and solved this problem

with a technique known as parametric types. With parametric types, declarations of

program entities such as classes and methods can be parameterized over a type. The type

 75

parameter declaration introduces a type variable that names a type for use within the

scope of the class or method, without specifying exactly which actual type the variable

refers to. Instead of declaring and implementing a list of Object, the programmer can

declare and implement a list of X (written in Java, C#, and C++ as List<X>). The list

implementation can be reused for many different types by substituting in the actual type

in the place of the type parameter at the usage site.

The general trend is that statically typed object-oriented languages are

transitioning away from the Object-based polymorphism of traditional implementations

towards polymorphism based on type parameterization. In the object-oriented world,

parametric types are known as generic types or simply generics. Virgil uses the term

parametric types because it is more evocative of the underlying concept, and early

implementations of generics had severe handicaps that carry a negative connotation.

The need for parametric types in Virgil is especially great because there is no

universal super-class such as Object, giving rise to a number of problems as discussed

in the previous section.

Java 5 allows classes and methods to have type parameters. However, there are a

number of pitfalls that arise because the implementation focuses on backward

compatibility with existing Java virtual machines. The Java compiler erases all generic

type information after the typechecking phase, replacing all references to type parameters

with their upper bound [70], usually java.lang.Object, and inserting type casts into

the bytecode where necessary. Such casts never fail for correctly written generic code,

but nevertheless impact the runtime performance. Worse, type erasure dictates the

 76

source-level semantics; the loss of generic type information at runtime leads to certain

operations with generic types being either forbidden (e.g. allocating an array of a generic

type) or unchecked (casting to a generic type). But the insuperable limitation of this

approach in the context of Virgil is the automatic boxing of primitive types (int, char,

short, boolean, long, etc), which requires memory allocation. Boxing is necessary

with type erasure because the one (type-erased) implementation must have a single data

representation for variables of the parametric type. Because Java primitive types are not

classes and have different data representations than object references, the implementation

requires boxing to ensure that all values have the same machine representation.

C++ uses templates to parameterize a section of code, either a class or method,

over a type parameter. The code is duplicated for each instantiation of the type parameter.

Because typechecking of the duplicated code happens for each instantiation individually,

C++ templates are not typically considered a generic or parametric type system, but more

of a macro or code-duplication mechanism. The advantages of C++ templates include the

ability to write very terse code due to the use of operator overloading within the template,

as well as good performance due to implicit and explicit inlining, the lack of dynamic

type tests or boxing, and template meta-programming techniques [8]. However, the

downsides are that type errors in the template code can manifest themselves at usage sites

and the possibility of exponential code explosion due to the aggressive duplication of

code.

 C#’s parametric type system does not perform type erasure, but preserves all

parametric type information in the bytecode [61]. All objects and meta-objects carry all

 77

of the type information at runtime, meaning that every type is reified, or has a runtime

representation. This allows all operations on parametric types to be supported, including

allocating arrays of a parametric type and casting to a parametric type. C# also allows

type parameters to be bound to any type, including primitive types, which means that the

data representation and therefore object layout might vary, potentially requiring multiple

versions of the code. Code duplication is performed by the virtual machine on-demand as

new instances of a parameterized class are allocated or new instantiations of a

parameterized method are called, with some sharing if the generated code is identical.

Runtime duplication of the code means that the number of runtime types can potentially

be unbounded; for example, for any type T, the program can allocate a new List<T>,

leading to new types such as List<List<T>>, List<List<List<T>>>, and so on.

Scala [74] is a relatively new object-oriented language that offers parametric

types as well as some functional programming constructs. Scala compiles to Java

bytecode; Scala programs and their language runtime execute together on an unmodified

Java virtual machine. Because of the implementation platform, Scala implements

parametric types through type erasure, like Java 5. However, unlike Java, every Scala

value is an object and there is one universal supertype called scala.Any, which avoids

some of the problems with Java’s primitive types. This also means that all values are

object references and therefore have a common machine representation, which makes a

single, type-erased implementation of generic methods and classes feasible. However,

this still requires dynamic memory allocation, which is infeasible given the Virgil design

constraints.

 78

The design of Virgil’s parametric type

system is closest to C#. However, instead of

dynamic instantiation and specialization of

types by a virtual machine, the Virgil compiler

performs specialization statically. The number

of types is bounded because Virgil does not

allow dynamic memory allocation; the only types that can exist at runtime are the types

of those objects in the live heap allocated by the initialization phase. The availability of

the complete heap after initialization also reduces the amount of code duplication, since

only the code of reachable live objects needs to be duplicated. Virgil does not allow

wildcards in parametric types, which forbids heterogenous collections such as a list of

lists of any type. The lack of wildcard types also means that the multiple-inheritance

problem that arises when duplicating class hierarchies does not arise (see [14] for details).

Currently, the Virgil compiler does not maximize sharing of duplicated code, and there is

some room for improvement in the implementation.

3.2.4. Components

In addition to classes and simple inheritance, Virgil contains a singleton

mechanism called a component that serves to encapsulate global variables and methods.

While Java allows static members inside of classes, all members in Virgil class are

instance members. Components are used to encapsulate those members that would be

declared static in Java. This provides for global state and procedural style

class Tree<K, V> {
 field key: K;
 field val: V;
 field left: Tree<K, V>;
 field right: Tree<K, V>;
 method add(k: K, v: V) { . . . }
 method find(k: K): V { . . . }
}

Figure 3.1: Virgil Type Parameters
This example shows a binary tree
implementation using Virgil’s parametric
type system.

 79

programming, but within modules. This explicit separation of static and instance concepts

reduces problems of incomplete abstraction (e.g. hidden static state in classes), and

makes the separation apparent to both programmers and program reasoning tools.

Components require no metadata to implement, since they are not first-class values. They

cannot have type parameters like classes, although their methods can. Components also

serve an important purpose that will be explored more in Section 3.3: they encapsulate

the initialization portion of the program and their fields serve as the roots of the live

object graph.

3.2.5. Delegates

Purely class-based languages have

one important drawback that design

patterns such as the Adapter, Observer,

and Visitor [43] attempt to address; for

different modules to communicate, they

must agree not only on the types of data

interchanged, but the names of the

operations (methods). This is manifest in

the proliferation of interfaces that serve to

name both types and methods for

interchange between modules. Some

view this as a language flaw that can lead

to needlessly complicating applications and libraries with interfaces. Parametric types are

class List {
 field head: Link;
 method add(i: Item) { . . . }
 method apply(f: function(Item)) {
 local pos = head;
 while (pos != null) {
 f(pos.item);
 pos = pos.next;
 }
 }
}
component K {
 method printAll(l: List) {
 l.apply(print);
 }
 method append(src: List, dst: List) {
 src.apply(dst.add);
 }
 method print(i: Item) { . . . }
}

Figure 3.2: Components and Delegates
Example code in Virgil that demonstrates the use
of components and delegates. Component K
contains static members and data. The List class
provides an apply() method that accepts a
delegate, which K uses to implement
printAll() and append().

 80

only a partial solution to this problem. Functional programming paradigms have a more

elegant solution to this problem and allow first-class functions to be used throughout the

program based only on type signatures. Unfortunately, implementing higher-order

functions in general can require allocating closures on the heap, and Virgil does not allow

any dynamic memory allocation.

Virgil makes a compromise between the functional paradigm and the object

paradigm by borrowing from C# the delegate concept, which is a first class value that

represents a reference to a method [1]. Delegates in Virgil are denoted by the types of

their arguments and their return type, in contrast to C# where in addition to the argument

and return types, a delegate type must be explicitly declared and given a name before use.

Thus a delegate in Virgil is more like a first-class function in any statically typed

functional language than an object concept as it is in C#. A delegate in Virgil may be

bound to a component method or to an instance method of a particular object; either kind

can be used interchangeably provided the argument and return types match.

Delegate uses in Virgil do not require any special syntactic form for their use.

Rather, delegate syntax generalizes the common expr.method(args) notation for

instance method calls, by allowing expr.method to denote a delegate value and

expr(args) to denote applying the delegate expression expr to the arguments. This

retains the familiar method call syntax of Java, but allows delegates to be created by

simply referring to the method name as if it were a field. See Figure 3.1 for an example.

 81

The Virgil compiler implements all delegate operations, including creating,

assigning, and applying delegates as efficient, constant-time operations that do not

require allocating memory. At the implementation level, a delegate is represented as a

tuple of an object pointer and a function pointer. A delegate tuple is not allocated on the

heap, but is represented as two scalar variables or two single-word fields, depending on

where it occurs. When the programmer uses an object’s method as a delegate, the

receiver method is resolved dynamically as in a virtual dispatch, and the object reference

and the resolved method pointer constitute the delegate tuple. Referring to a component

method as a delegate creates a tuple with null as the object. Invoking a delegate with its

argument values is implemented as a simple indirect function call, passing the bound

object reference as the hidden this parameter. Since method resolution takes place at

creation time rather than invocation time, delegate invocations actually require one fewer

memory access than a virtual dispatch, and require no memory accesses if both the

receiver object and method are in registers. Further, the scalar variables representing the

object reference and the method reference of a delegate tuple can be subjected to standard

compiler optimizations such as constant/copy propagation, code motion, etc.

In contrast, delegates in C# are compiled to an intrinsic Delegate class

supplied by the compiler; using delegates requires both dynamic memory allocation and

reflection mechanisms in the runtime system. However, C# also supports multi-cast

delegates, where a delegate can refer to multiple methods and invoking it invokes all

methods. Virgil does not support multi-cast delegates.

 82

3.2.6. Raw Types

Low-level code such as device drivers often has to manipulate data that is

encoded in specific patterns of bits. For example, often a hardware register for controlling

a device will be divided into several subfields, where some bits select the operating

mode, another bit enables the device, etc. Recent work by Diatchki, Jones and Leslie [33]

has explored adding facilities for specifying bit-level representations of data types in

functional languages. Bacon [19] designed a language where the basic building blocks

are bits and all other data types are derived. However, mainstream languages such as C

and Java still force programmers to express such bit-level operations with masks and

shifts on integers, often mixed with hexadecimal constants representing bitmasks. Such

code is tedious to write and get correct; it is also very often obscure and ugly to read.

Virgil defines a family of types that correspond to bit-level quantities that are

inspired by work done by Redwine and Ramsey [83]. The types 1, 2, 3, to 64 define

fixed-width bit quantities called raw types. Raw types are primitive value types like

integers and booleans. Assignment and promotion rules are defined naturally to capture

the essence of working with bits: i.) a smaller raw type can be assigned to or used in the

place of a larger raw type, with promotions always filling the upper bits with zero, and

ii.) assigning a larger raw type to a smaller raw type requires an explicit conversion

which discards the upper bits. Integers, booleans, and characters can be implicitly

converted to their raw representations, but conversion from raw types back requires an

explicit conversion. References can never be converted to bits or vice versa.

 83

A programmer can write hexadecimal, octal, and binary literals in Virgil

programs. The length of the literal determines its size in bits, and therefore the resulting

raw type. For example, a binary literal 0b1000 has four bits, and therefore raw type 4,

while a hexadecimal constant 0xf4c has three hex characters, therefore it has raw type

12. Unlike other languages that define the bitwise operators such as exclusive-or and

shifts on integral types, bitwise operators in Virgil apply only to raw types. Each operator

defines its result type naturally from the types of its operands, which helps the

programmer ensure that the expressions compute the intended result and that the resulting

storage location has enough bits. The shift operators (<< and >>) are defined to operate

within a window that is the same size as the raw type being shifted; this makes the

operation’s semantics independent of the width of any particular machine’s registers.

Virgil also overloads the array subscript operator [] to allow the programmer to access

and update individual bits within raw values. This helps to improve the terseness and

readability of bit-level code.

3.2.7. Hardware Registers and Interrupts

Microcontrollers typically define a particular region of memory for

communicating with and configuring on-chip devices such as an analog-to-digital

converter (ADC), timer, or USART. Each individual device defines a set of registers that

lie at known addresses within this region of memory. For example, the Timer0 device on

the ATMega128 defines an 8-bit register named TCNT0 that contains the current counter

value, as well as a TCCR0 register that is used for configuration. A device driver written

in C or assembly typically uses explicit pointers the known memory addresses in order to

 84

access individual registers. Of course, a software device driver usually hides the details of

these hardware registers and offers a simplified interface to higher levels of software.

Virgil has support for directly accessing these hardware I/O registers in a

controlled way, without having to resort to calls to native methods, indirect accesses

through pointers, VM tricks, or other magic holes in the type system. Instead, the

hardware registers with fixed memory addresses in the I/O space are exposed to the

program as named fields of a special component named device that can be read or

written with raw types only. The names and locations of these registers are defined by a

machine specification that is distributed with the compiler and selected by the

programmer when targeting a specific device. The compiler will arrange the heap in

memory so that objects and data structures do not overlay the I/O space. Accesses to

these registers are always direct, by name, and thus the program cannot inadvertently

alter the contents of the heap through indirect pointers.

On-chip devices can also generate interrupts that must be handled by device

drivers. Virgil allows the programmer to specify individual component methods that are

connected to particular hardware interrupts, allowing a complete hardware device driver

to be written entirely in Virgil, without any underlying unsafe code.

3.2.8. Concurrency Model

On a desktop or server system with a true operating system, preemptive

multitasking is normally provided by the kernel, which manages stacks and multiplexes

processes or tasks on the CPU (or CPUs) to provide concurrency because each

underlying CPU offers only a one-stack execution model with hardware interrupts and

 85

traps. Although Virgil does not currently have a formal concurrency model, it mirrors the

hardware’s one stack model and exposes the hardware interrupts as entrypoints. Virgil

does not offer synchronization primitives, but allows access to the hardware state that

enables and disables interrupts. Therefore, the task of providing mutual exclusion is

currently left to the programmer, e.g. by disabling all interrupts or a specific interrupt

within critical sections.

Incorrectly synchronized programs can have unpredictable results, which is why

some languages such as nesC offer synchronization primitives built into the language and

a phase which performs race condition checking, warning about possible synchronization

violations. In the future, Virgil will offer an atomic region construct similar to nesC’s

atomic statements and offer a similar verification phase.

3.2.9. Virgil Anti-Features

There are a number of language features available in modern object-oriented

languages that have important expressiveness benefits but nevertheless cannot be

comfortably supported given the design constraints. Section 3.1 has already discussed the

Virgil inheritance model that allows efficient object implementations by removing

features such as interfaces, but the design constraints have led Virgil to omit a number of

features that entail large metadata and runtime overheads, such as:

i. Locks. Synchronization primitives require runtime support in the form of

locking and unlocking operations. This includes natively implemented atomic

instruction sequences and spin loops, but most importantly queues, which

 86

consume memory. Wait queues also assume a threading model; a microcontroller

is generally a one-stack system without real threads.

ii. Class loading. Dynamically loading new classes into the program is generally

not needed for the types of programs that are written for microcontrollers.

