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Abstract
We present RALF, a framework for end-to-end evaluation of regis-
ter allocators. Built on top of gcc, RALF enables evaluation and
comparison of register allocators in the setting of an industrial-
strength compiler. RALF supports modular plug-and-play of reg-
ister allocators without modifying the compiler implementation at
all. RALF provides any plugged-in register allocator with an in-
termediate program representation that is independent of the data
structures of the framework. In return, the register allocator pro-
vides RALF with a set of register allocation directives. The contract
between RALF and a register allocator is given by requirements on
the intermediate program representation and the register allocation
directives. RALF checks that the produced directives satisfy the
requirements, thereby helping with finding bugs in a register allo-
cator. We demonstrate the versatility of RALF by presenting our
experiments with six different register allocators.

1. Introduction
Register allocation [ASU86] plays a pivotal role in compilation
of high level programs to machine code. A register allocator can
be a significant part of the compiler implementation (10% for
lcc [FH95] and 12% for gcc 2.95.2). A register allocator and vari-
ous optimization phases have a considerable and complicated im-
pact on each other. The mutual impact makes it difficult to give a
realistic evaluation of a register allocator. The best form of evalua-
tion of a register allocator would be in the setting of an industrial-
strength compiler. Such an implementation would enable a re-
searcher to measure the performance of realistic, executable code
generated with the help of the register allocator. Performance num-
bers provide a more accurate evaluation of a register allocator than
static counts of, for example, the number of registers used and
the number of spill instructions inserted. Ideally, a researcher can
plug a register allocator into an existing industrial-strength com-
piler without modifying the compiler implementation at all.

Existing public domain compilers such as GCC [gcc05], SMLNJ
[sml00], and Tiger [AP02], as well as compiler frameworks such
SUIF [HAA+96] and SOOT [VRCG+99] allow a programmer to
implement a new register allocator. Their main drawback is that the
programmer of a register allocator has to understand and work with
the data structures of the underlying compiler. The data structures
that interface a register allocator with the rest of the compiler can
be quite complicated. Tabatabai et al. [ATGL96] have presented a
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register allocation framework in cmcc (CMU C compiler). Their
framework presents different modules (e.g. graph construction, co-
alescing, color ordering, color assignment, spill code insertion, and
others) that different register allocation techniques might need. The
key idea is that by providing these commonly used methods as li-
braries, different register allocation schemes can be easily coded
and a lot of code can be reused. However, in case a register alloca-
tor needs other mechanisms than those provided by the framework,
the programmer must understand and work with the data structures
of the underlying compiler. In summary, the existing frameworks
tend to require a programmer of a register allocator to understand
and modify the underlying compiler.

In this paper we present RALF, a framework for end-to-end
evaluation of register allocators. Built on top of gcc, RALF enables
evaluation and comparison of register allocators in the setting of
an industrial-strength compiler. The three main design criteria for
RALF are modularity, reliability, and versatility.

Modularity. RALF supports modular plug-and-play of regis-
ter allocators without modifying the compiler implementation at
all. In effect, RALF allows a programmer to replace the register
allocator of gcc without modifying the gcc implementation itself.
RALF provides any plugged-in register allocator with an interme-
diate program representation. In return, the register allocator pro-
vides RALF with a set of register allocation directives. Both the
intermediate program representation, called MIRA (Mathematical
Intermediate representation for Register Allocation), and the regis-
ter allocation directives, called FORD (FOrmat for Register alloca-
tion Directives), are independent of the underlying data structures
of the framework and of the plugged-in register allocator.

Reliability. Finding bugs in a register allocator can be difficult.
Bugs may materialize while running the register allocator, while
running the code generator, while assembling the code, or even
while running the target code. RALF supports early bug finding
by checking that the intermediate program representation and the
register allocation directives satisfy a list of requirements. Those
requirements form the contract between RALF and a register allo-
cator. When those requirements are met, various problems cannot
occur later during code generation, assembly, or at run time. We
report on the time to implement various register allocators and we
argue that the development time is fairly low in part because of
RALF’s simpler input output interface and good support for bug
finding.

Versatility. We have designed MIRA and FORD to support a
wide variety of register allocators. The FORD directives include
support for such things as register assignment to pseudo regis-
ters, spill/reload code, coalescing, stack location allocation [NP03],
pairing of loads and stores, and insertion of new instructions (such
as move operation and bitwise operations). We have experimented
with six different register allocators in RALF, including iterated
register coalescing, linear scan register allocation, and an ILP-
based register allocator. Our experiments give a fair comparison
of the register allocators becauseeverything else remains constant.
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Figure 1. Block diagram of RALF.
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Figure 2. Interaction of a plugged in register allocator with RALF.

In the following section we describe the MIRA intermediate
representation and the FORD register allocation directives. In Sec-
tion 3 we present the requirements on MIRA and FORD, in Section
4 we present our experience with six register allocators, and in Sec-
tion 5 we conclude.

2. Framework Description
We present a high-level block diagram for our register allocation
framework RALF in Figure 1. RALF has two main parts, namely a
front end and a back end. The front end consists mainly of gcc’s
front end, gcc’s optimization phases, and code for producing a
MIRA program representation. The back end consists mainly of
a correctness checker, an implementation of the register allocation
directives, and gcc’s code generation phase. Given a register allo-
cator, RALF first runs the front end, then the register allocator, and
then the back end. Figure 2 shows the interaction of RALF and any
plugged-in register allocator. Given any C programP , RALF trans-
latesP into a MIRA programM , which is then fed to the plugged-
in register allocator. The register allocator outputs a set of FORD
directivesD, which are then fed back to RALF. RALF checks that
(M, D) satisfies a list of requirements, applies the directivesD to
M , and generates machine code. Along with applying the direc-
tives, RALF also does some mundane tasks, like inserting loads
and stores of callee save registers at the entrance and exit of each
function, thus relieving the register allocator from those activities.
Next we describe MIRA and FORD.

