
Static Validation of Register Allocation

Fernando Magno Quintão Pereira

UCLA
University of California, Los Angeles

Abstract. Testing the implementation of register allocation algorithms
is a difficult and time-consuming activity. Errors in the code generated
by the register allocator tend to manifest sporadically, often many in-
structions past the problematic point. In this paper we formalize the
concept of semantic consistency of register allocation directives. Also,
we present a collection of data flow algorithms that statically validates
the translation between two representations of a program: the first has
an unbounded number of temporary variables, whereas the second can
only use a limited number of registers. The need for this validation in-
frastructure emerged during the development of actual register allocators
for the Strong ARM architecture, and its availability greatly improved
our ability to trace errors in register allocation settings.

1 Introduction

The core register allocation problem [18] consists in mapping a program m, that
can use a virtually unbounded number of temporary variables, to a program
f that contains a finite, and possibly small number of registers. We call this
mapping a set of register allocation directives. Informally, we say that the allo-
cation directives are semantically consistent if m and f always produce the same
observable results when interpreted with equal inputs.

Register allocation is a complex and error prone activity. The validation of
a register allocation algorithm is a especially difficult task. Errors can surface
in non-trivial ways, possibly many instructions after the erroneous instruction.
Moreover, the low-level nature of the machine code, and also its big size, makes
a visual inspection of the register allocator’s output a tedious, and most often,
non-effective task. Therefore, when implementing register allocation algorithms,
developers can greatly benefit from tools that help them to find errors in the
code been produced.

In this paper we present a collection of data flow algorithms that statically
validate the translation between two intermediate representations of a program.
The first has access to an unbounded number of variables. The second can only
use a finite, and generally small, number of registers. Our translation validation
infrastructure certifies that this mapping is semantically consistent, or, if this
is not the case, it lists the sources of inconsistencies. The proposed verification
framework differs from previous works because it does not depend on a particular
implementation of a register allocator, e.g. graph coloring, ILP, linear scan, etc.

The algorithms and proofs presented in this paper verify the correctness of the
output of a register allocation algorithm, not the algorithm itself. Moreover, our
algorithms do not target any particular computer architecture.

The remainder of this paper is organized as follows: Section 2 presents other
approaches for verifying the correctness of register allocation directives. Section 3
formally introduces the concept of semantic consistency of register allocation
directives. Section 4 describes the algorithms that we have used to verify semantic
consistency. Finally, Section 5 concludes the paper.

1.1 Motivations

Our interest for the proposed validation infrastructure arouse during the im-
plementation of three register allocation algorithms: the usage based count [6],
the iterated register coalescing [8], and the non-iterative chordal coloring algo-
rithm [17]. Such algorithms have been plugged into gcc by means of a register
allocation framework known as Ralf (Register ALlocation Framework) [12]. A
comparison between these algorithms, and many others, can be found in [12].

Gcc has a modular structure that allows to plug and test different register
allocation algorithm; however, it does not check if the mapping between tem-
poraries and registers is correct. Ralf is a framework specifically designed to
facilitate the implementation and testing of register allocation algorithms. It is
essentially a new layer built on top of gcc. Ralf hides all the internal complexity
of the gcc framework, because its input and output data are ASCII files.

In addition of enhancing gcc with a more amiable interface, Ralf implements
a static verification phase that checks the output produced by the register alloca-
tor. Examples of properties verified by Ralf are: (a) every temporary must have
a register allocated to it; (b) if a store instruction i is produced to save the value
of a spilled register r, then r must be alive at i; (c) two different temporaries
used at the same instruction cannot be allocated to the same machine register.
Although the static verification performed by this framework is an improvement
on gcc, it is not complete. For instance, Ralf does not report as an error the pos-
sibility of two live ranges of the same temporary to reach a joint point allocated
to different machine registers.

2 Related Works

Although translation-validation is a well know topic in the compiler literature,
little has been said about the verification of register allocators. To the best of
our knowledge, the first explicit description of correctness of register allocation
was given by Leroy [10]. However, correctness proofs for specific algorithms have
been described before. For example, Naik and Palsberg [11] have proved the cor-
rectness of the ILP-based register allocator of Appel and George [3]. As another
example, Ohori [16] has designed a register allocation algorithm as a series of
proof transformations. These transformations specify how different representa-
tions of a program can be sequentially reached, until machine code is generated.