Additionally, dynamic class loading requires attaching significant metadata to the

classes so that the host system can integrate the code into its current view of the

program’s type system. This requires a significant runtime support structure.

Additionally, dynamic loading can invalidate almost any interprocedural compiler

optimization, which forces a static compiler to be overly conservative.

iii. Reflection. The ability to reflectively inspect the members of objects and

modify them by name requires a substantial runtime support system that carries

significant metadata with the program. Large cost aside, the development model

of microcontroller programs would tend to suggest that runtime reflection and

dynamic configuration techniques should rather be replaced with static

configuration mechanisms.

iv. Garbage collection. Garbage collection is simply unnecessary because no

dynamic memory allocation is allowed. Instead, programs in Virgil must statically

allocate all of their needed memory during compilation.

v. Method Overloading. C++, Java, and C# all allow overloading methods by

their parameter types. Although overloading is a purely syntactic form of

polymorphism and thus has no inherent runtime cost, it ruins the simplicity of

Virgil’s delegate mechanism. Because Virgil supports using a method as a

 87

delegate by simply referring to it by name, overloading would introduce

ambiguity and require a clumsy resolution mechanism.

What remains in Virgil is a simple but elegant set of object-oriented, procedural,

and functional concepts that all require very little metadata, no runtime support, and all

support strong type checking, with minimal dynamic safety checks. The dynamic checks

required in Virgil are inserted automatically by the compiler and optimized where

possible. These are explicit null checks, array bounds checks, subtype tests for explicit

downcasts, and division by zero.

3.3. Program Initialization

Many embedded and real-time programs have a natural separation between

application start up, where global data

structures are allocated and initialized, and

steady state execution where events are

handled and the main computation is

carried out. For example, an operating

system allocates data structures associated

with process tables, memory management,

device management, caches, and drivers

once when it boots and then reuses them

through its lifetime.

class List<T> {
 field head: Link<T>;
 method add(i: T) { . . . }
}
component K {
 field a: List<int> = new List<int>();
 field b: List<int>;
 constructor() {
 b = new List<int>();
 add(a, 0);
 add(b, 1);
 }
 method add(l: List<int>, i: int){
 l.add(i);
 }
}

Figure 3.3: Program Initialization
Example initialization code in Virgil that
demonstrates the use of component
constructors. Component field initializers and
the constructor() method are run inside
the compiler before generating code.

 88

Because the core Virgil language has been carefully designed to allow

applications to execute on the bare hardware without any supporting software or language

runtime, it provides an explicit separation between initialization time, where data

structures are allocated and initialized to a consistent state, and run-time, where data

structures will be manipulated but no longer created or destroyed.

Each component in a Virgil program can optionally contain a constructor, much

like an object’s constructor, that contains code that initializes the component. The Virgil

compiler contains an interpreter for the complete language and provides an initialization

environment for this constructor that is richer than the run-time environment.

Constructors execute inside the Virgil compiler, before any code is generated. The

initialization environment allows unrestricted computation using all the language

features; in particular the constructor may access other component’s fields, allocate and

initialize objects and arrays, call component and object methods, create delegates, etc.

Because the initialization phase represents Turing-complete computation, it is of course

undecidable to determine whether the constructors will terminate, and the Virgil compiler

leaves this to the programmer. In the future, a timeout option could be provided along

with other debugging facilities to examine the operation of the program’s initialization

phase if it goes awry.

In Virgil, initialization is considered an inseparable part of the compilation

process for a program. Initialization requires the entire program to be available, since

initialization code can transitively reference any part of the program. The assumption of

whole-program compilation is justified in this domain because when building a

 89

standalone program for an embedded device there is always a point, traditionally link

time, where the complete binary is put together. The Virgil compilation model recognizes

this as inevitable and makes it an integral part of the compilation process.

3.3.1. Initialization Determinism

Initalization of a Virgil program is always deterministic and determined by the

program alone. This avoids one significant drawback of previous persistent systems such

as Smalltalk, where replicating the initialization environment for a particular program

could be nontrivial. The order in which component constructors are executed is given by

the order in which the program files are specified on the compiler command line.

However, dependencies between components can force initialization to happen earlier.

For example, if the field of an unconstructed component K is accessed during the

initialization of an earlier component J, then K's constructor is invoked before the field

operation completes. A cycle in constructor invocations cannot occur because a

component is marked as constructed just before executing its constructor. Fields not

explicitly given an initialization value, or fields that have not yet been initialized because

of a cycle in dependent initialization, have a default value given by their type (e.g. 0 for

int; null for arrays and objects).

3.3.2. Initialization Garbage

The built-in interpreter utilizes a general-purpose garbage collector so that any

unreachable objects allocated throughout initialization are reclaimed. Upon termination

of the application initialization phase, the compiler traces from the component fields

 90

through objects and object fields to discover the graph of objects that are transitively

reachable from the roots. All unreachable objects are discarded, and only the code and

metadata associated with live objects are included in the final program binary.

3.3.3. Code Generation and Runtime

After the identifying the reachable heap, the Virgil compiler will compile both the

code and the heap of the program together into a single binary that can be loaded onto the

device or executed in a simulator. When the program begins execution on the device, the

entire initialized heap is available in memory and the program can manipulate these

objects normally, reading or writing fields, invoking methods, creating delegates, etc.

However, the program will not be allowed to allocate new objects, which eliminates the

need for a runtime memory manager or a garbage collector.

3.4. Optimization

Careful adherence to the design constraints allows Virgil to be implemented

straightforwardly and efficiently without a language runtime and with minimal metadata.

In addition to the base efficiency of the straightforward implementation, basic

optimization techniques can be applied. For example, the Virgil compiler will employ

class hierarchy analysis [32] to devirtualize calls and delegate uses, as well as to identify

degenerate orphan classes to be represented without object headers.

The availability of the complete program heap enables an advanced Virgil

compiler to substantially improve on the base implementation with three new

optimizations. The first, reachable members analysis, removes code, objects, and fields

 91

of objects that are unused in the program and is described in this section. Reference

compression, covered in Chapter 4, exploits the language’s type safety to represent object

references in a compact way, and ROM-ization reorganizes object layouts to move read-

only fields into the larger ROM memory. All three optimizations exploit the type-safe

nature of the Virgil language and are made possible by the availability of the program

heap at compile time.

3.4.1. Reachable Members Analysis

Initialization time allows a Virgil program to build complex data structures such

as lists, queues, pools, maps, and trees during compilation for use at runtime. Garbage

collection following program initialization uses the standard notion of transitive

reachability through object references to discover the reachable heap and discard

temporary objects. However, libraries or drivers used by a Virgil program may create

data structures that are reachable through object references but are not actually used at

runtime by the program.

This can arise in a number of scenarios. For example, a software device driver

may create data structures that are only used if the hardware device is used by the

program. Imagine a timer driver with an event queue used to trigger application events at

specific future times; the queue is only necessary if the application actually uses this

feature of the timer. Another example is when a device with many different modes of

operation is used in only one particular mode. In other situations, an application may only

use a subset of the functionality provided by a complex data structure; a doubly linked

 92

list that is only traversed forward will never use the back pointers, or a tree that is only

searched and not modified may not need parent pointers in its nodes.

A compiler may remove objects and fields from the program, provided they are

never accessed upon any execution. This is especially important when compiling an

application that reuses drivers, modules, and data structures that provide more

functionality than is needed for the program. The compiler need only generate the code

and include live data structures, reducing the total memory footprint of the program.

There are numerous techniques for dead code elimination and data structure

reduction [95][100], but the consideration of initialization code leads to overly

conservative approximations. In general, removal of dead code requires computing a

sound set of reachable methods and requires approximating the possible receiver methods

of dynamic dispatches in the program. Unlike all previous work, the explicit separation of

initialization time and run time in Virgil eliminates the need to consider initialization

code: the availability of the complete program heap provides access to all of the objects

that will be manipulated by the program at run time.

Now we are ready to state the reachable members problem and begin exploring

possible solutions.

Reachable Members Problem: Given (P a Virgil program, R a set of initialized

root fields, H the initial heap of objects, and E initial methods representing entrypoints

into the program), which methods in P and which fields F of object instances in H might

be accessed on some execution of P? As stated, the problem is clearly undecidable,

 93

reducible to the halting problem. So we will consider sound approximations that are less

precise.

3.4.2. Classical approaches

Let’s first sketch a general idea of how a compiler might approach this problem.

The classical solution would be to begin analyzing the code of the entrypoint methods E

and build a call graph that represents the set of reachable methods. At virtual method and

delegate invocation sites in the program, the algorithm would use some conservative

approximation of possible receiver methods, leading to a conservative approximation of

the reachable methods that may include some methods that are dead. After computing a

set of all live methods in the program, the compiler would analyze the code of each

method for accesses of root fields R and instance fields of objects. Then, the compiler

would remove unused root fields as well as unused fields in objects in the heap.

Following this approach, what approximation is appropriate at each invocation

site? We might use a simple analysis such as CHA, which considers the class hierarchy of

the program and the static type of the object reference at the call site to determine a set of

reachable method implementations. However, this approximation may be too

conservative because CHA considers all the code of all classes declared in the program,

including ones that may not have instances in the heap H. Another approach might be to

only consider the classes of objects that have live object instances in the heap H. This

would be similar to Rapid Type Analysis [21], which maintains a set of possibly live

types during analysis by inspecting the object allocation points of the program. This

second approach is more precise than CHA because only method implementations

 94

corresponding to live objects in the heap are considered. However, simply using the

existence of any object of a particular class in the initial heap may be too imprecise,

because after removing dead objects, the set of live types might also be reduced. Another

iteration of the algorithm may be able to further reduce the set of reachable methods

because the approximation of each call site may become more precise. In general, the

algorithm might need to iterate to a fixpoint to get the least solution.

There are some situations where even the fixpoint will not give the best result. For

example, a liveness cycle can arise where a class has a method that contains the only use

of a root field, and that root field is the only path by which objects of that class are

reachable in the heap. In this case, the existence of the object in the heap forces

consideration of the method, which forces the root field to appear live, which forces the

object to be considered live, even if the field is not used elsewhere in the program.

Iterating the RTA analysis will not discover the field, and therefore the method, is dead.

Figure 3.4 contains an example program for analysis that illustrates this liveness

cycle problem. Note that the component field initializers are run in the compiler, and by

the time analysis begins, these fields refer to actual live object instances in the heap,

which we will call object A1, B1, and C1. The initial assumption of CHA is to ignore the

heap and assume that the call to m() in Main.entry() can reach any of the three

implementations, considering them live; however it correctly discovers that field

Main.h is unused because there are no references to it in any of the code. Now consider

RTA, where the first iteration assumes that A.m, B.m, and C.m are reachable because

objects of those types exist in the heap; RTA therefore concludes that Main.g is used

 95

because it is used in B.m. After the first iteration, RTA can eliminate field Main.h and

object C1. Upon beginning the second iteration, C.m is no longer live because C has no

live instances in the heap; however, RTA still considers the code in B.m live and

therefore Main.g is still live.

The core imprecision of classical approaches to this problem is that they are not

data-sensitive, meaning they do not operate in the context of the live object instances in

the heap. The main weakness of CHA is that it doesn’t consider live objects at all. RTA,

however, is too imprecise because in each pass a class’s method implementation is

considered live if at least one instance of the class exists in the heap, even if the object is

later considered unreachable.

3.4.3. Reachable Members Analysis

component Main {
 field f: A = new A();
 field g: A = new B();
 field h: A = new C();
 method entry() {
 while (true) f = f.m();
 }
}
class A {
 method m(): A { return this; }
}
class B extends A {
 method m(): A { return Main.g; }
}
class C extends A {
 method m(): A { . . . }
}

Figure 3.4: Analysis Comparison
Example Virgil program used to compare analysis precision. A liveness cycle exists involving the
method B.m and the field Main.g preventing CHA and RTA from computing the most precise result.
The table on the right gives the analysis results for CHA, two iterations of RTA, and RMA.

Analysis Methods Fields Objects

CHA
Main.entry

A.m
B.m
C.m

Main.f
Main.g

A1
B1

RTA (1)
Main.entry

A.m
B.m
C.m

Main.f
Main.g

A1
B1

RTA (2)
Main.entry

A.m
B.m

Main.f
Main.g

A1
B1

RMA Main.entry
A.m Main.f A1

 96

Reachable members analysis addresses the imprecision of classical approaches by

analyzing code and objects together as they become reachable from the entry points of

the program. RMA is an optimistic algorithm and initially assumes that nothing is

reachable. By pulling in objects,

methods, and fields in an on-demand

fashion, it avoids the imprecision

inherent in the CHA and RTA

analyses. Before beginning the

detailed algorithm, consider a

conceptual outline. RMA begins at the

entrypoint methods analyzing the code

of each method by inspecting reads of

root and object fields. For a use of a

new root field, it considers the field to

be live and puts the object referenced

by the field into the live object set. For

a use of a new object field, RMA

considers that field live for every

object of that type; for every object in

the live set, it transitively pulls in

objects reachable through the new

field. For a new method invocation, it

info: Map<Type, {members: Set<MemberName>,
 subtypes: Set<Type>,
 instances: Set<Object>}>
methods: Set<Method>

(1) analyze(Program p) =
 foreach(Method m in p.entrypoints)
 post(m)
 while(!empty(worklist))
 analyze(dequeue(worklist))
(2) analyze(Method m) =
 methods.add(m)

 foreach (Expr e in m.body)
 if (e = read(C.f)) post(C, m)
 if (e = read(e.f)) post(type(e), m)
 if (e = call(C.m)) post(C, m)
 if (e = call(e.m)) post(type(e), m)

(3) analyze(Type t) =
 info[t].subtypes.add(t);
 foreach(Type p in parents(t))
 info[p].subtypes.add(t)
 let pm = info[parent(t)].members
 foreach(Member m in pm)
 post(t, m)
(4) analyze(Type t, Field f) =
 info[t].members.add(f)

 foreach(Object o in info[t].instances)
 post(value(o.f))
 foreach(Type s in info[t].subtypes)
 post(s, f)
(5) analyze(Type t, Method m) =
 info[t].members.add(m)

 foreach(Type s in info[t].subtypes)
 post(resolve(s, m))
(6) analyze(Object o) =
 post(type(o))

 info[type(o)].instances.add(o)
 foreach(Field f in info[t].members)
 post(value(o.f))

Figure 3.5: RMA Algorithm
Data structures and analysis rules for each type of
work unit. The post() method produces a new
work unit of the corresponding type and inserts it into
the worklist if the unit of work has not already been
performed.