2.1 Input Interface - MIRA

The input to the register allocator is a MIRA program which con-
tains program-specific information and architecture-specific infor-
mation. MIRA hides most of the compiler specific details from the
programmer, while including a plethora of information that is re-
quired by different register allocators. The required information in-
cludes use-def information, liveness information, pre-colored pseu-
dos (pseudos that already have machine registers assigned), known
loads and stores (loads and stores already present in the input pro-
gram), move instructions, etc. A MIRA program consists of sets
and parameters written in AMPL syntax [FGK93]. A set is a sym-
bolic enumeration and a parameter can be a scalar value or a col-
lection of values indexed by one or more sets.

Program-specific information.The program-specific informa-
tion is given using the following definitions.

Insts ⊆ {1..nInsts}
Pseudos ⊆ {1..nPseudos}

Loc ⊆ {1..nPseudos}
lsmPseudos ⊆ Pseudos → {0, 1}

memPseudos ⊆ Pseudos → {0, 1}
Req ⊆ Insts× Pseudos → {0, 1}
Def ⊆ Insts× Pseudos → {0, 1}

prevInst ⊆ Insts× Insts → {0,1}
joinInst ⊆ Insts× Insts → Insts
callInst ⊆ Insts → {0, 1}

jumpInst ⊆ Insts → {0, 1}
moveInst ⊆ Insts → {0, 1}

Freq ⊆ Insts → N
Live ⊆ Insts× Pseudos → {0, 1}

liveHardReg ⊆ Insts× Regs → {0, 1}

where nInsts is the maximum number of instructions, nPseudos is
the maximum number pseudos present in the program, and N is the
set of natural numbers.

The sets of instructions, pseudos, and locations for the pseudos
are given by Insts, Pseudos, and Loc respectively. Before regis-
ter allocation is done, compiler represents pseudos in two forms:
as temporaries and as memory locations. Accordingly, there can
be two types of pseudos in a MIRA program: (a) Pseudos corre-
sponding to the scalars that come from the compiler used tem-
poraries (represented as lsmPseudos), (b) Pseudos correspond-
ing to memory locations (represented as memPseudos). Parameter
memPseudos(p) is set to 1, if pseudop is a memory pseudo. Param-
eter lsmPseudos(p) is set to 1, if pseudop is not a memory pseudo.
Accesses of these memPseudos results in memory accesses. A reg-
ister allocator may decide to move these instructions to reduce total
execution time. (e.g. out of a loop etc). These pseudos can also be
used by the stack location allocation phase.

Each instruction is considered to have a (possibly empty) set
of required pseudos and can set a pseudo or a register. Problem
parameter Req(i, p) is set to 1, if instructioni requires pseudop
and hence need to be present in a register, and 0 otherwise. And
Def(i, p) is set to 1, if instructioni sets pseudop, and 0 otherwise.

The control flow of the program is given by two maps prevInst
and joinInst. Parameter prevInst(ip, i1) is set to 1, if instructioni1
has exactly one previous instructionip and 0 otherwise. Given two
connected basic blocks (bp → b1), if i1 is the first instruction ofb1

andip is the last instruction ofbp, then parameter joinInst(ip, i1) is
the set to 1.

A subset of instructions are declared as function calls and an-
other subset as jump (conditional or unconditional) instructions.
Parameter callInst(i) has value 1 if instructioni is a call instruction,
and 0 otherwise. Parameter jumpInst(i) has value 1 if instructioni
is a jump instruction, and 0 otherwise.



A subset of instructions are declared as move instructions.
These instructions can be pseudo-pseudo or pseudo-register move
instructions. The source and destination of the move instruction
can be found from the Req and Def parameters. The moveInst in-
formation can be used by register allocators doing coalescing.

For each instructioni, parameter Freq(i) returns the frequency
of execution of that instruction. RALF uses static estimates of
the frequencies of each instruction. In future work one might use
profiling-based estimates of the frequencies.

At each instruction the liveness information is given for each
pseudo and machine registers. Problem parameter Live(i, p) is
set to 1, if pseudop is live at instructioni. And parameter
liveHardReg(i, r) is set to 1, if machine registerr is live at in-
structioni. The liveness information can be computed from the rest
of the program but is provided by RALF to take that burden away
from the register allocators. RALF can provide weaker liveness re-
sults, if so desired. (Some register allocators [NP05] want weaker
liveness information to get more flexibility to do code motion.) The
quality of the liveness information is controlled by an environment
variable.

Architecture specific information. Architecture specific infor-
mation chiefly deals with information about different registers and
costs of different operations. The architecture-specific information
is given using the following definitions.

Regs ⊆ {1..nRegs}
callerSaveRegs ⊆ Regs→ {0, 1}
loadCost ∈ N
storeCost ∈ N
storePairCost ∈ N
loadPairCost ∈ N
invStoreCost ∈ N
invLoadCost ∈ N

where nRegs is total number of machine registers available to a
register allocator.

The parameter Regs represents the set of available registers. A
subset of machine registers are designated as caller save registers
and are represented by callerSaveRegs. The contents of caller save
registers are not saved across calls. Each function must save and
restore any register that is not a caller save register (that is, those
other registers are callee save registers).

Parameters loadCost and storeCost give the cost of one single
load and one single store, respectively. Similarly loadPairCost and
storePairCost give the cost of a load-pair and store-pair instruction,
respectively. The cost of inversion caused by a store-pair and load-
pair instruction is given by invStoreCost and invLoadCost respec-
tively.