Necula [14] presents a translation validation infrastructure for the gcc compiler
that includes register allocation. One of the improvements of Necula’s scheme
over other approaches is to treat the memory address of spilled registers as
variables. However, this technique relies on specific characteristics of the gcc
compiler, such as the addressing modes.

Leroy [10] formally describes a technique to validate the output of graph
coloring based register allocation algorithms. Basically, if the interference graph
contains a pair of adjacent temporaries allocated to the same register, the verifier
emits an error, otherwise it assumes that the code generated is correct. Similar
approaches have been adopted by Andersson [2] and Pereira et al [17]. This
technique only serves the graph-coloring paradigm, and, at least in [17], it was
not able to detect situations in which a dead definition overwrite a live register.

Another way to guarantee that register allocation maintain certain properties
is to augment the machine code been produced with annotations. Such annota-
tions describe invariant properties that must always be true during the program
execution (e.g.: the value of some variable is always greater than 0). In general
the annotations are propagated across the intermediate representations used by
the compiler, until the machine code. Examples of this approach are the type
annotations used by Agat [1]. Types increase the readability of the assembly
code, and ensure that data are not used in improper ways, e.g. a register holding
an integer value is always used as an integer. The Touchstone [15] compiler goes
a step further, and accommodates more general annotations, such as memory
bounds. The designers of Touchstone argue that if the properties specified by the
annotations are certified by a theorem prover for the intermediate representa-
tion, than they are also true for the machine code. Although these annotations
reduce the possibility of errors at the assembly level, they do not guarantee
that the output of the register allocator is completely correct. It is still possible
that live temporaries be overwritten, or that live ranges representing the same
temporary reach a joint point assigned to different registers.

3 Semantic Consistency of Register Allocation

In this section we (i) define the types and functions used in our formal descrip-
tions, (ii) introduce the intermediate representations used during the register
allocation process. (iii) define the concept of semantic consistency of register
allocation directives, and (iv) show how semantic consistency can be broken by
incorrect allocation directives.

3.1 Instructions, Registers and Temporary Variables

In order to formally describe the properties and algorithms presented in this
paper we define types for registers, temporary variables and instructions, plus a
set of functions that manipulate these data.

Registers – R : {⊥, r0, r1, . . . , rk} – This data type represents machine registers.
It contains a finite number of elements, because the number of machine registers
is limited. For instance, for the Strong ARM processor, k = 12, and for the MIPS
instruction set k = 32. The unit value ⊥ is used to designate the location of an
undefined temporary.

– isCallerSave: R → {true, false} – This boolean function will return true
if the register given as a parameter is caller save. A caller save register may
be overwritten during the execution of a function call, and, thus, must be
saved by the caller.

Temporary variables – T : {t0, t1, . . .}∪R – This data type represent temporary
variables. This type contains an infinite number of values, given that the core
register allocation problem does not imposes limits on the number of variables
in the pre-allocation code. Because pre-colored registers can appear in this code,
we let the type of machine registers be a subtype of temporary registers.

– loc: T → R – this function determines the register to which a temporary
has been allocated.

– temp: R → T – this function determines the temporary that a register is
currently holding.

Instructions – I : {error, i0, i1, . . .} – an instruction i = (o, d, u, s, p, in, out) is
a 7-tuple where d is the set of registers defined at i, u is the set of registers used
at i, in is the set of registers alive before i is executed, and out is the set of
registers alive after i’s execution. The predecessor instructions are given by p,
and s contains the successor instructions. Finally, the first field o represents the
instruction opcode: cl for calls, and op for all the other types of instructions.

– def: I → set of T – If i = (o, d, u, s, p, in, out), then def(i) = d.
– use: I → set of T – If i = (o, d, u, s, p, in, out), then use(i) = u.
– in: I → set of T – If i = (o, d, u, s, p, in, out), then in(i) = in.
– out: I → set of T – If i = (o, d, u, s, p, in, out), then out(i) = out.
– pred: I → set of I – If i = (o, d, u, s, p, in, out), then pred(i) = p.
– succ: I → set of I – If i = (o, d, u, s, p, in, out), then succ(i) = s.
– isCall: I → {true, false} – If i = (cl, d, u, s, p, in, out), then isCall(i) =

true; otherwise, isCall(i) = false.