 97

considers only method implementations corresponding to classes that have instance

objects in the current live set. The algorithm iterates until there are no new method

implementations or objects to analyze.

Figure 3.4 contains the core of the RMA algorithm. The two central data

structures used in the RMA algorithm are info, a map from a class or component type

to a set of used members, instantiated subtypes, and object instances; and methods, a

set of the currently reachable methods.

The info data structure is initialized for every type in the program with an

empty entry, and the methods set is initially empty. The analysis is organized into five

different units of work that are all inserted and removed from a central work list. The

work list is processed in order, and each kind of unit of work may produce new units of

work to be inserted in the list and performed later. One can view the algorithm as

recursive, with the work list implementing memoization for termination. The five types

of work units are:

i. New Method. This unit represents a previously unseen method that contains

new code to analyze.

ii. New Type. This unit represents a new instantiated type that has not been

encountered before.

iii. New Field Access. This unit represents a previously unseen field access of a

class or component.

 98

iv. New Method Access. This unit represents a new access to a method of a class

or component.

v. New Object Instance. This unit represents a new object instance that has

been discovered to be reachable in the heap.

When a new unit of work is available, the post() method is called with that

unit. The post method is analogous to the analyze() method, and is overloaded for

each type of work unit. The post() implements a form of memoization; it always

checks to see whether the unit of work has already been performed or is already pending

before placing the unit in the work list.

Let’s examine the work units in detail. Imagine that we are running the analysis

algorithm by starting at (1), and initially begin processing a work unit of type (2) on the

entry method of the program. At this point there are no objects yet considered reachable,

and nothing in the main data structures. The work unit (2) iterates over the statements in

the method; if the program reads a component field, the analysis posts a new unit of work

of type (4) to analyze the component field later. Similarly if (2) detects a read of an object

field, then a work unit (4) is posted on the type of the expression and the field name. The

analysis treats component and object field accesses are together in (4) by considering a

component to be a class with a single instance in its instances list. Work unit (4)

analyzes the new field for all live objects in the instances list, posting the objects

those fields reference into the work list, and then recursively posts a work unit (4) on

each of the instantiated subtypes with the same field. For a virtual method call, the work

 99

unit (5) resolves the method implementation for the static type and posts the method to be

analyzed later by (2). To process a new object instance, the work unit (6) first posts a

work unit on the object’s type (3), which integrates the type into the lists of its parents

and posts any fields or method accesses performed on the parent on the new type, and

then analyzes the fields of the new object.

RMA’s worse case complexity is quadratic in the number of declared fields in the

program, but this only occurs for pathological inheritance scenarios. The source of

nonlinearity is the repeated posting of field members from a super-class to its instantiated

subtypes (4), which happens at most once per field per subtype, which in the worst case is

quadratic. For simple hierarchies, the algorithm runs in linear time. RMA analyzes the

code of each reachable method at most once, since it need only glean from the body the

static types of field and method accesses. Secondly, each object instance that the analysis

considers is added to exactly one instances list, since each object has exactly one

dynamic type. The instances list for a type may be processed multiple times, but at

most once per new field encountered, thus each field of each reachable object is inspected

at most once, either when the object instance is first encountered, or when a new field

read is encountered in the program. A less precise result could be obtained by only

keeping field access information in the type where the field was declared. This would

reduce the worst-case complexity, but would reduce precision.

The algorithm as presented can be used to compute the necessary information for

the pull members down optimization that moves fields from a super-class to its children

classes if it is unused in the super-class, which saves space in instances of the super-class.

 100

This transformation originally appeared in automated refactoring tools, but admits a small

opportunity for space savings here. Tyma in [106] describes field percolation, where

members are pulled up into super-classes when possible. This reduces the meta-data per

class, but potentially increases the size of objects if the super-class is instantiated.

3.4.4. ROM-ization

Reachable members analysis can also be used to statically determine an

approximation of which component fields and object fields the program may modify. For

example, if no writes to a particular component field exist in the program, then that field

will remain constant throughout any execution and the compiler will simply replace

accesses to this field with its value and remove the field. For object fields, if no writes

exist to a particular object field, then for all instances of the object in the program, the

corresponding field will not change value over the execution of the program. These fields

can be factored out of the object and stored in the ROM.

There are various techniques to represent the constant. If it is the same value

across all object instances, the compiler can inline it as a constant wherever reads occur.

If it is constant by subclass [17], the compiler can move it to the meta-object, and

otherwise, the compiler can store the field in ROM. It may choose to split the object into

a read-only and a read-write portion; either a hash table or a pointer from one to the other

can associate the two halves of the object. More techniques for ROMization are discussed

in Chapter 4.

 101

3.4.5. Metadata Optimizations

In addition to optimizing the layout of objects within the heap, the compiler can

also perform a number of optimizations on metadata, including the meta-objects and the

object headers. First, the compiler can use the results from reachable members analysis to

optimize the meta-object itself. The reachable members analysis computes which virtual

methods are used within the program and the unused entries in the meta-object can be

removed. Similarly, the slots in the meta-object that correspond to methods that have

been fully devirtualized can be removed. The compiler can also compress the object

header, which normally contains a direct pointer to the meta-object, replacing the pointer

with an index into a meta-object table. This can allow the object header to be compressed

to only a few bits. Third, since the meta-objects are read-only throughout the life of the

program, they can be stored in the ROM to save precious RAM space.

3.5. Experience

We have implemented a prototype compiler that supports the complete Virgil

language, including a front-end that parses and typechecks the program, an interpreter

that runs the initialization phase to obtain the complete program heap, a middle portion

that implements reachable members analysis and performs optimizations, and a backend

that produces C source code. The compiler totals approximately 48,000 lines of Java code

including all comments and documentation. It transforms the Virgil program and emits

all of the code into a single C source file, including the live objects in the heap, their

metadata, and all the reachable code. This C program includes all code necessary to run

on the bare device, and does not require the use of any libraries, including libc, the C

 102

language runtime. Of course, this intermediary C code generation step is not intrinsic in

the language compilation, runtime, or linking model; a production Virgil compiler would

output native code directly.

The Virgil compiler is open source. In May 2007 the third version of the Virgil

compiler system was released, which includes more extensive documentation and a suite

of example programs. The source code is covered under a BSD-like license, which grants

copying and redistribution rights provided the copyright notice is left intact. The entire

system is available for download at:

 http://compilers.cs.ucla.edu/virgil

3.5.1. AVR Driver Libraries

Based on my example driver for Timer0 device on the ATMega128

microcontroller, undergraduate students Akop Palyan and Ryan Hall developed software

drivers for most of the on-chip AVR devices during their Winter 2007 quarter project.

Both students had intermediate experience with Java, but neither student had prior

experience with Virgil. Both were able to learn the language very quickly and had their

first working drivers within three weeks. Their rapid absorption of the language may be

partly due to the total lack of any APIs or standard libraries that they needed to learn

which allowed them to start from scratch and build a completely standalone world.

The device driver suite is written entirely in Virgil, without any underlying unsafe

C or assembly code, and offers a simplified interface to the hardware devices based on

 103

queues and events. Development and testing of the drivers was done with the Avrora

[105] cycle-accurate AVR emulator that we built in 2004 and 2005, as well as on actual

Mica2 sensor network nodes in our lab. Avrora provides detailed instrumentation and

measurement capabilities [103] that proved to be invaluable during development. Based

on the students’ feedback, a simple Avrora monitor was developed that generates a

source-level stacktrace when a Virgil program throws an exception while running in the

simulator. Virgil’s static type system backed with dynamic checks proved to be

extremely useful to both students in diagnosing program errors that would have otherwise

manifested themselves in mysterious crashes and resets had the programs been written in

C or assembly code.

Available device drivers include the analog-to-digital converter (ADC), serial

driver (USART), and the serial peripheral interface (SPI). Each driver has an associated

test program that can be used to test the driver in the simulator and on the hardware. A

driver for the CC1000 external radio chip is now partially working, which will allow

further layers of software to implement a protocol stack so that applications can

communicate with other sensor nodes, including those that may be running another

operating system such as TinyOS or SOS.

3.5.2. Benchmark Programs

This section uses 13 Virgil programs that are drawn from several disparate

sources. Blink is a simple test of the timer driver, toggling the green LED twice per

second; LinkedList is a simple program that creates and manipulates linked lists;

 104

TestADC repeatedly samples the analog to digital converter device; TestUSART

transmits and receives data from the serial port; TestSPI stresses the serial peripheral

interface driver; TestRadio initializes the CC1000 radio and sends some pre-computed

packets; MsgKernel is an SOS excerpt that sends messages between modules;

Fannkuch is adapted from the Programming Language Shootout Benchmarks and

permutes arrays; Decoder is a bit pattern recognizer and is discussed in more depth in

the next section; Bubblesort sorts arrays; PolyTree is a binary tree implementation

that uses parametric types; and BinaryTree is the same tree implementation but uses

boxed values.

3.5.3. Exploiting Initialization Time - Decoder

After some experience writing code in Virgil, the initialization time concept has

proved to be quite versatile. An application can use initialization time not only to

initialize its state and allocate pools of objects, but it can build complex data structures,

balance them, and run test cases on its own code. This can be especially useful when

building complex data structures such as trees and maps that need only be constructed

once and then repeatedly reused throughout the lifetime of the program. In this case, the

program can perform data structure tuning at compile time to get the most efficient data

structures possible.

One illustration of the flexibility that this mechanism provides is in the Decoder

application. The Decoder application builds a b-tree which represents an efficient bit

pattern recognizer that can be used to differentiate patterns of bits such as machine

instructions, commands, network packets, etc. It is tedious to write the b-tree by hand,

 105

especially if it is encoded with several levels of switch statements. Instead, efficient

algorithms exist to build a decision tree from a list of bit patterns in time linear in the

number of patterns. The tree can even be reduced using techniques similar to those for

BDDs [cite], yielding a directed acyclic graph. The Decoder application runs this

algorithm during its initialization phase to produce and optimize the decoder data

structure. Specifically, it creates a DecoderBuilder object in the constructor of the

main application and inserts its specific set of bit patterns and then calls the

DecoderBuilder.build() method. This method constructs the tree from the bit

patterns, optimizes the tree, allocates the node objects, and then connects the nodes

together, returning a reference to the completed decoder graph. The main program stores

the data structure for use at runtime. After initialization terminates, the

DecoderBuilder and its data structures are garbage collected automatically by the

compiler. The program retains only the decoder data structure, which only contains only

a few nodes that can be optimized by the compiler. Reachable members analysis will

remove all the code and data structures that are unreachable from the entry point, so the

complex initialization code for the DecoderBuilder is discarded.

3.6. Experimental Results

This section provides experimental results that demonstrate the space savings

achieved by reachable members analysis. In addition to removing dead code and data, the

prototype compiler uses RMA to inline the values of read-only fields where possible,

reduce the size of meta-objects, and devirtualize method calls where possible. The impact

of these optimizations on footprint and execution time are evaluated for the AVR

 106

architecture using the Avrora simulator [105]. The Virgil compiler emits C code that is

compiled to AVR machine code using avr-gcc version 4.0.3 with an optimization level

of -O2. The ROM-ization optimization described previously in this chapter is not

currently implemented in the prototype compiler.

 Figure 3.6 shows the reduction in RAM usage of the benchmark programs before

and after applying the RMA optimization. The first section (blue) of each bar represents

the heap size after RMA has been applied; the second section (red) represents the size of

the runtime stack (included only for comparison, because RMA does not affect stack

size); and the third section (yellow) of each bar represents the size of heap data removed

Figure 3.6: RAM Reduction

RAM reduction by applying the RMA optimization. The first section (blue) of each bar represents the
heap that is live after applying RMA. The second section (red) represents the size of the dynamic
program stack (obtained through instrumentation and unaffected by RMA). The last section (light
yellow) is the size of the heap removed by RMA.

 107

by RMA. Thus, the total length of the bar represents the total RAM consumption if RMA

had not been applied. First, notice that the empty program requires no RAM whatsoever,

which means the fixed RAM cost of using Virgil is zero. Secondly, all applications fit

comfortably in less than 1000 bytes of RAM; the larger heaps actually have more than

100 objects. The smaller applications have heaps that fit in less than 100 or 200 bytes of

RAM, even with drivers that include large arrays, queues, and callbacks, demonstrating

that it is feasible to build software for even the smallest of microcontroller models in

Virgil.

This figure also illustrates how effective program slicing has altered the way

Virgil applications are built. Instead of the developer tediously specifying which code in

which files are required for each application, all programs in this suite are simply

compiled against the entire driver library for AVR, regardless of what they actually need.

These drivers internally require storage for numerous configuration fields, data structures,

but RMA works so well that all of this is removed automatically. Some of these

programs, of course, do use parts of the drivers, and the necessary data structures remain.

Nevertheless, all applications benefit substantially from RMA—so much so that the

application build process has changed and application programmers at the moment

needn’t even bother removing unused drivers their programs use in order to save space.

 108

Figure 3.7 shows a similar comparison for code size. The first section of each bar

(blue) represents the code size after RMA has been performed, and the second section

(yellow) represents the code removed. After optimization, all applications fit in less than

6 kilobytes of code space, with 11 of 13 in less than 4KB and 6 of 13 fitting in less than

1KB. The Empty program requires just 262 bytes of code; this includes the interrupt

table for the microcontroller (approximately 120 bytes) and some boilerplate code that is

generated by avr-gcc. Here again we see the large amount of dead code from the

driver library that is automatically removed.

Figure 3.7: Code Size Reduction

Code Size reduction by applying the RMA optimization. The first section (blue) of each bar represents
the size of the code that is live after applying RMA. The last section (light yellow) is the size of the
code removed by RMA.

 109

 Figure 3.8 gives a comparison of execution time of the benchmarks over four

Virgil compiler configurations. The time for each benchmark is normalized to the time of

the base configuration (i.e. base = 100%). This chart compares four configurations:

RMA: devirtualization with RMA; RMA+CP, devirtualization with RMA, followed by

propagation of constant field values; inline1, devirtualization with RMA followed by

some inlining; and inline2, devirtualization with inlining and further optimizations. RMA

affects execution time because later passes in the compiler use the analysis results to

devirtualize call sites and inline the values of read-only fields. The Empty program is a

degenerate case and is just shown here for comparison; its execution time is dominated

by the bootstrap code that loads the heap from ROM into memory—after RMA, there is

Figure 3.8: Normalized Execution Time

Execution time of four different optimization configurations, normalized to the base configuration
with no optimization (i.e. base = 100%).