We omit the description of some parameters that give infor-
mation about pre-colored registers, known-loads (load instructions
that are already present), known-stores (store instructions that are
already present),

Input interface requirements. RALF produces MIRA pro-
grams which satisfy the following requirements.

• Type correct:We check the type correctness of each parame-
ter definition in the MIRA program. For example, for callInst
we check that the listed instructions are indeed in the interval
specified by Insts.

• Three address codes:We check that the MIRA program is
similar to three-address code: Req allows at most two pseudos
to be used in any instruction, and Def allows at most one pseudo
or a machine register to be defined in any instruction.

• Liveness:The liveness information in the output is conservative,
that is, if a pseudo is live in the MIRA program, then the

p1 = 1;
p1 = p1 + 2;
p2 = p1 + 3;

Figure 3. Sample input program, using two pseudos.

set insts := i1 i2 i3 ;
set pseudos := p1 p2 ;
set regs := r0 r1 r2 ;
set loc := p1 p2;
param: callerSave:=
r0 1 ;
param: Freq:=
i1 1
i2 1
i3 1 ;
param: Live:=
i1 p1 1
i2 p1 1
i3 p1 1
i3 p2 1 ;
param: prevInst:=
i1 i2 1
i2 i3 1 ;
param: joinInst:=;

param: Def:=
i1 p1 1
i2 p1 1
i3 p2 1 ;
param: Req:=
i2 p1 1
i3 p1 1
i3 p2 1 ;
param: moveInst:= ;
param: jumpInst:= ;
param: callInst:= ;
param nRegs := 3;
param nInsts := 3 ;
param nPseudos := 3;
param loadCost := 41;
param loadPairCost := 42;
param storeCost := 51;
param storePairCost := 52;

Figure 4. Sample MIRA program.

liveness information given in the Live section of the MIRA
program will reflect that.

We enforce these requirements to ensure a simple and convenient
program model for any plugged-in register allocator.

Example MIRA program. We show in Figure 4 a sample of
the generated MIRA code for the C code shown in Figure 3. In
Figure 4 the program has three instructions and two pseudos, and
the machine has three registers. For readability we use i1, i2, . . . as
names of the elements of Insts, we use p1, p2, . . . as names of the
elements of Pseudos, and we use r0, r1, . . . as names of the elements
of Regs; in RALF the elements of such sets are all represented as
numbers. Parameters are specified by indexing over these sets and
hold integer values. The framework outputs parameters and value
pairs for nonzero values only.

Figure 4 specifies that register r0 is a caller save register, each
instruction has a (static) execution frequency of 1, and pseudos p1
is live in all the instructions and pseudos p2 is live only in the last
instruction. TheprevInst parameter gives the control flow of the
program: i1 precedes i2, and i2 precedes i3. ParametersDef and
Req give the def and use information: pseudo p1 is defined in in-
struction i1 and i2 and pseudo p2 is defined in i3. Similarly, in-
struction i2 uses pseudo p1, and instruction i3 uses pseudos p1 and
p2. In the end, the framework outputs a set of scalar parameters;
number of registers, total number of instructions, number of pseu-
dos, cost of single load, cost of a load-pair, store cost, and cost of a
store-pair.

2.2 Output Interface - FORD

For a register allocator framework to be generally applicable it
must be flexible enough to understand different types of outputs of
different register allocators, e.g. pseudo to register mapping, spill
loads and stores, coalescing, stack location allocation, pairing of
loads and stores etc.

RALF provides a simple format FORD that a plugged-in reg-
ister allocator can use to encode different register allocation direc-



tives. RALF uses the directives to generate executable code. FORD
is organized by sections; it has ten different sections correspond-
ing to different types of information that a register allocator might
want to convey. Each section consists of a set of tuples as described
below.

PsR ⊆ Insts× Pseudos× Regs
xDef ⊆ Insts× Pseudos× Regs
f ⊆ Pseudos× Pseudos∪ {−1}
spLoad ⊆ Insts× Pseudos× Regs
loadPair ⊆ Insts× Pseudos× Pseudos
inverseLoad ⊆ Insts× {0, 1}
spStore ⊆ Insts× Pseudos× Regs
storePair ⊆ Insts× Pseudos× Pseudos
inverseStore ⊆ Insts× {0, 1}
moveInst ⊆ Insts× Regs× Regs

To minimize the communication overhead between the frame-
work and the register allocator, RALF requires that the register al-
locator outputs just the nonzero entries for each tuple in each of the
sections, wherever applicable.

The ten sections in FORD can be classified into three categories
depending on the type of the directives: register assignment infor-
mation, spill code information, and new instructions.

Register assignment information.The PsR section gives the
pseudo to register map at each instruction. This section consists of
tuples of the form (i, p, r), signifying pseudop is present in register
r at instructioni.

For each pseudo that is set in an instruction the target register
is given in thexDef section. This section consists of tuples of the
form (i, p, r), signifying pseudop is set in registerr at instruction
i.

Spill code information. For each pseudo, sectionf gives the
assigned stack location number and -1 if the pseudo does not have
any assigned location. Each tuple is of the form (p, l), signifying
pseudop gets locationl.

Pseudo reload information is given in thespLoad section. This
section consists of tuples of the form (i, p, r), signifying pseudop is
loaded in registerr before instructioni. If two loads can be replaced
by a load-pair instruction then that is specified in theloadPair
section. Each tuple in this section is of the form (i, p1, p2), sig-
nifying pseudop1 andp2 are loaded before instructioni and can
be combined to make a load-pair instruction. For each tuple in the
loadPair section, an entry in theinverseLoad section gives in-
formation aboutinversion[NP03]. Each entry in this section is 1, if
the corresponding entry in theloadPair section requires an inver-
sion, and 0 otherwise.