We define the following additional functions:

– pc: I – This nullary function represents the program counter: a register used
to keep track of the instruction that is been currently executed.

– any: set of > → > – The generic function any(s) chooses non-
deterministically an element among the elements of s.

– input: F → set of T – given a program f , let i be the first instruction of f .
input(f) = in(i). We define the type of f in the next section.

3.2 Intermediate Representation and Machine Code

The register allocation process consists in translating a program m, that uses a
unbounded number of variables, into a program f , that can use only a finite num-
ber of registers. Let f be an instance of a language F , and let m be an instance
of M. Following the traditional compiler’s nomenclature [10], we represent M
as a RTL like language, and we describe F as a LTL like language 1. Figures 1
(a) and (b) outline the abstract syntax of both languages. The only syntactical
difference between these representations is that in F variables are represented
by pairs (t, r), where t is a temporary variable, and r is the register assigned
to it by the register allocator. Figure 2 (a) shows a typical MIPS procedure,
with pseudo-registers instead of machine registers, and Figure 2 (b) outlines its
RTL representation. We chose the SSA representation because it allows us to
illustrate all the register allocation directives. However, the SSA-form is not a
requirement for the algorithms presented in this paper.

a)

M ::= i∗
i ::= 〈op, def , use, in, out, succ, pred〉
op ::= op | cl
def , use, in, out ::= t∗
succ, pred ::= i∗

b)

F ::= i∗
i ::= 〈op, def , use, in, out, succ, pred〉
op ::= op | cl
def , use, in, out ::= a∗
succ, pred ::= i∗
a ::= (t, r)

c)
D ::= defReg useReg storeSpill loadSpill parallelCopy
defReg, useReg, storeSpill, loadSpill ::= ra∗
parallelCopy ::= (iorigin idestiny tdestiny rdestiny torigin rorigin)∗
ra ::= i t r

t ranges over T, r ranges over R, i ranges over I

Fig. 1. (a) M: the register transfer language. (b) F : the location transfer language.
(d) D: the language for the specification of register allocation directives.

We define a register allocator as a function A such that, given a RTL pro-
gram m, and a number of register K, A(m,K) = d . The output d represents a
set of register allocation directives. Let D be the language that describes these
directives. The grammar in Figure 1 (c) gives the abstract syntax of D. Ex-
cept for parallel copies, our representation is a subset of the one used in the Ralf
framework [12]. It is independent of any particular target architecture. This inde-
pendence enhances the reusability of the proposed translation validation scheme;
however, it prevents us of handling particular implementations of register alloca-
tors. Although simple, our representation is expressive enough to accommodate
a wide variety of register allocation algorithms. For example, it can describe the

1 RTL stands for Register Transfer Language, and LTL stands for Location Transfer
Language

output of six of the seven register allocators described in [12]. The only omis-
sion is due to one register allocator that relies on the stack layout in order to
minimize the traffic between the register bank and the memory [13].

Figure 2 (c) exhibits a possible set of register allocation directives for the
program given in Figure 2 (b), assuming that the target architecture has only
2 registers available. D does not contain references to pre-colored registers, be-
cause they are already bound to a machine register. Allocation directives consist
of five types of clauses. DefReg describes, for each instruction, to which regis-
ter a defined temporary should be mapped. For instance, temporary t14b should
be allocated to register r0 when defined in instruction (6). UseReg specifies, for
each instruction, the locations of the used temporaries. StoreSpill defines after
which instructions the values of spilled temporaries should be stored. For exam-
ple, temporary t14a, located in register r1 must be sent to memory immediately
after instruction (3) is executed. LoadSpill determines before which instructions
the spilled temporaries must be loaded. Again in Figure 2 (c), temporary t14a

must be loaded into register r1 immediately before instruction (5) is executed.
Finally, the last clause permits to specify parallel copies. An entry such as i j
(td, rd) (to, ro) would cause the value of ro to be moved to rd at the edge between
instructions i and j. All the copies inserted in the same edge are executed in
parallel, after any possible store, and before any load directive.

A parallel copy, such as (t1, . . . , tn) = (u1, . . . , un) performs all the assign-
ments ti = ui simultaneously; hence, it avoids interferences between the used
and defined variables. Parallel copies are used by some recent register allocation
algorithms that rely on the SSA 2 transformation in order to obtain better re-
sults [17, 5, 9]. The core register allocation problem can be solved in polynomial
time for programs in strict SSA-form [9]. However, this computational time is
only possible if the compiler can use parallel copies when converting the SSA-
form program into machine code [18]. Parallel copies can be implemented in most
computer architectures by means of xor instructions, or with an extra register,
as shown by Hack et al [9].