 110

no heap. Blink benefits highly because its main computation is a simple interrupt

handler that after inlining becomes very trivial updating of hardware registers. Most other

programs have between 10-15% performance improvement from RMA alone and about

20-30% performance improvement total when combined with inlining. Currently, little

work has gone into improving inlining heuristics in the prototype compiler, which

indicates there may be more room for even better results in the future.

 Figure 3.9 compares code size for all five of the compiler configurations

mentioned in this section, including all of the results from Figure 3.6 and adding results

for the two inlining configurations. Here we can see the unsurprising result that inlining

Figure 3.9: Absolute Code Size

Absolute code size of five configurations in kilobytes. The four configurations are the same as in
Figure 3.8.

 111

increases code size, sometimes substantially. But the most interesting thing about this

graph is that the code size of the inline2 configuration is typically less than code size

of the base configuration (i.e. without RMA). Thus, we can take the view that RMA

removes enough dead code that it gives the compiler a “budget” for achieving better

performance through inlining optimizations. This is a positive step towards a compiler

than can make intelligent resource tradeoffs.

 Figure 3.10 shows compilation time for each of these benchmarks. The Sun Java

1.5.0 virtual machine is used to run the Virgil compiler on our Linux 2.6 server with two

3.06ghz Xeon processors and 4GB of memory. No application requires more than 1.7

Figure 3.10: Compilation Time

This figure shows the compilation time of all applications, broken down into distinct phases, including
parsing/typechecking, optimization, emission of C code, and compilation of C code to machine code.

 112

seconds of compilation time. By far the dominant cost is parsing and type checking

(second section, blue), followed by the compiler and JVM startup time (first section,

yellow) and optimizations (fourth section, red). Initialization time cost (third section,

light blue), where the compiler interprets the program’s initialization code, is small for all

applications, though proportionally larger for Decoder, which contains a complex

initialization routine for building its main data structure. Emission of C code and gcc

compilation time vary the most, since these are proportional to the size of the program

coming out (as opposed to going in); these two are considerable for large programs, but

negligible for small programs. Overall, the compiler is fast enough that whole-program

compilation isn’t even noticeable, yet it remains to be seen whether compilation time will

become an issue for larger applications.

3.6.1. Effect of Safety Checks

The Virgil compiler inserts safety checks in the program to detect program errors

such as null dereferences, array bounds violations, and failed type casts. While language

runtime systems usually trap null dereferences using virtual memory techniques, the

Virgil compiler must insert explicit null checks because the AVR microcontroller has no

hardware support for null or bounds checks. To study the effect on code size and

execution time, the Virgil compiler supports an option to disable these safety checks.

This option is only meant for tuning of the compiler, and not for application

programmers. Figure 3.11 gives the code size comparison for two new configurations.

The basenn configuration is the same as the base configuration from the previous

figures, but with safety checks disabled, while the inline2nn configuration is the same

 113

as the previous inline2 configuration, but also with safety checks disabled. This figure

gives the respectively normalized code sizes, where basenn is normalized against

base, and the inline2nn is normalized against inline2.

Here we can see that there are four applications whose code size is not affected by

safety checks. Empty contains no object operations, and hence no safety checks; Blink

contains object operations that are optimized to remove safety checks and inline

constants; both PolyTree and BinaryTree include null checks as part of their main

logic, thus the extra null checks inserted by the Virgil compiler are actually redundant

and optimized away by avr-gcc. Further, there are several applications with substantial

code size reductions from disabling safety checks (up to 45%), particularly bounds

Figure 3.11: Normalized Code Size w/o Safety Checks

This figure shows the resulting code size when safety checks are disabled. All results are normalized to
the RMA configuration.

 114

checks. Currently, the Virgil compiler does not perform any safety check optimizations;

techniques such as [59] and [23] could likely reduce the disparity significantly.

Dynamic safety checks also impose some runtime overhead on the program as

well. Figure 3.12 shows the impact of disabling safety checks on the runtime of the

programs. As in Figure 3.11, each bar is normalized to its respective configuration with

safety checks. Here we can see that the same four applications are not affected, but some

applications, particularly the array-intensive BubbleSort and Decoder applications,

are severely affected. This is in line with literature on array bounds optimizations [23],

which typically reports speedups as high as 2-3x for some programs. As can be seen from

the results, it will be important to optimize these safety checks in the future. The

Figure 3.12: Normalized Execution Time w/o Safety Checks

This figure shows the resulting execution time when safety checks are disabled. Each result is
normalized to its respective configuration with safety checks enabled.

 115

Fannkuch results are an anomaly; although the program does not actually trigger any

safety check violations during execution, a compiler bug in avr-gcc triggers an

incorrect optimization that causes the program to fail to terminate when the checks are

not present in the code.

3.6.2. Virgil versus C

For programming microcontrollers, C is still the dominant language due to its

low-level nature with small fixed and proportional costs. With avr-gcc, there is little to

no built-in runtime system required, allowing very small C programs to be created for the

AVR. These properties make it an attractive choice for most microcontroller

programmers. They also make it an attractive choice for the Virgil backend target,

Figure 3.13: Code Size (C vs. Virgil)

This figure compares code sizes for Virgil and C programs over several different Virgil compiler
configurations, with and without safety checks.

 116

allowing the Virgil compiler to concentrate on high-level data and code optimizations

while leaving low-level optimizations such as instruction selection and register allocation

to the C compiler. Nevertheless, we want to measure the overhead introduced in writing

code in Virgil, with its safety and expressiveness benefits, as opposed to writing the code

directly in C.

For this experiment, we rewrote five of the example programs directly in C,

eliding the object-oriented features and the driver library, cutting the programs down to

bare essentials. Then, to make the comparison as fair as possible, these C programs were

translated back into Virgil with a one-to-one function-to-method and struct-to-class

mapping. This ensures, as close as can be, that the comparison focuses the language

overheads rather than the design decisions made by libraries or driver code. Figure 3.13

gives the code size comparison between the five C programs and their Virgil equivalents,

with four Virgil compiler configurations. First, we can see that the Virgil compiler

configurations with safety checks enabled (base, inline2) can be significantly larger

in the BubbleSort and LinkedList cases, while the other three programs have are

not affected by safety checks. Second, when safety checks are disabled (basenn,

inline2nn), the Virgil code size is only slightly larger than the corresponding C

program.

 117

 Figure 3.14 compares the execution time for the four Virgil compiler

configurations, normalized against the execution time for the respective C program. Here,

we can see that only BubbleSort is affected by the safety checks, because the other

programs either require no safety checks, or they are redundant when combined with the

program’s logic. Three programs have 5% or less execution overhead with respect to the

C program, with 29% for LinkedList without inlining. The avr-gcc compiler does

not perform aggressive inlining, which means the Virgil compiler actually has an

opportunity to outperform the C compiler more aggressive optimizations. It has been long

known that inlining is key for good performance in object-oriented and functional

programming languages. We saw earlier in Figure 3.7 that inlining with the Virgil

Figure 3.14: Execution Time (C vs. Virgil)

This figure compares execution time for Virgil and C programs over several different Virgil compiler
configurations, with and without safety checks. The execution times are normalized to the execution
time for the C version.

 118

compiler significantly improves performance; in this case, the LinkedList program

actually runs over 30% faster than the C program. At a higher level, if we view

performance as an item that can be budgeted, then inlining and aggressive optimization

buy us the necessary performance to support the higher-level features of Virgil.

 The data sizes for these five programs are also very close. Empty, Blink, and

TestADC require no heap whatsoever, in either the C or Virgil versions. The

BubbleSort program is dominated by a large array of integers. It requires 800 bytes of

memory in the C implementation and 805 bytes in the Virgil implementation.

LinkedList requires 124 bytes in the C implementation and 125 bytes in the Virgil

implementation. Both the C and Virgil LinkedList programs have a static array that is

a pool of link nodes that is used to build the main list at startup; the main list is used

throughout the rest of the benchmark. In the C implementation, the pool is an array of

Link structures rather than array of pointers to Link structures, while in the Virgil

version, it is an array of references to Link objects, which increases the heap size by one

pointer per pool entry. During optimization, the Virgil compiler detects that the Link

objects are orphans and removes their object headers. Then the Virgil compiler’s RMA

optimization detects that the backward pointers are unused and removes them. This

results in Link objects that are actually smaller than the corresponding C Link structs,

balancing out the cost of the extra pointers in the pool. Interestingly, if we apply

reference compression techniques from the next chapter, the heap size of the

LinkedList program can be reduced to 97 bytes, which is actually 22% smaller than

the C version.

 119

Overall, these results clearly show that Virgil is a very close competitor to raw C.

We can see that the safety checks impose significant performance and code size costs in

some cases, but this can likely be removed in the future with well-known array bounds

and null check optimizations. Heap size results are very promising. Orphan classes

provide the programmer with low-cost data structures that do not require metadata, and

RMA removes unused data structures and fields. Compression techniques described in

the next chapter serve to further reduce the heap size.

 120

4. COMPRESSION

This chapter describes the compression optimizations that the Virgil compiler

employs in order to reduce the RAM consumption of applications. These optimizations

exploit the type safe nature of Virgil code in order to represent program quantities in a

more space efficient way. These compression techniques establish part of the thesis by

showing that advanced compiler technology can reduce the resource consumption of

programs written in Virgil for microcontroller devices.

Often the most important resource constraint of a microcontroller is the RAM

space available to store the program heap and runtime stack, while makes reducing RAM

consumption of paramount importance. Reducing RAM consumption allows larger

applications to be built and deployed on the same microcontroller model, while

optimizing a single application also allows a smaller, cheaper microcontroller to

accomplish the same task. There are several general techniques to reduce RAM

consumption. One is to simply remove unused data structures through compiler or

manual analysis, such as the reachable members analysis described in the previous

chapter. Another technique is to reduce the average footprint of a program by moving

infrequently used data to larger, slower storage such as disk, e.g. with virtual memory

mechanisms. A third technique is to compress infrequently used data and dynamically

decompress it as it is accessed. A fourth technique is to statically compress program

quantities so that dynamic decompression is unnecessary.

This chapter evaluates two offline heap compression techniques implemented in

the Virgil compiler. Both techniques exploit the type-safety of Virgil and the availability

 121

of the entire program heap at compile time to encode references in a more compact way.

Unlike previous approaches [31][65], this technique is based on the type safety of the

language and does not require sophisticated program analysis. The first technique

represents object references as object handles instead of direct pointers, allowing them to

be represented with fewer bits. Because the entire heap is available at compile time, the

compiler can introduce a compression table stored in ROM that contains the actual

memory address of each object. This adds a level of indirection, as object operations

require first loading the actual memory address from the table using the object handle.

The second technique is a novel object layout model that we call vertical object layout.

Vertical object layout represents objects in a more compact way by viewing the heap as a

collection of field arrays that are indexed by object number, rather than the traditional

approach of a collection of objects that are accessed via pointers. This object layout

technique represents object references with integer identifiers that can be used as indices

into each individual field array, requiring no extra indirection. A special numbering

system for identifiers ensures that each field array can be represented compactly without

wasting space, even in the presence of subclassing.

Our experimental results show that vertical object layout has better execution time

and code size than the table-based compression scheme on nearly all benchmarks, while

achieving similar RAM size savings. Relative to the standard object layout strategy, the

code size increase from vertical layout is less than 10% for most programs, and less than

15% for all programs, while the execution time overhead is less than 10% for 7 of 12

programs and less than 20% for 9. Interestingly, compressed vertical layout actually

 122

improves execution time over the standard object model for two programs that use

dynamic casts intensively, because type casts are implemented more efficiently.

4.1. Pointer Waste

On microcontroller architectures with between 256 bytes and 64 kilobytes of

RAM, pointers into the memory are typically represented with a 16-bit integer byte

address. In a weakly typed language like C, a pointer is not constrained to point to values

of any particular type and can conceivably hold any value. In fact, pointer arithmetic

relies on the fact that pointers are represented as integers and allows operations such as

increment, addition, subtraction, and conversion between types. Worse, C allows pointers

to be converted to integers, manipulated, and converted back to pointers.

However, in a strongly typed language such as Virgil, each reference has an

associated static type, and the type checker enforces that every reference may only refer

to heap entities of the correct type. For example, object references of declared type A

must only refer to objects of type A or one of its subtypes. In Virgil, the representation of

object references is entirely opaque to the program; references cannot be converted to or

from primitive types, and their machine width is not exposed. Recall that after

initialization time, a Virgil program has already allocated all the objects that will ever

exist in the heap and no further objects can be allocated at runtime. The compiler can

exploit this combination of type safety and static allocation to encode references in a

more compact way, rather than simply using pointers to an object’s address in memory.

In order to reduce the total memory space consumed by the heap, we would like

use as little space to store each reference field as possible. We will refer to the compact

 123

representation of a reference stored in a field as the compressed reference, and refer to

the actual address of the object in memory simply as the address. Reference fields may be

written during the execution of the program; thus a sound compression scheme must

approximate the set of objects that could be referenced by each field over any execution

of the program. We will refer this approximation as the referencible set. The compression

scheme must therefore ensure that each compressed reference can represent all objects in

its referencible set. A simple and intuitive approximation is to use the declared type of the

field as an approximation of the referencible set.

Consider a program that has allocated some number K of objects of type A during

its initialization phase. Type safety ensures that every reference of declared type A may

only refer to one of these K objects (or possibly null), over any execution of the

program. We can therefore use the static type of a reference as a simple and conservative

approximation of the possible set of objects to which it may refer. This means that only

log(K+1) bits are required to distinguish between all of the possible referent objects.

Because the approximation is conservative and the representation is opaque to the

program, the compiler will never need to dynamically compress and decompress the

reference representation. This is in contrast to [31], which attempts to compress C data

values whose representation is not opaque to the program and therefore sometimes

requires both dynamic decompression and dynamic compression.

4.2. Heap Layout

The dedication to complete type safety and opaqueness of references and object

layout issues gives the Virgil compiler complete control over the arrangement of the heap

 124

in memory. For example, it may elect to place objects of the same type next to each other

in memory, reorder objects and fields for cache locality, etc. The compression techniques

presented here do not assume any particular assignment of addresses to objects or

arrangement of fields within objects. Locality is not an issue here because

microcontrollers typical lack any memory cache.

It is important to note that other compression schemes are possible if the compiler

chooses a heap layout with particular properties. For example, if the heap layout

algorithm places all objects of a particular referencible set into the same region of

memory starting at a known location, the offset of an object’s address from the starting

location of the region could be used as the compressed reference representation. In this

scheme, direct addresses could be used throughout the program, with field reads being

decompressed by adding the starting address of the first object and field writes

subtracting the starting address before storing the field. While an offset may require more

bits to store than an index into a compression table, the indexed address scheme does not

require any compression tables in ROM.