Pseudo spill information is given in thespStore section. This
section consists of tuples of the form (i, p, r), signifying pseudo
p is stored from registerr after instructioni. If two stores can
be replaced by a stores-pair instruction then that is specified in
the storePair section. Each tuple in this section is of the form
(i, p1, p2), signifying pseudop1 andp2 are stored after instruction
i and can be combined to make a store-pair instruction. For each
tuple in thestorePair section, an entry in theinverseStore
section provides information aboutinversion. Each entry in this
section is 1 if the corresponding entry in thestorePair section
requires an inversion, and 0 otherwise.

New instructions. If the register allocator wants to insert any
move instruction (because of coalescing or any other pass), it can
instruct the framework to do so by themoveInst section. Each
tuple in this section is of the form (i, r1, r2), signifying thatr2 is
moved tor1 before instructioni.

Capabilities to insert bitwise operations is one more popular re-
quirement for some register allocators. Such a feature is helpful
in bitwidth-aware register allocation schemes such as the one pre-

PsR :=
i2 p1 r0
i3 p1 r0 ;
xDef :=
i1 p1 r0
i2 p1 r0
i3 p2 r0 ;
spLoad:= ;
spStore:= ;

f:=
p1 -1
p2 -1 ;
loadPair:=;
storePair:=;
inverseLoad:=;
inverseStore:=;
moveInst:=;

Figure 5. Sample FORD directives.

sented by Tallam and Gupta [TG03]). RALF supports such capa-
bilities but we have omitted them from this paper.

Example output interface.Fig 5 presents a sample output from
a register allocator for the sample code shown in Fig 3. One register
is enough to do the register allocation in this program. The register
used is the caller-save registerr0, and hence the allocator need not
save or restore callee save registers. Since both the pseudos have
been placed in registers, they do not need a place in the stack (and
hence the negative values in thef section).

3. Safety Checks
A compiler framework that allows plugging of register allocators
can help with bug finding in several ways:

1. No checks are performed by the framework and instead errors
may be caught by an assembler or spotted during execution of
the target code.

2. The framework can throw anexceptionduring the post-register
allocation phase when it encounters an inconsistency.

3. The framework performs safety checks before applying the
register allocation directives.

The drawback of the first two options is that it is not easy to
pin point the exact nature of error. The third option is eager and
aggressively checks for consistency and hence can provide better
debugging support for the register allocator.

RALF has a safety checker which enforces both syntactic and
semantic constraints on a MIRA program and a FORD file. The
goal of the checker is to ensure that the plugged-in register alloca-
tor preserves the syntax and semantics of the input program. Non-
compliance with these checks might lead to a situation in which
the framework cannot generate machine code or generates incor-
rect machine code.

3.1 Syntactic constraints

Syntactic constraints are simple checks to ensure that every entry
output by the register allocator is valid. RALF checks that every
instruction, pseudo, register and location in the FORD directives
are from the sets Insts, Pseudos, Regs, and Loc, respectively.

3.2 Semantic constraints

Semantic constraints are checks to enforce the underlying seman-
tics of register allocation. RALF enforces the following require-
ments. Absence of such an enforcement can have varying implica-
tions: Assembler error, incorrect program behavior during execu-
tion, failure of the framework to generate any code. We categorize
these constraints based on the target phase.

Assembler error

Compliance of these checks are required for the assembler to parse
the machine code generated by RALF.



Defined register.Everyset instruction (declared using the Def
map) must have a target register.

∀i ∈ Insts: ∀p ∈ Pseudos:
(i, p) ∈ Def ⇒ ∃r ∈ Regs: (i, p, r) ∈ xDef(i, p, r)

For example, in the directives specified in Figure 5 for the
MIRA program given in Figure 4, it would have been erroneous
if ∀ r ∈ Regs,(i1,p1,r) 6∈ xDef.

Used register.Each used temporary must have a register as-
signed to it. If an instruction uses a pseudo then it must be available
in a register. Also, if an instruction sets a pseudo, then the pseudo
must be assigned the target register.

∀i ∈ Insts: ∀p ∈ Pseudos:
(i, p) ∈ Req⇒ ∃r ∈ Regs: (i, p, r) ∈ PsR

For example, in the directives specified in Figure 5 for the
MIRA program given in Figure 4, it would have been erroneous
if ∀ r ∈ Regs,(i2,p1,r) 6∈ PsR.

Incorrect program behavior

Incorrect register allocation may lead to generation of semantically
incorrect machine code. Such errors lead to undefined behavior
(incorrect output, segmentation faults etc) during the execution of
generated binary.

Consistent pseudosA pseudo can be mapped to at most one
register at any time.

∀i ∈ Insts: ∀p ∈ Pseudos: ∀r1 ∈ Regs: ∀r2 ∈ Regs:
r1 6= r2 ⇒ ((i, p, r1) ∈ PsR⇒ (i, p, r2) 6∈ PsR)

For example, in the directives specified in Figure 5 for the
MIRA program given in Figure 4, it would have been erroneous
if {(i2,p1,r0),(i2,p1,r1)} ⊆ PsR.

Conflicting registers A register can be bound to at most one
pseudo at any time.

∀i ∈ Insts: ∀p1 ∈ Pseudos: ∀p2 ∈ Pseudos:
∀r ∈ Regs: p1 6= p2 ⇒ ((i, p1, r) ∈ PsR⇒ (i, p2, r) 6∈ PsR)

For example, in the directives specified in Figure 5 for the MIRA
program given in Figure 4, it would have been erroneous if
{(i2,p1,r0),(i2,p2,r0)} ⊆ PsR.