4.3. Table-based compression

The most straightforward way to implement reference compression is to use a

compression table where each compressed reference is an object handle: an integer index

into a table that contains the actual addresses of each object. Because Virgil has disjoint

inheritance hierarchies, the compiler can compress each reference by creating a

compression table for its associated root class, with one entry in the table for each object

whose type is a subclass of that root. The number of bits needed to represent the integer

 125

index is therefore the logarithm of the table size. For example, if the table has 15 live

objects plus null, we could use a 4-bit integer index, a savings of 75% over using a 16-

bit address. Because there is no garbage collector which may move objects at runtime,

object addresses do not change during runtime, which allows the compiler to store the

table in ROM or flash, which is considerably larger than RAM, though usually slightly

slower to access. Figure 4.1 gives an illustration of the table-based compression scheme.

The table adds a level of indirection to all object operations. Reads and writes on

object fields require first reading the object address from the compression table and then

performing the operation as before. For frequently access objects, especially within loops,

the compiler may be able to avoid the cost of the indirection by using standard code

motion optimizations to cache the actual address. When compressing fields in the heap,

accesses may be slower if the fields are

bit-packed in memory and require

masks and shifts, but can be faster if the

field requires only one byte of storage

instead of two. Thus table-based

compression represents a classic

space/time tradeoff: it consumes some

ROM space for the tables and may

reduce performance, but saves RAM.

It is important to note that table-

based compression can sometimes save

Figure 4.1: Table-based Compression
Each hexagon represents a complete class hierarchy
labeled with its root class. The reference table is
stored in ROM (bottom box) and stores the
addresses of the actual objects in RAM (top box).
The representation size for a reference is the
logarithm of the table size.

15
4 bits

A

…

133
8 bits

M

…

 126

RAM space even if the compression tables themselves are also stored in RAM. This is

because for a table of size K and a pointer size of P bits, the cost of the table is K*P bits

while the savings is N*(P - log(K+1)) bits, where N is the number of references

compressed. N is always larger than K because every object must have at least one

reference to it to be considered live. If N is large enough, N*(P – log(K+1)) is

larger than K*P. We don’t expect this case to be common; our implementation always

stores compression tables in ROM for maximum RAM savings.

4.4. Vertical Object Layout

In traditional high-performance object-oriented systems, each object is

represented in memory as a contiguous region of words that contain the values for each

of the object’s fields. An object reference is represented as a single-word pointer to this

contiguous memory region, and the different fields of a single object are located at fixed

offsets from this base address. Advanced features such as mix-ins, multiple inheritance,

etc may be implemented by indirection to further contiguous memory blocks. This layout

strategy has the best performance in a scenario where objects are created, moved, or

reclaimed dynamically. An object allocation operation amounts to little more than an

acquisition of a small contiguous region of memory, often simply bumping a top-of-heap

pointer by a fixed amount. Field accesses in this model are implemented

straightforwardly as a read or write of a memory address that is a small fixed offset from

the object pointer; nearly all architectures allow this operation to be implemented with a

single instruction. We will refer to this implementation strategy as the standard or

horizontal layout, for reasons that will become obvious in this section.

 127

In Virgil, the compiler has maximum freedom to layout objects in any way that

respects the program’s semantics. Our basic insight is that Virgil’s initialization time

model gives rise to a scenario where objects are not created, moved, or reclaimed

dynamically; this means that objects need not be laid out as contiguous regions of

memory words in order to simplify these operations.

Imagine the heap of the program after initialization has completed. The program

has allocated some number of objects of various types, and each object has values for all

of its declared and inherited fields. If we view the objects as a matrix, each object

corresponds to a row in the matrix, and each declared field in the program corresponds to

a column, with each entry in the matrix storing the value for the field for the

corresponding object. In the standard layout, an object reference is represented by a

pointer to a row of the matrix, where the elements of a single row are adjacent in

memory. In a sense, the standard layout arranges the matrix in memory horizontally. But

one can also explore the implications of arranging this matrix in memory vertically,

where an entire column has its elements adjacent in memory.

Consider the example in Figure 4.2. The classes A, B and C have declared fields

f, g, and h, respectively. Suppose now that we collect all the objects in the initialized

heap of these types and number them so that all the objects of exact type A are first, B

second, and C third. Then if we put these objects into a table such that the columns are

the fields f, g, and h, we can see that each column has a contiguous range of indices for

which the field is valid corresponding to the indices of the class in which the field was

declared. If we represent an object reference as an index from 0 to 9 (with -1 representing

 128

a null reference), and represent the

field f as an array A_f_array, we

can read and write the field by simply

indexing into A_f_array by the

object number.

An access of the field g in the

program requires the receiver object to

be of type B; therefore we know

statically that accesses of field g must

use indices in the valid range for B

objects. While we could represent the

field g as an array over the entire index range 0 to 9, we can avoid wasting space by

instead rebasing the array so that element 0 of the array corresponds to index 3, the first

valid index for B. Then, an access of the field g for a type B would simply adjust by

subtracting 3 from the object index before accessing the array. While these seems slower,

it is equivalent to a base 0 array if the compiler constant-folds the known fixed address of

the array and the subtraction adjustment; the compiler will just use a known fixed address

corresponding to where the array would have started in memory if it had been based at 0.

Figure 4.2: Vertical Layout
For classes A, B, and C, and declared fields f, g, and
h, we can represent each of the fields by a table
indexed by preorder object number. Preorder
numbering ensures objects of exact type A have ids
0-2, B have 3-6, and C have 7-9. Only the occupied
portion of each table is stored and the object id is
adjusted upon access.

A

B

C

0
1
2
3
4
5
6
 0

 0

 0

7
8
9

f
_

g h

A

C B

f

g h

read(e.f) =>
 A_f_table[e]
read(e.g) =>
 B_g_table[e-3]
read(e.h) =>
 C_h_table[e-7]

 129

It is simple to generalize from the example. For any inheritance tree, we simply

assign object identifiers using a pre-order tree traversal. Figure 4.3 gives the algorithm.

The output of the algorithm is an interval of valid indices for each class and an object id

for every object. By employing preorder traversal of the inheritance tree, the final

assignment guarantees that each class has a contiguous range of indices corresponding to

all objects of that type or one of its subtypes. Therefore the array that represents that field

in the vertical object layout can be compact, avoiding wasted space. This algorithm

chooses to restart the object id at zero for each root class in the hierarchy, which means

that an object id is unique within its inheritance hierarchy, but not necessarily globally

unique.

We can use the same technique to represent meta-objects vertically as well. In

Virgil, meta-objects store only a type identifier that is used for dynamically checking

down casts and a dispatch table that is used for virtual dispatch. We can use the same

algorithm to number the

meta-objects according to

the inheritance hierarchy

and then represent each

method slot in the dispatch

table vertically. A virtual

dispatch then amounts to

two vertical field accesses

(as opposed to two

void assignAll(Program p) {
 for (ClassInfo cl : p.getRootClasses())
 assignIndices(0, cl);
}
int assignIndices(int min, ClassInfo cl) {
 int max = min;
 // assign the indices for objects of this type
 for (ObjectInfo o : cl.instances) o.index = max++;
 // recursively assign id's for all the children
 for (ClassInfo child : cl.getChildren)
 max = assignIndices(max, child);

 // remember the interval for this class
 cl.indices = new Interval(min, max);
 return max;
}

Figure 4.3: Object and Class Numbering
Algorithm to compute object indices by pre-order traversal of
inheritance tree. For each class, ClassInfo stores a list of the
child classes and an interval representing the valid indices for
objects of this class and subclasses. For each object,
ObjectInfo stores the object id (index) assigned to the object.

 130

horizontal field accesses in the traditional approach). The first vertical field access

retrieves the meta-object id by indexing into the meta-object id array using the object

index. The retrieved meta-object id is then used to index into the virtual method array for

the specified method to retrieve a direct pointer to the code of the appropriate method.

This numbering technique also has another advantage in that the contiguousness

of the object identifiers makes dynamic type tests extremely cheap, because the object

identifier actually encodes all the type information needed for the cast. The algorithm

assigns object identifiers so that every class has an interval of valid indices that

correspond to all objects of that type. Thus, given a reference R that is represented by an

object index and a cast to a class C, we can simply check that the index R is within the

interval for the class C. This requires only two comparisons against two constants; no

indirections and no memory loads are required.

Reference compression becomes trivial with vertical object layout. Because each

object reference is now represented as an index that is bounded by the number of objects

in its inheritance hierarchy, like table-based compression, it can be compressed to a

smaller bit quantity. Thus, wherever the reference is stored in the heap (e.g. in the fields

of other objects), it consumes less space. However, the field arrays may not be completed

packed at the bit level. If the field is compressed to fewer than 8 bits, the indexing

operation is more efficient if the field array is a byte array rather than packed at the bit-

level because memory is usually not bit-addressable. Our implementation does not

compress references in the vertical layout to be smaller than a byte.

 131

Vertical layout also potentially saves memory by eliminating the need to pad

fields in order to align their addresses on word boundaries, which is sometimes needed in

the horizontal layout. Padding is unnecessary in vertical object layout as long as each

field array is aligned at the appropriate boundary for its type, ensuring that each element

in the array is aligned by virtue of being of uniform size. (However, padding and memory

alignment is not generally an issue on 8-bit microcontrollers.)

4.5. Experimental Results

In this section we evaluate the impact that reference compression and the vertical

object model have on three program factors: code size, heap size, and execution time. We

use the same benchmark programs from Chapter 3, omitting the Empty program, which

has no heap. As before, these applications target the popular Mica2 sensor node, and we

use avr-gcc version 4.0.3 to compile the C code emitted by the Virgil compiler to

AVR machine code. Precise performance numbers are obtained by using the program

instrumentation capabilities [101] of the Avrora cycle-accurate AVR emulator.

We tested five configurations including the standard horizontal object layout; the

four new configurations are normalized against the results of the standard layout to show

relative increase and decrease in code size, data size, and execution time. The three main

configurations are: hlrc, which is the standard horizontal layout with table-based

compression; vl, which is the vertical object layout without compression; and vlrc,

which is the vertical layout with compression applied to object indices. The last

configuration, hlrcram, is only shown for code size and execution time comparison; it

corresponds to horizontal layout with reference compression, but instead of storing the

 132

compression tables in ROM, they are stored in RAM in order to compare the cost of

accessing ROM versus accessing RAM.

Figure 4.4 shows a comparison of the relative data sizes for our benchmark

programs for the three main configurations, normalized against the base configuration of

horizontal layout with no reference compression. First, we notice that vertical layout (vl)

often saves some memory over the base configuration. This is because it does not require

type identifiers in the meta objects because the object numbers have been assigned so that

they encode the type information. Also, the horizontal layout sometimes produces zero-

length objects; avr-gcc allocates a single byte of memory to such objects. The second

observation is that the compressed vertical layout typically saves a similar amount of

Figure 4.4: Heap Size Decrease

This figure compares relative heap decrease for three different object models, with each normalized to
the standard horizontal object layout. Higher is better.

 133

memory to the compressed horizontal layout, although some of this is due to the empty

object anomaly and the lack of type identifiers in meta-objects. As expected, compressed

vertical layout (vlrc) is uniformly better than vertical layout (vl) alone.

Figure 4.5 shows the relative increase in code size for the same benchmarks with

an added configuration, hlrcram. As in Figure 4.4, all configurations are normalized

against the base configuration of horizontal layout without reference compression. Here,

we can see that all configurations increase the code size of all programs (with the sole

exception of vlrc on MsgKernel), with both vl and vlrc performing better than

hlrc in each case. The increase for vlrc is less than 10% for most programs and less

Figure 4.5: Code Size Increase

This figure compares relative code size increase for three different object models, with each
normalized to the standard horizontal object layout. Lower is better.

 134

than 15% for all programs. Here, adding compression to the vertical layout actually

reduces code size. This is because all field arrays become smaller, down to a single byte

(because the Virgil compiler does not pack field arrays at the bit level), therefore the code

to access them becomes smaller.

Horizontal reference compression increases the code size in two ways. First, it

introduces compression tables that are stored in the read-only code space. Second, it

requires extra instructions for each object operation due to the extra indirection. When the

compression tables are stored in ROM, the Virgil compiler must emit short inline AVR

assembly sequences because avr-gcc does not support directly accessing the ROM at

the source level. These assembly instructions are essentially unoptimizable by avr-gcc.

To better isolate this effect, this figure includes code size results for a new configuration,

hlrcram (or horizontal layout with reference compression tables in RAM). This

configuration of course does not save RAM overall, but allows us to explore the effect of

the special ROM assembly sequences on the code size in comparison to accessing the

RAM. Comparing the hlrc configuration against the hlrcram shows that most of the

code size increase is due to these special inlined ROM access sequences. The difference

could be reduced if either avr-gcc understood and optimized accesses to ROM, or if

the AVR architecture offered better addressing modes to access the ROM with fewer

instructions. It is important to note that the largest proportional code size increases are for

the smallest programs, as can be seen in Figure 3.9 in the previous chapter (the base code

size here is equivalent to the RMA configuration in that figure).

 135

Figure 4.6 gives the relative increase in execution time obtained by executing

each benchmark in the Avrora [103] instruction-level simulator. The vertical layout

technique performs better than horizontal compression in all but one case, and the

execution time overhead for the compressed vertical layout is less than 20% in 9 of the 12

benchmarks, less than 10% in 7, and actually performs better by than the baseline by a

small amount in two cases. This is because these two programs perform a significant

number of dynamic casts, which are cheaper in the vertical layout. This figure also

includes results for the hlrcram configuration from Figure 4.5. We wanted to isolate

how much of the execution time overhead is due to the cost of a ROM access versus a

RAM access. In most cases, the execution time of hlrcram is noticeably better than that

Figure 4.6: Execution Time Increase

This figure compares relative execution time increase for three different object models, with each
normalized to the standard horizontal object layout. Lower is better.

 136

of hlrc, which means that a significant fraction of the overhead is due to this ROM

access cost. Also notice that that the largest proportional execution time increases tend to

be for the smaller, pointer-intensive programs like BinaryTree, PolyTree,

LinkedList, and Decoder.

 Figure 4.7 combines the data from figures 4.4 and 4.6, showing the tradeoff

between increase in execution time and the savings in heap size for the three main

configurations. First, we can see that the vertical layout without reference compression

(vl) usually increases execution time without saving any heap space, while adding

reference compression to vertical layout (vlrc) increases heap savings and usually has

Figure 4.7: Heap Size vs. Execution Time

This figure compares relative heap decrease and relative execution time increase for three different
object models, with each normalized to the standard horizontal object layout.

 137

better execution time than vertical layout alone. Also, hlrc compression tends to have a

larger increase in execution time with some savings in heap size, but not as much as

vlrc. Overall, there is significant variation across the benchmarks, suggesting that the

two factors are not intrinsically correlated. Instead, it is more likely that the factors are

correlated to benchmark characteristics, therefore the compiler should take these

characteristics into account and avoid reference compression when it will save little heap

space.

Figure 4.8 combines data from figures 4.5 and 4.6 to show the correlation

between increase in code size and increase in execution time for the three main

configurations. First, we can see that the two factors appear closely correlated because

Figure 4.8: Code Size vs. Execution Time

This figure compares relative code size increase and relative execution time increase for three different
object models, with each normalized to the standard horizontal object layout.

 138

the points cluster near a line from the origin into the upper right quadrant. This is most

likely due to the simplicity of the AVR instruction set architecture and lack of an

instruction cache; adding more instructions has a predictable effect on the execution time.

Second, we can see that vlrc performs significantly better than the other configurations,

with most of its points clustered near the origin. Third, we can see that hlrc performs

the worst, with the largest increases in code size and execution time.

Figure 4.9 combines the data from figures 4.4 and 4.5, comparing relative

increase in code size versus decrease in heap size. Here we can see for a given heap size

reduction (horizontal axis), vlrc tends to produce smaller code than hlrc because of

the lack of ROM compression tables and simpler field access sequences.

Figure 4.9: Heap Size vs. Code Size

This figure compares relative heap size decrease and relative code size increase for three different
object models, with each normalized to the standard horizontal object layout.

 139

Figure 4.10 compares execution time of the different reference compression

strategies when more aggressive code optimizations (inlining and constant propagation)

are also applied, providing a more complete picture of the overall performance. All

results are normalized to the execution time of the none (where RMA is not applied)

configuration, which corresponds to the none configuration from Chapter 3. The base

configuration corresponds to RMA; opt3 corresponds to inlining at a slightly more

aggressive level than inline2 in Chapter 3; hlrc and vlrc are as before;

hlrcopt3 corresponds to horizontal layout with reference compression and

optimization level 3, and vlrcopt3 corresponds to vertical layout with reference

Figure 4.10: Execution Time with Compression and Inlining

This figure compares the execution time of the reference compression strategies when more aggressive
inlining optimizations are also applied. The configurations here correspond closely to the
configurations from results in Figure 3.8.

 140

compression and optimization level 3. Here we can see that applying aggressive

optimization significantly reduces execution time for all configurations, though it

increases code size as seen in Figure 4.11. In fact, applying aggressive optimization

allows the compressed configurations hlrcopt3 and vlrcopt3 to run faster than the

none configuration (no RMA) in most cases, and faster than the base configuration

(RMA only) on average. One way to view these results is that aggressive code

optimizations provide a performance “budget” that allows reference compression to be

applied without an overall loss of performance relative to the baseline. Because

aggressive optimization increases code size, we can view the overall tradeoff as trading

code size for data size, without a loss of performance.

Figure 4.11: Code Size with Compression and Inlining

This figure compares the code size of the reference compression strategies when more aggressive
inlining optimizations are also applied. The configurations here correspond closely to the
configurations from results in Figure 3.8.

 141

Figure 4.11 compares absolute code size for combined reference compression and

inlining, using the same configurations from Figure 4.10. Here, we can see that in terms

of absolute size, the effect of reference compression alone is small, while the effect of

aggressive inlining is large. Of course, applying RMA (the base configuration), reduces

code size substantially, which in the case of the smaller applications means that the

highly optimized configurations are actually smaller than the none configuration. We

can see that on average, RMA provides enough dead code removal to negate the increase

in code size due to inlining. Similar to the performance “budget” provided by inlining, we

can view RMA as providing a “budget” of code space that allows the inliner to improve

performance. Inlining heuristics deserve further study here. Because these results show

that for larger applications, the effect of inlining far outweighs the code size increase

from reference compression, it is more important to develop and tune heuristics so that

only the most frequently executed calls are inlined, rather than focus on reducing code

size increase from reference compression.

 142

5. CONCLUSION

This dissertation tackles the problems of developing systems software for very

small devices with language and compiler technology. I have established my thesis

statement that advanced language and compiler technology can bring the benefits of

object-oriented programming to even the most constrained of embedded systems. The two

systems I have built and described here offer compelling evidence.

The ExoVM explores a new approach in developing virtual machines for

embedded systems, employing pre-initialization, closure, and persistence to an existing,

state-of-the-art virtual machine to reduce memory footprint on a per-program basis. The

feature analysis technique has exposed a new dimension of modularity in language

implementations: the cost of a language feature in terms of the reachable virtual machine

entities that it requires. The ExoVM is one important contribution towards a grand

challenge in virtual machine construction: a language runtime and compilation model that

seamlessly adapts across static and dynamic views of execution and scales from

extremely small systems up to very large systems. The experimental results show that

pre-initialization coupled with feature analysis can vastly reduce the footprint of the

JVM’s internal data structures and the VM code size by removing unnecessary entities on

a per-program basis.

The ExoVM also has wider applicability because it can provide the basis for

relating language features to their efficiency considerations more directly. We illustrated

how the use of constraints in feature analysis has shed light on the interconnectedness of

the virtual machine and the class library implementation. We believe that this is just a

 143

first step to exposing the efficiency implications of feature use to application developers

to whom footprint matters, such as embedded system programmers.

Virgil is a major step forward in language technology for microcontrollers.

Careful attention to detail and adherence to design constraints brings most of the

expressiveness of object-oriented languages to this most severely resource-constrained

class of devices, without sacrificing type safety and without requiring any language

runtime system, imposing only minor metadata overheads. Virgil is the first language to

recognize that explicitly separating initialization time from run-time at the language level

leads to a convenient programming model for embedded systems by allowing objects to

be freely allocated at compile time and then stored for use at run time. The commitment

to language safety eliminates a large class of pernicious software bugs through strong

static type safety and some dynamic checks, like Java. In fact, Virgil’s type safety is key

to efficient implementation, enabling a new class of optimizations that exploit the static

availability of the program heap.

The Virgil compiler exploits the design choices and language model to introduce

an unprecedented level of data optimizations. It represents a significant shift in how we

should view the compiler’s role in optimizing for heap space, relieving much of the

burden of optimization from application programmers. The Virgil compiler introduces

heap-sensitive optimizations that serve to significantly reduce the size of programs by

removing unused members and object headers, representing reference fields in a more

compact manner, and making whole program object layout decisions—all without

changing the programming language semantics or model.

 144

Reference compression exploits the type-safe nature of object references to

achieve significant heap compression without requiring expensive program analysis;

references can therefore be stored far more efficiently than the standard implementation

practices of pointer-based languages like C, which cannot compress pointers by type.

Vertical object layout demonstrates the possibilities of allowing the compiler complete

control over the data representation of all objects in the entire heap, leading to

compression techniques that radically alter the memory layout while reducing its size and

preserving most of the runtime performance—without any manual effort and without

changing the programming model or semantics. This surprising result leaves us to ponder

the suggestion that objects, under the control of a highly optimizing compiler, may in fact

be better than pointers for embedded systems, since the strong types of references and

objects gives the compiler much richer information for making good layout decisions.

5.1. Limitations

Any software system of significant complexity that exists in a large design space

inevitably has tradeoffs, limitations, and pitfalls. This section discusses some of the

limitations of Virgil and the ExoVM. First, as a new language and compiler system,

Virgil is very young and has not been fully stressed by the demands of large software

projects. It does not yet have a large body of code and has not yet faced the common

feature-explosion stage of language evolution. On the other hand, the ExoVM system

suffers from many of the same weaknesses as any technique for changing large existing

 145

software systems. In particular, it does not address all of the corner cases and does not

cover the entire JDK or VM internals.

5.1.1. Virgil Limitations

Virgil is remarkably useful and expressive for simple programs that do not require

dynamic memory allocation, but larger applications require allocation and hence,

automatic memory management. While the use of statically allocated and manually

managed pools of objects is a partial solution for intermediate size programs, as systems

become larger, static allocation becomes infeasible. To scale to these larger systems, the

core Virgil runtime model must offer some form of dynamic allocation. There are

numerous techniques that could be fruitful, including explicit or implicit regions, stack

allocation, and various garbage collection techniques. For extremely resource-constrained

devices such as microcontrollers, efficient automatic memory management remains an

open problem.

Virgil makes some tradeoffs between efficiency and extensibility. For example,

the lack of a universal super-class combined with the lack of interfaces allows the object

model to be implemented simply and efficiently, requiring no metadata for orphan

objects. However, it makes it somewhat harder to abstract interfaces between software

modules. Virgil’s parametric type system addresses this problem for collections and

many other situations, but there are situations where specifying an interface between

parts of a system is easier with Java-style interfaces or ML-style modules. Here, it may

be useful to have a mechanism to place restrictions, either Java-style bounds [70], or

 146

Haskell-style type classes [58]. The Virgil compiler is somewhat suboptimal in its

treatment of parametric types; it sometimes duplicates code more than necessary, since in

many situations (e.g. copying or searching an array) duplicating the code to the

representation size of the type parameter is sufficient. A more efficient solution that

preserves the language’s current simple semantics may be important for highly

parametric code.

Another important limitation is that the Virgil compilation model currently

precludes the use of dynamically loaded or updatable code. While this is reasonable for

devices where the program binary is replaced wholesale, if it all, dynamic extensibility is

needed in other domains. In the future, Virgil may be able to benefit from a module

system where initialization and optimization is applied to modules at a time and programs

are allowed to dynamically load new modules.

The compression strategies discussed in Chapter 4 have some limitations as well.

Currently, the Virgil compiler applies one compression scheme to the entire program, so

that all references are compressed with the same strategy and all objects use either

horizontal or vertical layout. Results by Cooprider and Regehr [31] suggest that most of

the execution time penalty for compression is due to a small number of data items that are

accessed frequently but represent small space savings overall. Therefore selectively

deciding object layouts or reference compression strategies for different parts of the same

program could reduce some of the disadvantages of reference compression. For example,

the compiler may apply the best-performing object model for references that are accessed

frequently at runtime, while choosing the most space-efficient model for less frequently

 147

accessed references. This would allow saving some RAM while avoiding most of the

execution time penalty.

 The vertical object layout model has some clear weaknesses as well. Most

importantly, it requires that no new objects be created at runtime, because object

allocation would require growing the field tables individually. Maintaining the

contiguous nature of object identifiers while growing tables might be tricky in the

presence of subtyping. Further, a garbage collector would need to reclaim entries in the

field tables and thus add some bookkeeping overhead; it is not clear whether the costs of

such maintenance would outweigh the benefits. One might instead consider a hybrid

strategy that uses the vertical layout for those classes that are allocated only at

initialization time and not at runtime. Another technique might to be to hybridize both

horizontal and vertical layouts for the same class—for example, only part of an object

might be stored horizontally, and the rest of the object is stored vertically, with the index

stored in the horizontal layout for access. Even in the presence of dynamic allocation of

objects, vertical layout may still be useful for meta-objects if the class hierarchy is

statically known, which would allow object headers to be compressed.

 Our compiler detects read-only component fields and object fields and inlines the

values of those that are constant over all objects, but currently it does not move other

read-only object fields to ROM. This would be complex in the horizontal layout model

because an object might be split into a read-only portion stored in ROM and a read-write

portion stored in RAM. An uncompressed horizontal object reference must point to the

address of one half of the object, and that half must have a pointer to the other half.

 148

However, when compression is applied to the horizontal layout, the compiler can use one

object index but instead have two compression tables, one that holds the address of the

RAM portion of the object, and one that holds the ROM address of the object. Even more

promising is the idea of using vertical object layout to radically simplify moving

individual fields to ROM. Because an entire field is stored contiguously and object

indexes are used instead, moving a field array to ROM is trivial; the compiler can

generate code to access the appropriate memory space at each field usage site. However,

none of these strategies is currently implemented in the Virgil compiler.

5.1.2. ExoVM Limitations

The ExoVM also has several important limitations. First, the persisting techniques

that we used are an artifact of the implementation technology of the J9 virtual machine.

Much more would be possible if the derivation of constraints and the persistence

mechanism could be automated. In our work, we did not completely decompose the

entire virtual machine, but only the core parts that were necessary in order to run the

benchmark programs. A full-fledged system would need to support the entire language,

runtime system, and libraries, which would require considerably more manual effort than

our project could muster.

There are more opportunities for static optimization that we could not explore due

to either time constraints of the limitations of the underlying programming model. For

example, in the ideal static closed-world scenario, the imaging process should be able to

copy both the application’s code, the internal data structures of the VM, and also the live

 149

code of the VM into the image, producing a completely customized VM compiled

together with the application into a standalone program. This would allow the VM and its

JIT compiler to be reused as a static compilation system, perhaps allowing it to employ

sophisticated compiler optimizations like partial evaluation or static specialization to

itself and the application code together. The ExoVM cannot currently achieve this

because of the limitations of the linking model of C and C++.

The ExoVM was designed for a very static world, but a dynamic scenario may

also benefit from a more flexible VM infrastructure. For example, it might be possible to

employ a dynamic feature analysis so that parts of the program and VM infrastructure are

loaded as needed by the program. The VM might reduce the granularity of dynamic

loading to single methods rather than single classes, only loading methods as they are

used. Similarly, the VM might defer the construction of internal data structures until they

are demanded by the first use of a particular programming language feature. This may

significantly improve performance for small dynamic programs and help combat large

class libraries. The ExoVM system is currently not able to support any such techniques

because the analysis mechanisms are not built into the loading mechanisms themselves.

 150

6. APPENDIX A – Virgil Grammar

Module ::= (ProgramDecl)? (TypeDecl)* <EOF>

ProgramDecl ::= "program" <IDENTIFIER> "{" (ProgramMember)* "}"

ProgramMember ::= EntryPoint

 | ComponentList

EntryPoint ::= "entrypoint" EntryPointName "=" <IDENTIFIER> "."
<IDENTIFIER> ";"

EntryPointName ::= <IDENTIFIER>

ComponentList ::= "components" "{" ComponentRef ("," ComponentRef)*
"}"

ComponentRef ::= <IDENTIFIER>

TypeDecl ::= (ClassDecl | ComponentDecl) "{" (Member)* "}"

ClassDecl ::= "class" <IDENTIFIER> (TypeParamDecl)? ("extends"
TypeRef)?

ComponentDecl ::= "component" <IDENTIFIER>

Member ::= MethodDecl

 | FieldDecl

 | ConstructorDecl

MethodDecl ::= MethodModifiers "method" <IDENTIFIER> (TypeParamDecl)?
FormalParams (":" TypeRef)? MethodBody

MethodModifiers ::= ("private")?