Live pseudo.A pseudo must be alive to be mapped to a register.

∀i ∈ Insts: ∀p ∈ Pseudos: ∀r ∈ Regs:
(i, p, r) ∈ PsR⇒ Live(i, p) = 1

For example, in the directives specified in Figure 5 for the
MIRA program given in Figure 4, it would have been erroneous
if ∃ r ∈ Regs,(i1,p1,r)∈ PsR.

Reload.Every reload requires that after the reload, the pseudo
be available in the destination register of the reload instruction.

∀i ∈ Insts: ∀p ∈ Pseudos: ∀r ∈ Regs:
(i, p, r) ∈ spLoad⇒ (i, p, r) ∈ PsR

For example, in the directives specified in Figure 5 for the
MIRA program given in Figure 4, it would have been erroneous
if ∃ r ∈ Regs,(i1,p1,r)∈ spLoad.

Spill-store. Every spill-store requires that the pseudo be avail-
able in the source register of the spill store before the location of
that spill-store.

∀i ∈ Insts: ∀p ∈ Pseudos: ∀r ∈ Regs:
(i, p, r) ∈ spStore⇒ (i, p, r) ∈ (PsR∪ xDef)

For example, in the directives specified in Figure 5 for the
MIRA program given in Figure 4, it would have been erroneous
if ∃ r ∈ Regs,(i1,p2,r)∈ spStore.

Stack location.Every pseudo that is loaded or stored must have
a stack location.

∀i ∈ Insts: ∀p ∈ Pseudos: ∀r ∈ Regs:
(i, p, r) ∈ (spStore∪ spLoad) ⇒ (p,−1) 6∈ f

Neighbors.If two pseudosp1 andp2 are loaded (or stored) us-
ing a load-pair (or store-pair) instruction then they must be assigned
neighboring locations.

∀i ∈ Insts: ∀p1, p2 ∈ Pseudos: ∀pi, pj ∈ Loc :
((i, p1, p2) ∈ storePair∧ (p1, pi), (p2, pj) ∈ f) ⇒

abs(j − i) = 1

∀i ∈ Insts: ∀p1, p2 ∈ Pseudos: ∀pi, pj ∈ Loc :
((i, p1, p2) ∈ loadPair∧ (p1, pi), (p2, pj) ∈ f) ⇒

abs(j − i) = 1

The function abs returns the absolute value of the argument.
Spill code after jump instructions. If a pseudo is stored after

a (conditional) jump instruction, it’s semantics can be misleading,
because such spill code will be executed in only one of the branches
(taken or follow through). And hence RALF issues a warning here.

[Warning]
∀i ∈ Insts: ∀p ∈ Pseudos: ∀r ∈ Regs:
jumpInst(i) ⇒ (i, p, r) 6∈ spStore

Problems in code generation

These are the errors that halt the framework, because such direc-
tives cannot be processed.

Double-load.A double-load instruction before any instruction
i requires that there are two load instructions beforei.

∀i ∈ Insts: ∀p1, p2 ∈ Pseudos:
(i, p1, p2) ∈ loadPair⇒

(∃r1, r2 ∈ Regs: (i, p1, r1), (i, p2, r2) ∈ spLoad)

For example, in the directives specified in Figure 5 for the MIRA
program given in Figure 4, it would have been erroneous if
(i1,p1,p2)∈ loadPair.

Double-store.A double-store instruction after any instructioni
requires that there are two after instructions beforei.

∀i ∈ Insts: ∀p1, p2 ∈ Pseudos:
(i, p1, p2) ∈ storePair⇒

(∃r1, r2 ∈ Regs: (i, p1, r1), (i, p2, r2) ∈ spStore)

For example, in the directives specified in Figure 5 for the
MIRA program given in Figure 4, it would have been erroneous
if (i1,p1,p2)∈ storePair.

The correctness checker takes the MIRA program and the out-
put directives in FORD format and then checks to see that the above
constraints are met. RALF applies these directives only if these
constraints are satisfied.

Our safety checks are independent of the register allocator. The
safety checks are necessary for ensuring the correct functioning of
the framework. The safety checks are also necessary for the cor-
rectness of the executable code generated by the framework. These
safety checks offer an enormous amount of help when debugging
a register allocator. Since errors are caught at an early stage, the
safety checks help with pin pointing the exact source of an error.

4. Experimental Results
We have implemented RALF over the strongARM port of the
gcc-2.95.2 compiler. The framework gets activated by different
compiler switches and is implemented by around 5000+ lines of
C code and around 125+ functions.



function NaiveRegAlloc()
for each instructioni do

for p1 andp2 used ini
loadp1 beforei into register r4
loadp2 beforei into register r5

for p3 defined ini
set r4 as the target register fori
storep3 afteri from register r4

Figure 6. Pseudo code for naive register allocator.

4.1 Versatility: Test by Implementation

We show the versatility of our framework by implementing a va-
riety of register allocators. Each of the register allocators has a
different need for data about programs and hence poses different
types of challenges to the framework. We have implemented a va-
riety of register allocators to cover a spectrum of typical needs
of different register allocators. They are a naive register alloca-
tor, linear scan register allocation [PS99], iterated register coalesc-
ing [GA96], integer linear program (ILP) based register alloca-
tion [NP05], stack location allocation combined with register al-
location (SARA) [NP05], and chordal graph based register alloca-
tion [PP05]. We present the naive register allocator as a vehicle for
explaining some detailed points about RALF. For the reader’s con-
venience, we give a brief presentation of the register allocators in
the appendix.