FieldModifiers ::= ("private")?

FieldDecl ::= FieldModifiers "field" oneFieldDecl ("," oneFieldDecl)*
";"

ConstructorDecl ::= "constructor" FormalParams SuperClause MethodBody

 151

SuperClause ::= (":" "super" Arguments)?

oneFieldDecl ::= <IDENTIFIER> ":" TypeRef ("=" Initializer)?

Initializer ::= (ArrayInitializer | Expr)

ArrayInitializer ::= "{" (InitializerList)? "}"

InitializerList ::= Initializer ("," Initializer)*

FormalParams ::= "(" (ParamDecl ("," ParamDecl)*)? ")"

ParamDecl ::= <IDENTIFIER> ":" TypeRef

MethodBody ::= (";" | Block)

Block ::= "{" (BlockStmt)* "}"

BlockStmt ::= LocalVarDecl ";"

 | Stmt

LocalVarDecl ::= "local" oneLocalVarDecl ("," oneLocalVarDecl)*

oneLocalVarDecl ::= <IDENTIFIER> (":" TypeRef)? ("=" Initializer)?

Expr ::= ConditionalExpr ((“=” Expr) | (<TK_CASSIGN> Expr))?

ConditionalExpr ::= ConditionalOrExpr ("?" Expr ":" ConditionalExpr)?

ConditionalOrExpr ::= ConditionalAndExpr ("or" ConditionalAndExpr)*

ConditionalAndExpr ::= InclusiveOrExpr ("and" InclusiveOrExpr)*

InclusiveOrExpr ::= ExclusiveOrExpr (“|” ExclusiveOrExpr)*

ExclusiveOrExpr ::= AndExpr (“^” AndExpr)*

AndExpr ::= EqualityExpr (“&” EqualityExpr)*

 152

EqualityExpr ::= TypeQueryExpr ((“==” | “!=”) TypeQueryExpr)*

TypeQueryExpr ::= RelationalExpr ("<:" TypeInExpr)?

RelationalExpr ::= ConcatExpr (RelationalOp ConcatExpr)*

RelationalOp ::= ("<" | ">" | ">=" | "<=")

ConcatExpr ::= ShiftExpr (“#” ShiftExpr)*

ShiftExpr ::= AdditiveExpr ((“<<” | “>>”) AdditiveExpr)*

AdditiveExpr ::= MultiplicativeExpr ((“+” | “-“) MultiplicativeExpr)*

MultiplicativeExpr ::= TypeCastExpr ((“*” | ”/” | ”%”) TypeCastExpr)*

TypeCastExpr ::= PostIncDecExpr ("::" TypeInExpr)*

PostIncDecExpr ::= UnaryExpr (“++” | “--”)?

UnaryExpr ::= (NegativeLiteral | UnaryOp UnaryExpr | PreIncDecExpr |
Term)

NegativeLiteral ::= “-” <DECIMAL_LITERAL>

PreIncDecExpr ::= (“++” | “--”) UnaryExpr

UnaryOp ::= (“~” | “!” | “+” | “-”)

Term ::= ((TermPrefix (Suffix)*) | (NewExpr (NewSuffix)*))

Suffix ::= (NewSuffix | IndexSuffix)

NewSuffix ::= (MemberSuffix | AppSuffix)

TermPrefix ::= ((VarUse) | (Literal) | ("(" Expr ")"))

VarUse ::= <IDENTIFIER>

Literal ::= <ZERO_LITERAL>

 | <BIN_LITERAL>

 153

 | <OCTAL_LITERAL>

 | <DECIMAL_LITERAL>

 | <HEX_LITERAL>

 | <STRING_LITERAL>

 | <CHARACTER_LITERAL>

 | "null"

 | "this"

 | "true"

 | "false"

NewExpr ::= ("new" TypeRef) (NewArraySuffix | NewObjectSuffix)

NewArraySuffix ::= ArrayDims

NewObjectSuffix ::= Arguments

ArrayDims ::= ("[" Expr "]")+

MemberSuffix ::= "." <IDENTIFIER>

AppSuffix ::= Arguments

IndexSuffix ::= "[" Expr "]"

Arguments ::= "(" (ListExpr)? ")"

ListExpr ::= Expr ("," Expr)*

Stmt ::= Block

 | EmptyStmt

 | BreakStmt

 | ContinueStmt

 | ReturnStmt

 | WhileStmt

 | ForStmt

 | IfStmt

 | DoWhileStmt

 | SwitchStmt

 | ExprStmt

 154

IfStmt ::= "if" "(" Expr ")" Stmt ("else" Stmt)?

SwitchStmt ::= "switch" "(" Expr ")" "{" (SwitchCase)* "}"

SwitchCase ::= ValueCase

 | DefaultCase

ValueCase ::= "case" "(" ListExpr ")" Stmt

DefaultCase ::= "default" Stmt

ForStmt ::= "for" "(" (ListExpr)? ";" (Expr)? ";" (ListExpr)? ")"
Stmt

ExprStmtList ::= ExprStmt ("," ExprStmt)*

ExprStmt ::= Expr ";"

EmptyStmt ::= ";"

BreakStmt ::= "break" ";"

ContinueStmt ::= "continue" ";"

ReturnStmt ::= "return" (Expr)? ";"

WhileStmt ::= "while" "(" Expr ")" Stmt

DoWhileStmt ::= "do" Stmt "while" "(" Expr ")" ";"

TypeRef ::= (NestedType | ParameterizedType | SimpleType | FuncType)
("[" "]")*

NestedType ::= "(" TypeRef ")"

FuncType ::= ("function" "(" (TypeList)? ")" (":" TypeRef)?)

TypeParamDecl ::= "<" TypeParam ("," TypeParam)* ">"

TypeParam ::= <IDENTIFIER>

 155

ParameterizedType ::= <IDENTIFIER> "<" TypeList ">"

TypeList ::= TypeRef ("," TypeRef)*

TypeInExpr ::= (SimpleType | NestedType)

SimpleType ::= (SingularType | RawType)

SingularType ::= <IDENTIFIER>

RawType ::= <DECIMAL_LITERAL>

 156

7. REFERENCES

[1] ECMA Standard 334. C# Language Specification. Available at:

http://www.ecma-international.org/

[2] Connected Limited Device Configuration (CLDC).

http://java.sun.com/j2me

[3] The Scala Programming Language. http://www.scala-lang.org

[4] Java Technology: The Early Years.

http://java.sun.com/features/1998/05/birthday.html

[5] Objective CAML. http://caml.inria.fr/ocaml

[6] Java in the Small. http://www.lifl.fr/RD2p/JITS/

[7] Forth Interest Group Homepage. http://www.forth.org/

[8] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming. Addison-Wesley,

2004.

[9] A. Adl-Tabatabai, J. Bharadwaj, M. Cierniak, M. Eng, J. Fang, B. Lewis, B.

Murphy, and J. Stichnoth. Improving 64-bit Java IPF performance by compressing

heap references. In CGO’04, International Symposium on Code Generation and

Optimization. San Jose, CA. March 2004.

[10] O. Agesen and D. Ungar. Sifting out the Gold: Delivering Compact Applications

from an Exploratory Object-oriented Programming Environment. In OOPSLA ’94,

 157

the 9th Annual Conference on Object-oriented Programming, Systems, Languages,

and Applications. Portland, OR. October 1994.

[11] A. Aiken. Introduction to Set Constraint-Based Program Analysis. In Science of

Computer Programming 35(2-3): 79-111. November 1999.

[12] A. Aiken, E. Wimmers, and J. Palsberg. Optimal Representations of Polymorphic

Types with Subtyping. UCB Tech Report CSD 96-909. July 1996.

[13] E. Allen, J. Bannet, and R. Cartwright. A first-class approach to genericity. In

OOPSLA ’03, the 18th Annual Conference on Object-Oriented Systems, Languages,

and Applications. Anaheim, CA. October 2003.

[14] E. Allen, R. Cartwright, and B. Stoler. Efficient Implementation of Run-time

Generic Types for Java. In Proceedings of the IFIP TC2/WG2.1Working Conference

on Generic Programming, pp. 207-236. July 2002.

[15] B. Alpern, D. Attanasio, J. Barton, A. Cocchi, S. Hummel, D. Lieber, M. Mergen,

T. Ngo, J. Shepherd, and S. Smith. Implementing Jalapeno in Java. In OOPSLA ’99,

the 14th Annual Conference on Object-oriented Programming, Systems, Languages,

and Applications. Denver, CO. November 1999.

[16] B. Alpern, A. Cocchi, S. Fink, D. Grove, and D. Lieber. Efficient Implementation of

Java Interfaces: Invokeinterface Considered Harmless. In OOPSLA ’01, the 16th

Annual Conference on Object-Oriented Systems, Languages, and Applications.

Tampa, FL. October 2001.

 158

[17] C. Ananian and M. Rinard. Data Size Optimizations for Java Programs. In LCTES

’03, Workshop on Languages, Compilers, and Tools for Embedded Systems. San

Diego, CA. June 2003.

[18] M. Atkinson, M. Dmitriev, C. Hamilton, T. Printezis: Scalable and Recoverable

Implementation of Object Evolution for the PJama1 Platform. Lecture Notes in

Computer Science Volume 2135: 292-314, 2000.

[19] D. Bacon. Kava: a Java Dialect with a Uniform Object Model for Lightweight

Classes. Concurrency and Computation: Practice and Experience 15(3-5): 185-206.

2003.

[20] D. Bacon, S. Fink, and D. Grove. Space- and Time-efficient Implementation of the

Java Object Model. In ECOOP ’02, the 16th European Conference on Object-

Oriented Programming, University of Malaga, Spain. June 2002.

[21] D. Bacon and P. Sweeney. Fast Static Analysis of C++ Virtual Calls. In OOPSLA

’96, the 11th Annual Conference on Object-Oriented Programming Systems,

Languages and Applications. San Jose, CA. October 1996.

[22] G. Bracha, N. Cohen, C. Kemper, M. Odersky, D. Stoutamire, K. Thorup, and P.

Wadler. Adding Generics to the Java Programming Language. Java Community

Process JSR-000014. September 2004.

[23] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating Array Bounds Checks on

Demand. In PLDI ’00, the ACM SIGPLAN Conference on Programming Language

Design and Implementation. Vancouver, Canada. June 2000.

 159

[24] M. Budiu, S. Goldstein, M. Sakr, and K. Walker. BitValue Inference: Detecting and

Exploiting Narrow Bitwidth Computations. In EuroPar 2000, the EuroPar 2000

European Conference on Parallel Computing. Munich, Germany. August 2000.

[25] D.-W. Chang and R.-C. Chang. Ejvm: an Economic Java Run-time Environment for

Embedded Devices. Software Practice & Experience, 31(2):129-146, 2001.

[26] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T. Henzinger, and J. Palsberg. Stack

Size Analysis for Interrupt-driven Programs. Information and Computation

194:144-174. 2004.

[27] Z. Chen. Java Card Technology for Smart Cards: Architecture and Programmer’s

Guide. Addison-Wesley Longman Publishing Co., Inc. 2000.

[28] G. Chen, M. Kandemir, N. Vijaykrishnan, M. Irwin, B. Mathiske, and M. Wolczko.

Heap Compression for Memory-constrained Java Environments. In OOPSLA ’03,

the 18th Annual Conference on Object-Oriented Programming Systems, Languages

and Applications. Anaheim, CA. October 2003.

[29] N. Cohen. Type Extension Type Tests Can Be Performed in Constant Time. ACM

Transactions on Programming Languages and Systems, 13(4), 626-629. 1991.

[30] A. Courbot, G. Grimaud, and J. Vandewalle. Romization: Early Deployment and

Customization of Java Systems for Constrained Devices. In CASSIS ’05, the Second

International Workshop on Construction and Analysis of Safe, Secure, and

Interoperable Smart Devices. Nice, France. March 2005.

 160

[31] N. Cooprider and J. Regehr. Offline compression for on-chip RAM. In PLDI’07,

ACM SIGPLAN Conference on Programming Language Design and

Implementation. San Diego, CA. June 2007.

[32] J. Dean, D. Grove, and C. Chambers. Optimization of Object-Oriented Programs

using Static Class Hierarchy Analysis. In ECOOP ’95, the 9th European Conference

on Object-Oriented Programming. Aarhus, Denmark. August 1995.

[33] I. Diatchki, M. Jones, and R. Leslie. High-level Views on Low-level

Representations. In ICFP ’05, International Conference on Functional

Programming. Tallinn, Estonia. September 2005.

[34] I. Diatchki and M. Jones. Strongly Typed Memory Areas; Programming Systems-

level Data Structures in a Functional Language. In Haskell ’06 Workshop. Portland,

Oregon. September 2006.

[35] A. Diwan, K. McKinley, and J. E. Moss. Using Types to Analyze and Optimize

Object-Oriented Programs. In ACM Transactions on Programming Languages and

Systems, 23(1), 30-72. 2001.

[36] L. Dragan and S. Watt. Parametric Polymorphism Optimization for Deeply Nested

Types in Computer Algebra. In Proceedings of the 2005 Maple Conference, pp.

243-259. Waterloo, Canada. July 2005.

[37] B. Delsart, V. Joloboff, and E. Paire. JCOD: Lightweight Modular Compilation

Technology for Embedded Java. In EMSOFT ’02, the Second International

Conference on Embedded Software. London, UK. October 2002.

 161

[38] D. Dreyer, R. Harper, and M. Chakravarty. Modular Type Classes. In POPL ’07, the

ACM Symposium on Principles of Programming Languages. Chicago, IL. January

2007.

[39] N. Eckel and J. Gil. Empirical Study of Object-layout Strategies and Optimization

Techniques. In the 14th European Conference on Object-Oriented Programming

(ECOOP ’00). Sophia Antipolis and Cannes, France. June 2000.

[40] B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance and Generalized Constraints

for C# Generics. In ECOOP ’06, the 20th European Conference on Object-Oriented

Programming. Nantes, France. July 2006.

[41] A. Gal and M. Franz. Incremental Dynamic Code Generation with Trace Trees.

University of California, Irvine Tech Report No. 06-16. November 2006.

[42] A. Gal, C. Probst, and M. Franz. HotPathVM: An Effective JIT Compiler for

Resource-Constrained Devices. In VEE ’06, the Second International Conference on

Virtual Execution Environments. Ottawa, Canada. June 2006.

[43] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

[44] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC

Language: A Holistic Approach to Networked Embedded Systems. In PLDI ’03, the

ACM Conference on Programming Language Design and Implementation. San

Diego, CA. June 2003.

 162

[45] M. Golm, M. Felser, C. Wawersich, and J. Kleinöder. The JX Operating System. In

USENIX 2002, the USENIX Annual Technical Conference. Monterey, CA. June

2002.

[46] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-

Wesley, 1996.

[47] C. Grothoff. Expressive Type Systems for Object-Oriented Languages. PhD

Dissertation, University of California Los Angeles. September 2006.

[48] C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A Dynamic Operating

System for Sensor Nodes. In MOBISYS ’05, the International Conference on

Mobile Systems, Applications, and Services. Seattle, WA. June 2005.

[49] P. Hansen. The Solo Operating System: A Concurrent Pascal Program. In

Software—Practice and Experience 6(2): 141-149. April 1976.

[50] T. Harbaum. NanoVM: Java for the AVR. Available at:

http://www.harbaum.org/till/nanovm/

[51] R. Harper and G. Morrisett. Compiling Polymorphism Using Intensional Type

Analysis. In POPL ’95, the ACM Conference on Principles of Programming

Languages. San Francisco, CA. January 1995.

[52] J. Hill and D. Culler. Mica: A wireless platform for deeply embedded networks.

IEEE Micro, 22(6):12-24, November/December 2002.

[53] G. Hunt, et al. An Overview of the Singularity Project. Microsoft Technical Report

MSR-TR-2005-135. October 2005.

 163

[54] A. Igarashi and M. Viroli. Variant Parametric Types: A Flexible Subtyping Scheme

for Generics. In ACM Transactions on Programming Languages and Systems,

28(5):795-847, September 2006.

[55] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, T. Nakatani. A Study of

Devirtualization Techniques for a Java Just-in-time Compiler. In OOPSLA ’00, the

15th Annual Conference on Object-Oriented Systems, Languages, and Applications.

Minneapolis, MN. October 2000.

[56] P. Jain, and D. Schmidt. Service Configurator: A Pattern for Dynamic Configuration

of Services. In Proceedings of the 3rd USENIX Conference on Object-Oriented

Technologies and Systems. Anaheim, CA. June 1997.

[57] J. Jarvi, D. Gregor, J. Willcock, A. Lumsdaine, and J. Siek. Algorithm

Specialization in Generic Programming: Challenges of Constrained Generics in

C++. In PLDI ’06, the ACM Conference on Programming Language Design and

Implementation. Ottawa, Canada. July 2006.

[58] S. Jones, M. Jones, and E. Meijer. Type Classes: An Exploration of the Design

Space. In Haskell ’97, the ACM SIGPLAN Haskell Workshop. Amsterdam, The

Netherlands. May 1997.

[59] M. Kawahito, H. Komatsu, and T. Nakatani. Effective Null Pointer Check

Elimination Utilizing Hardware Trap. In ASPLOS ’00, the 8th International

Conference on Architectural Support for Programming Languages and Operating

Systems. Cambridge, MA. November 2000.

 164

[60] A. Kennedy and D. Syme. Combining Generics, Pre-compilation and Sharing

Between Software-Based Processes. In SPACE ’04, Semantics, Program Analysis,

and Computing Environments. Venice, Italy. January 2004.

[61] A. Kennedy and D. Syme. Design and Implementation of Generics for the .NET

Common Language Runtime. In PLDI ’01, the ACM Conference on Programming

Language Design and Implementation. Snowbird, UT. June 2001.

[62] O. Kiselyov and C. Shan. Position: Lightweight Static Resources: Sexy types for

embedded and systems programming. In TFP ’07, the 8th Symposium on Trends in

Functional Programming. New York, NY. April 2007.

[63] J. Koshy and R. Pandey. VM*: A Scalable Runtime Environment for Sensor

Networks. In SENSYS ’05, the 3rd annual conference on Embedded Network Sensor

Systems. San Diego, CA. November 2005.

[64] C. Lattner and V. Adve. Automatic Pool Allocation for Disjoint Data Structures. In

MSP ’02, ACM Workshop on Memory System Performance. Berlin, Germany. June

2002.

[65] C. Lattner and V. Adve. Transparent pointer compression for linked data structures.

In MSP’05, ACM Workshop on Memory System Performance. Chicago, IL. June

2005.

[66] P. Levis and D. Culler. Maté: a tiny virtual machine for sensor networks. In

ASPLOS ’02, the 11th Conference on Architectural Support for Programming

Languages and Operating Systems. San Jose, CA. October 2002.

 165

[67] G. Manjunath and V. Krishnan. A Small Hybrid JIT for Embedded Systems. ACM

SIGPLAN Notices, 35(4):44-50, 2000.

[68] J. Mogul, J. Bartlett, R. Mayo, and A. Srivastava. Performance implications of

multiple pointer sizes. In USENIX’95, Technical Conference on UNIX and

Advanced Computing Systems, pp.187-200, 1995.

[69] A. Myers. Bidirectional Object Layout for Separate Compilation. In OOPSLA’95,

the 10th Annual Conference on Object-Oriented Programming Systems, Languages,

and Applications. Austin, TX. October 1995.

[70] M. Naftalin and P. Wadler. Java Generics and Collections. O’Reilly, October 2006.

[71] M. Naik and J. Palsberg. Compiling with Code-Size Constraints. In ACM

Transactions on Embedded Computing Systems. 3(1): 163-181. 2004.

[72] G. Necula, S. McPeak, S. Rahul, and W. Weiner. CIL: Intermediate Language and

Tools for Analysis and Transformation of C Programs. In CC ’02, the International

Conference on Compiler Construction. Grenoble, France. April 2002.

[73] R. Newton, Arvind, and M. Welsh. Building up to Macroprogramming: An

Intermediate Language for Sensor Networks. In IPSN ’05, the Fourth International

Conference on Information Processing in Sensor Networks. Los Angeles, CA. April

2005.

[74] M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet, B. Emir, S. McDirmid,

S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, L. Spoon, M. Zenger. An

 166

Overview of the Scala Programming Language. EPFL Technical Report LAMP-

REPORT-2006-001. 2006.

[75] M. Odersky, and P. Wadler. Pizza into Java: Translating Theory into Practice. In

POPL ’97, ACM Conference on Principles of Programming Languages. Paris,

France. January 1997.

[76] T. Onodera and K. Kawachiya. A study of locking objects with bimodal fields. In

OOPSLA ’99, the 14th Annual Conference on Object-Oriented Programming

Systems, Languages and Applications. Denver, CO. October 1999.

[77] J. Palsberg. Type-based Analysis and Applications. In PASTE ’01, the ACM

SIGPLAN Workshop on Program Analysis for Software Tools. Snowbird, UT. June

2001.

[78] C. Probst, A. Gal, and M. Franz. Code Generating Routers: A Network-Centric

Approach to Mobile Code. In CCW ’03, the 18th Annual IEEE Workshop on

Computer Communications. Dana Point, CA. October 2003.

[79] T. Proebsting, G. Townsend, P. Bridges, J. Hartman, T. Newsham, and S.

Watterson. Toba: Java for Applications, a Way Ahead of Time (WAT) Compiler. In

USENIX ’97, the Third USENIX Conference on Object-Oriented Technologies.

Anaheim, CA. June 1997.

[80] W. Pugh and G. Weddell: Two-directional record layout for multiple inheritance. In

PLDI’90, ACM SIGPLAN Conference on Programming Language Design and

Implementation, pp.85-91, 1990.

 167

[81] D. Rayside and K. Kontogiannis, Extracting Java library subsets for deployment on

embedded systems, Science of Computer Programming 45(2-3): 245-270, 2002.

[82] D. Rayside, E. Mamas, and E. Hons. Compact java binaries for embedded systems.

In Proceedings of the 1999 conference of the Centre for Advanced Studies on

Collaborative research, p. 9, IBM Press, 1999.

[83] K. Redwine and N. Ramsey. Widening Integer Arithmetic. In CC ’04, the 13th

Annual Conference on Compiler Construction. Barcelona, Spain. April 2004.

[84] J. Regehr, A. Reid, and Kirk Webb. Eliminating Stack Overflow by Abstract

Interpretation. In EMSOFT ’03, the 3rd International Conference on Embedded

Software. Philadelphia, PA. October 2003.

[85] M. Sakkinen. The darker side of C++ revisited. Structured Programming, 13:155-

177, 1992.

[86] M. A. Schubert, L.K. Papalaskaris, and J. Taugher. Determining Type, Part, Colour,

and Time Relationships. Computer, 16:53–60, October 1983.

[87] J. Siek and A. Lumsdaine. Essential Language Support for Generic Programming.

In PLDI’05, ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2005. Chicago, IL. June 2005.

[88] D. Spoonhower, J. Auerbach, D. Bacon, P. Cheng, and D. Grove. Eventrons: A Safe

Programming Construct for High-Frequency Hard Real-Time Applications. In PLDI

’06, the ACM SIGPLAN Conference on Programming Language Design and

Implementation. Ottawa, Canada. June 2006.

 168

[89] M. Sridharan, S. Fink, and R. Bodik. Thin Slicing. In PLDI’07, the ACM SIGPLAN

Conference on Programming Language Design and Implementation. San Diego,

CA. June 2007

[90] B. Steensgard. Points-to Analysis in Almost Linear Time. Microsoft Technical

Report, MSR-TR-95-08. 1995.

[91] B. Stroustrup. Evolving a Language in the Real World: C++ 1991-2006. In HOPL-

III, the ACM Conference on History of Programming Languages. San Diego, CA.

June 2007.

[92] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallee-Rai, P. Lam, E. Gagnon,

and C. Godin. Practical virtual method call resolution for Java. In OOPSLA ’00 the

15th Annual Conference on Object-Oriented Programming, Systems, Languages,

and Applications. Minneapolis, MN. October 2000.

[93] P. Sweeney and M. Burke. Quantifying and Evaluating the Space Overhead for

Alternative C++ Memory Layouts. Software—Practice and Experience. 33(7): 595-

636. June 2003.

[94] P. Sweeney and J. Gil. Space and Time-Efficient Memory Layout for Multiple

Inheritance. In OOPSLA ’99, the 14th Annual Conference on Object-Oriented

Programming, Systems, Languages, and Applications. Denver, CO. October 1999.

[95] P. Sweeney and F. Tip. A Study of Dead Data Members in C++ Applications. In

PLDI ’98, the ACM SIGPLAN Conference on Programming Language Design and

Implementation. Montreal, Canada. June 1998.

 169

[96] W. Taha, S. Ellner, and H. Xi. Generating Imperative, Heap-Bounded Programs in a

Functional Setting. In EMSOFT ’03, the 3rd Annual International Conference on

Embedded Software. Philadelphia, PA. October 2003.

[97] A. Taivalsaari, B. Bush, and D. Simon. The Spotless System: Implementing a Java

System for the Palm Connected Organizer. 1999.

[98] F. Tip, C. Laffra, P. Sweeney, A. Eisma, and D. Streeter. Practical extraction

techniques for Java. In ACM Transactions on Programming Languages and Systems

24(6): 625-666. November 2002.

[99] F. Tip and J. Palsberg. Scalable Propagation-based Call Graph Construction

Algorithms. In OOPSLA ’00, the 15th Annual Conference on Object-Oriented

Programming, Systems, Languages, and Applications. Minneapolis, MN. October

2000.

[100] F. Tip, P. Sweeney, C. Laffra, A. Eisma, and D. Streeter. Practical Extraction

Techniques for Java. ACM Transactions on Programming Languages and Systems,

24(6): 625-666, 2002.

[101] B. Titzer. Virgil: Objects on the Head of a Pin. In OOPSLA’06, ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages, and

Applications. Portland, OR. October 2006.

[102] B. Titzer, J. Auerbach, D. Bacon, and J. Palsberg. The ExoVM System for

Automatic VM and Application Reduction. In PLDI’07, ACM SIGPLAN

 170

Conference on Programming Language Design and Implementation. San Diego,

CA. June 2007.

[103] B. Titzer and J. Palsberg. Nonintrusive Precision Instrumentation of

Microcontroller Software. In LCTES ’05, ACM SIGBED Conference on Languages,

Compilers, and Tools for Embedded Systems. Chicago, IL. June 2005.

[104] B. Titzer and J. Palsberg. Vertical Object Layout and Compression for Fixed

Heaps. In CASES ’07, International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems. Salzburg, Austria. November 2007.

[105] B. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable Sensor Network Simulation

with Precise Timing. In IPSN ’05, The Fourth International Conference on

Information Processing in Sensor Networks. Los Angeles, CA. April 2005.

[106] P. Tyma. Optimizing Transforms for Java and .NET Closed Systems. PhD

Dissertation, Syracuse University. 2004.

[107] A. Varma and S. Bhattacharyya. Java-through-C Compilation: An Enabling

Technology for Java in Embedded Systems. In DATE ’04, the Conference on

Design Automation and Test in Europe. Paris, France. February 2004.

[108] J. Vitek, B. Bokowski. Confined Types. In OOPSLA ’99, the 14th Annual

Conference on Object-Oriented Programming, Systems, Languages, and

Applications. Denver, CO. Oct. 1999.

 171

[109] J. Vitek, R. N. Horspool, and A. Krall. Efficient Type Inclusion Tests. In

OOPSLA ’97, the 12th Annual Conference on Object-Oriented Programming

Systems, Languages and Applications. Atlanta, GA. October 1997.

[110] G. Wagner, A. Gal, and M. Franz. SlimVM: Optimistic Partial Program Loading

for Connected Embedded Java Virtual Machines. University of California, Irvine

Tech Report No. 06-18. November 2006.

[111] P. Wilson. Operating system support for small objects. In the 1991 International

Workshop on Object Orientation in Operating Systems. Palo Alto, CA. October

1991.

[112] I. Wirjawan, J. Koshy, R. Pandey, and Y. Ramin. Balancing Computation and

Code Distribution Costs: The Case for Hybrid Execution in Sensor Networks. In

SECON ’06, the IEEE Conference on Sensors, Mesh, and Ad Hoc Communications

and Networks. Reston, VA. September 2006.

[113] N. Wirth. The Programming Language Oberon. In Software—Practice and

Experience 18(7): 671-690. July, 1988.

[114] G. Wright, M. Seidl, and M. Wolczko. An object-aware memory architecture.

Science of Computer Programming 62(2): 145-163 (2006).

[115] Y. Zhang and R. Gupta. Compressing heap data for improved memory

performance. Software—Practice and Experience, 36(10):1081-1111, 2006.

 172

[116] T. Zhao, J. Palsberg, and J. Vitek. Lightweight Confinement for Featherweight

Java. In OOPSLA ’03, the 18th Annual Conference on Object-Oriented

Programming, Systems, Languages, and Applications. Anaheim, CA. October 2003.