Naive Register Allocator

The most naive register allocator would load each pseudo before
each use and store it back after each definition. The pseudo code
for such an allocator is presented in Figure 6. Because of the
input interface requirements presented in section 2.1 the algorithm
assumes that there will be at most two pseudos used and at most one
pseudo defined in any instruction. Thus, there will be at most two
loads before any instruction and after each instruction there will be
at most one store instruction. The naive register allocator requires
that there will be at least two free registers, which is the minimum
number of registers required to do register allocation for code in
three address form. The naive register allocator, though only of
academic interest, can be used as a first level test case for a register
allocation framework.

For the code snippet shown in Figure 3, the output generated
(FORD directives) by the naive register allocator is shown in Fig-
ure 7. It can be easily checked that all the syntactic and seman-
tic checks specified in section 3 are satisfied. For example, the se-
mantic constraint Stack Location, would require that bothp1 and
p2 have a stack location; the sectionf in Figure 7 confirms that.
Thus, the correctness checker verifies the FORD directives and then
RALF generates assembly code as shown in Figure 8. The frame-
work places pseudosp1 andp2 at the memory locations pointed
by sp-4 andsp-8 respectively, wheresp is the stack pointer. The
loads and stores before and after everymov andadd instructions
are in accordance with the register allocation directives, shown in
Figure 7.

Owing to the simplicity of the allocation scheme the code gen-
erated is obviously inefficient. However, it can also be seen that,
naive register allocator does not use any caller save registers and
hence avoids some extra spills/reloads that might have taken place
during calls.

4.2 Experience with Register Allocation

In this section we present our experience in using RALF with
the register allocation techniques listed in section 4.1. We will

PsR :=
i2 p1 r0
i3 p1 r0 ;
xdef :=
i1 p1 r0
i2 p1 r0
i3 p2 r0 ;
spStore:=
i1 p1 r0
i2 p1 r0
i3 p2 r0 ;

f:=
p1 p1
p2 p2 ;
spLoad:=
i2 p1 r0
i3 p1 r0 ;
loadPair:=;
storePair:=;
inverseLoad:=;
inverseStore:=;
moveInst:=;

Figure 7. Output of Naive register allocator for the code snippet in
Figure 3.

mov r0, 1
str [sp-4], r0

ldr r0, [sp-4]
add r0, r0, 2
str [sp-4], r0

ldr r0, [sp-4]
add r0, r0, 3
str [sp-8], r0

Figure 8. Assembly code generated from the register allocator
output in Figure 7

RA #LOC Hrs to Code
RA Interface the interface

Naive 196 (J) 773 (J) < 10
IRC 3538 (J) 773 (J) < 10
CG 4134 (J) 773 (J) < 10
LS 385 (J)+ 1100 (J)+ < 5
RAi 495 (A) 298 (A) < 1
SARA 731 (A) 400 (A) < 1

Table 1. Experimental evaluation of RALF.

be using the following abbreviations: (Naive - The naive register
allocator, IRC - Iterated register coalescing, LS - Linear scan, CG
- Register allocation via coloring chordal graphs, RAi - ILP based
register allocation, SARA - Combined ILP based stack allocation
and register allocation)

For each of these register allocator techniques, Table 1 presents
some statistics to demonstrate the ease of use of the framework.
For each of the register allocation scheme we present the number
of lines for the register allocation code, number of lines of code
required to interface with the framework and a rough estimate on
the number of hours to code the interface. The number of lines
of code is annotated by (J) or (A), signifying the coding language
used: Java or AMPL [FGK93]. The framework also provides a
MIRA grammar in javacc format. For LS we use this grammar and
the provided library classes to read the input, generate intermediate
data structures and write the output. We annotate with a ’+’ symbol
to designate the use of those library classes. It can be seen that
the number of hours taken to write the interface code is minimal.
We found in our experience that most of the time, the interface
code once written could be reused. For example we could use the
same interface code for Naive, CG, and IRC. For the two ILP based
register allocators we present here, we did not have to write much



bench #LOC #RTL #fns

sieve 39 134 3
matmul 56 254 6
queen 58 144 4
url 790 1264 12
yacr2 3979 10838 58
ft 2155 3218 35
c4 885 3388 21

gcc-O2 Naive IRC DMC LS RA SARA
mem csr mem csr mem csr mem csr mem csr mem csr mem csr

0 9 96 14 0 14 0 18 7 17 0 9 0 9
9 22 194 23 7 23 7 30 37 24 9 20 7 19

11 14 110 14 14 14 12 17 24 13 12 11 8 11
115 62 845 42 235 48 165 61 313 16 120 56 120 58

1060 123 2287 358 2144 295 7992 258 3056 335 1003 123 1109 142
219 92 1376 116 609 91 369 156 538 151 225 87 230 106
189 289 3547 123 406 142 434 171 979 148 190 305 184 320

Table 2. Benchmark characteristics and compile time statistics
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Figure 9. Comparison of different register allocators using execution time of benchmarks as the metric.

interface code as the syntax of MIRA is a subset of AMPL. We just
had to write some code to ignore some parameters that are unused.

We have implemented each of the register allocators listed in
section 4.1 in RALF and then tested the generated the target code
on a Stargate platform. Stargate has a StrongARM/XScale proces-
sor, 64MB SDRAM, and no cache. We have drawn our benchmark
programs from a variety of sources:

• Stanford Benchmark suite: The three benchmarks sieve, mat-
mul, and queen, though small and simple, are typical of the
subroutines of many larger programs.

• NetBench: Url is a network related benchmark from the Net-
Bench [MBSW01] suite, that implements url based switching.

• Pointer-intensive benchmark: This benchmark suite is a collec-
tion of pointer-intensive benchmarks [ABS94]. Yacr2 is an im-
plementation of a channel router and Ft is an implementation of
a minimum spanning tree algorithm [FT87].

• The c4 benchmark is taken from the comp.benchmarks FAQ at
http://www.cs.wisc.edu/~thomas/comp.benchmarks.FAQ.html.
The c4 benchmark is an implementation of the connect-4 [All88]
game.

The static characteristics and compile time statistics of these bench-
marks are presented in Table 2. The static characteristics we present
here include the number of lines of C code, the number of instruc-
tions seen by the register allocator (which depends on the number
of RTL instructions in the intermediate representation of the pro-
gram), and the number of functions. All these benchmarks have the
common characteristic that they are non-floating point benchmarks.
We chose benchmarks that operate on (sub)integer / character types
only. This is to ensure that the programs need to access only non-
floating point registers. (We had to edit few of them to remove some
code that uses floating point operations; we did so only after ensur-
ing that the code with floating point operations is not critical to
the behavior of the program.) For each benchmark, we present two
compile time statistics: The number of memory accesses (mem) in-
troduced (because of spill/reload instructions), and the number of
callee save registers (csr) used (leads to more memory accesses).

In Figure 9 we present a comparative study of the register
allocators described in section 4.1. The graph is based on the
execution time numbers normalized to the execution time numbers
of the same benchmark programs compiled with the gcc compiler
at O2 optimization level.

The naive register allocator performs most poorly because of the
number of loads and stores inserted. Because of the optimal nature



of the solution provided by the ILP based register allocator, it tends
to outperform the heuristic based solutions. It can be seen that the
performance of CG (register allocation by coloring chordal graphs)
and ICR (Iterated register coalescing) are quite comparable to each
other as well as gcc-O2. The register allocator present in the gcc
compiler uses a two phase algorithm for register allocation: (a) ag-
gressive register allocation for local variables within basic blocks,
followed by (b) conservative allocation for the whole function. It
can be seen that even without tuning CG and ICR much, their per-
formance is comparable to that of gcc.

One important observation that can be made from the graph is
that it suggests an upper limit on the gains any register allocator can
make. Even in the best of the cases, the code generated by the naive
allocator is worse by a factor of 2.5 (as compared to the ILP based
allocator). One would expect a much higher gain just because of
the number of loads and stores the naive allocator would introduce.
However, the important point is that most of these benchmarks deal
with structures and arrays that require compulsory memory access.
And it has been observed that those accesses overshadow the spill
cost. So, if speed is not a concern at all then even naive register al-
locator will do a good job. A simple approach like linear scan, also
gives good results in most of the cases. And by improving it a lit-
tle bit (using chordal graph based approach etc) the improvements
are many folds. However, if compiler wants to drain every bit of
improvement possible then it can fallback upon ILP based or other
near-optimal solutions.

Let us compare the static counts in Table 2 and the execution
times in Figure 9. For example, for the benchmark ft, we have
a significant difference in the static counts among the register
allocators, but only small differences in the execution times. Those
numbers confirm that benchmark execution times give a better
comparison of register allocators than static counts of spill code
and number of callee save registers.

Table 3 presents a list of different register allocators (includ-
ing the ones described in section 4.1 and more) and the different
types of data required by them. We categorize the data in a for-
mat similar to the input interface described in section 2.1: Three
different sets: I(nsts), P(seudos), and L(oc), and seven parameters:
L(ive), R(eq), D(ef), P(revI), J(oinI), C(allI), and M(oveI).We have
grouped all the register allocators into four categories: (a) Graph
coloring based, (b) Control flow based, (c) ILP based, and (d) oth-
ers. It can be noticed that the data provided by RALF to the register
allocators is expressive enough that most of the register allocators
can be implemented. Because of the limitation of the current frame-
work about handling pseudos of different sizes, namely that RALF
assumes that every pseudo is of the same size, register allocators
requiring the size of the pseudos (e.g. [TG03]) would not be able
to perform to their fullest potential.

5. Conclusion
We have presented a framework for end-to-end evaluation of regis-
ter allocators. We have shown that the framework is easy to use and
versatile enough that a variety of register allocation schemes can be
implemented relatively easily.

Most publicly available compilers and general compiler frame-
works present a complicated interface for register allocators, partly
due to many corner cases that can arise during compilation. In con-
trast, many papers on register allocation focus on the core problems
and ignore the corner cases. RALF bridges the gap by (a) present-
ing various pieces of program-specific information independently
and (b) hiding some complications from the register allocator by
simplifying the program model. As a result, RALF has the follow-
ing limitations:

• RALF handles integer and sub-integer data types, but not tem-
poraries of type float or double.

• RALF does not provide any information about thesizeof the
pseudos and lets the programmer assume that all the pseudos
are of the same size. A register allocator requiring size infor-
mation will find RALF inadequate.

• RALF does not handle pair registers (and hence not pair tempo-
raries). We believe this limitation can be overcome by extending
MIRA with information about the pairing of machine registers.

• RALF works for ARM targets only.

Along with RALF, we have a MIRA grammar in javacc format.
Programmers can build libraries based on the MIRA grammar
which can be used by many register allocators. Currently we have
implemented library classes to display a MIRA program as three
address codes, build live intervals, and build interference graphs.
We also have implemented a MIRA program visualizer that can
graphically display the control flow and data flow information
in the program. It also uses the use-def information information
to generate interference graphs. The framework, MIRA grammar,
grammer for FORD directives, and our tools can be found at the
RALF homepage:

http://compilers.cs.ucla.edu/ralf
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A. Appendix: Register Allocation Schemes
A.1 Linear Scan Register Allocation

Linear scan register allocation was proposed by Poletto and Sarkar [PS99]
and is popular for its speed. The allocator assumes a linear repre-
sentation for the input program. That is, the set of instructions are
countably finite. (Note, any program can be presented in an linear
form by many ways: for example doing a depth first search over
the control flow graph is one such option, generated is shown in
Figure 8. we use here.). This allocator depends on the live intervals
information which is computed easily from the variable liveness
information. Two intervals are considered to be interfering if they
overlap. The goal of linear scan algorithm is to allocate registers to
as many intervals as possible from a given set of registers such that
no two overlapping intervals get the same register.

The basic idea of the algorithm is as follows: At the beginning
of each new interval, the allocator tries to see if the number of
live intervals is less than the available number of registers. If so,
then it allocates one of the available registers to the new live range.
Else it spills one of the live ranges to make a register available
and then assigns this registers to the new live range. The spilled
intervals set is given by a set of pairs of pseudos and instructions
(p, i), which denotes that pseudop is live at instructioni but has its
interval spilled. The candidate live range for spilling can be chosen
by different heuristics and accordingly the quality of the code will
vary. For this paper we chose a simple heuristic; the end point of the
interval, that is, the interval that whose end point is farthest from
the current point is spilled. For each pseudo and instruction pair
(p, i), corresponding to any spilled interval



Figure 10. Iterated register coalescing.

• If p used ini (given in Req map), we reload the pseudos from
the memory using two available registers beforei.

• If p is set ini (given by the Def map), we write to an available
register and generate spill code to store that register back to the
location of the pseudo afteri.

A.2 Iterated Register Coalescing

George and Appel proposed iterated register coalescing [GA96]
to do aggressive coalescing along with graph coloring based reg-
ister allocation. The techniques proposed have been found to be
improvements over Chaitin [Cha82] and Briggs [BCT94] methods
in terms of elimination of move instructions and overall execution
time. The goal of the algorithm is to identify as many opportunities
as possible to coalesce, to attach the coalesced pseudos together
with same register, remove the move instruction and as a result re-
duce the register pressure.

The algorithm shown in Figure 10 has five main phases over
which it iterates selectively.

1. Build: Builds interference graph and recognize operands par-
ticipating in move instructions. Mark every node corresponding
to a pseudo participating in a move instructionmove-related.

2. Simplify: Modify the interference graph, by removing a node
(corresponding to one or more pseudos) of low degree that is
not part of any move instruction.

3. Coalesce: Do conservative coalescing [BCT94]. Repeat steps
2 and 3 until we get graph where each node has degree higher
than the number of available registers or each node is part of a
move instruction.

4. Freeze + potential spill: If neither step 2 and step 3 can
be applied select a move-related node of low degree and reset
themove-relatedmark. Go back to step 2.

5. Select + actual spill: Assign colors to nodes in the
graph. If some pseudos are spilled then go back to step 1 and
see if these spills have changed the colorability of the rest of
the graph.

Even though the this algorithm could iterate for a number of times
(linear in the number of pseudos), in practice this algorithm iterates
very few times and has been found to be fast for an aggressive
algorithm.

A.3 ILP-based Register Allocation

We use the integer linear program (ILP) based register allocator
(RAi) presented in [NP05] as an example of ILP based register
allocator. The register allocator has its similarities with other ILP
based register allocators of Goodwin and Wilken [GW96] and of
Appel and George [AG01].

This register allocator takes the benefits of liveness information
to reduce the state space and search space together. It also takes
into consideration known loads and known stores and tries to see if
they can be moved around to get better performance.

Figure 11. Chordal graph based register allocation.

A.4 SARA

We present in [NP05] a combined phase for register allocation and
stack location allocation. Such a register allocator can be effective
for processors like StrongARM (which have load-multiple/store-
multiple instructions to load and store multiple words at a time)
and memories like SDRAM (a 64 bit memory and allows efficient
access of 64 bits) when present together. We use SARA as one more
of our points of reference.

In SARA both register allocator as well as stack location allo-
cation both are specified as a single integer-linear-program (ILP),
with a single objective function. This combined phase creates a syn-
ergy between register assignment, spill code generation and stack
location allocation. For a such a phase to be effective, the frame-
work must be able to inform the register allocator about the known-
loads/known-stores as well as it the register allocator should be able
to communicate back to the framework any load-pairs and store-
pairs generated, along with the inversions. Our framework RALF
provides all of these, and more.

A.5 Register Allocation via Coloring of Chordal Graphs

The chordal graph based allocator [PP05] is an iterative algorithm
that has four phases: (1) spilling, (2) coloring, (3) reconstruction
of live ranges, (4) coalescing. The algorithm is represented in Fig-
ure 11 is an extension of [PP05]. In contrast to the original algo-
rithm which had a linear transition among these phases, here the
register allocator makes multiple passes over the phases to gener-
ate better spill code. The algorithm works for both chordal and non-
chordal interference graphs; however, when the interference graph
is chordal, it can find an optimal allocation of registers if spilling
does not occurs. They show that the majority of programs under
their consideration have chordal interference graphs and hence re-
sult in good optimal coloring.

The chordal based approach searches for potential spills before
the coloring phase. If the chromatic number of the (chordal) graph
is greater than the quantity of available registers, spilling must be
performed. In order to minimize the number of spills, the algorithm
attempts to remove nodes that are part of many cliques. (A clique
of a graphG is a complete subgraph ofG.) If the spilling phase is
executed, it is necessary to reconstruct the control flow graph of the
target program, and re-execute the spill analysis. The next phase is
the coloring of the interference graph. A chordal graphG = (V, E)
can be optimally colored inO(|V | + |E|) time. It is possible to
prove that after the spilling stage, no further spills will happen in
the coloring phase. The last stage of the algorithm is the coalescing
of move instructions. Coalescing is performed in a greedy fashion:
for each pair of move related registers, the algorithm attempts to
assign them the same color.