Given a RTL program m, and a set of allocation directives d , the correspond-
ing LTL representation f can be obtained by the algorithms addNewInstruc-
tions and replaceRegisters. The first algorithm, shown in Figure 4, adds to
m new instructions to accommodate the loads, stores, and parallel copies found
in d . In addition, it produces a new set d ′ of allocation directives, where the
load, store and parallelCopy clauses of d have been replaced with use and
def clauses. Figure 3 (a) contains the LTL representation of our example pro-
gram. ReplaceRegisters uses d ′ in order to replace temporary registers t by
pairs (t, r) denoting the register assignment.

In order to specify allocation directives, we define the function dir : D →
Instruction → Temporary → {in, out} → Register. Figure 3 (b) shows the
implementation of dir for the program given in Figure 3 (a). We use the set
{in, out} in order to distinguish uses (in) from definitions (out). For instance,
dir(d ′, i1, t13, out) = r0 means that, according to the set of allocation directives

2 SSA stands for Single Static Assignment

procedure Branch {
IN: r0, r1;
OUT: r0;
(01) addi t13 r0 #1;
(02) bne t13 r1 (6);
(03) lui t14 #131;
(04) call (WW);
(05) j (07);
(06) addi t14 t13 #31;
(07) addi r0 t14 #42;
}

01: t13 := r0

02: := t13, r103: t14a :=

04: call 06: t14b := t13

07: r0 := t14

05: j 08: t14 := phi(t14a, t14b)

1: defReg
2: (1) t13 r0
3: (3) t14a r1
4: (6) t14b r0
5: useReg
6: (2) t13 r0
7: (6) t13 r0
8: (7) t14 r1
9: storeSpill
10: (3) t14a r1
11: loadSpill
12: (5) t14a r1
13: parallelCopy
14: (5-7)(t14,r1)(t14a,r1)
15: (6-7)(t14,r1)(t14b,r0)

(a) (b) (c)

Fig. 2. (a) A program P represented as a set of MIPS instructions. (b) The RTL
representation of P, in SSA-form. (c) A possible set of allocation directives for P.

01: (t13,r0) := (r0,r0)02: := (t13,r0) (r1,r1)

03: (t14a,r1) :=

04: jal

06: (t14b,r0) := (t13,r0)

07: (r0,r0) := (t14,r1)

(t13,r0) (r1,r1)

(t14a,r1) (t14b,r0)

(t13,r0)
(r0,r0) (r1,r1)

(r0,r0)
x: := (t14a,r1)

y: (t14a,r1) := (t14a,r1) 05: j (t14a,r1)

store

load

z: (t14,r1) || (t14a,r1)

w: (t14,r1) || (t14b,r0)

(t14,r1)

(t14,r1)

parallel copy

parallel copy

dir d′ i t s =
. case (i, t, s) of
. (i, ri, s) → ri

. (1, t13, out) → r0

. (2, t13, in) → r0

. (3, t14a, in) → r1

. (x, t14a, out) → r1

. (y, t14a, in) → r1

. (z, t14a, in) → r1

. (z, t14, out) → r1

. (6, t13, in) → r0

. (6, t14b, out) → r0

. (w, t14b, in) → r0

. (w, t14, out) → r1

. (7, t14, in) → r1

. otherwise → ⊥

(a) (b)

Fig. 3. (a) f : The binding of temporaries to machine registers. (b) The function dir
that represents the register assignment given in (a).

d ′, the register allocator has determined that temporary t13 must be allocated to
register r0 when defined in instruction i1. The location of a pre-colored register
is always the machine register that this pre-colored represents.

3.3 Semantic Consistency of Register Allocation Directives

A program is a specification of how the state of the computer changes. For our
purposes, the state of the machine is determined by the set of values stored in
the register bank, plus the value stored in the program counter. We call the set
of reachable states Σ = (loc× temp×pc) 3. We use inference rules in order to
show how the machine state changes during program execution. Given a program

3 For simplicity, we will treat loc, temp, and pc as variables, and will update them
using the standard assignment notation (:=)

procedure addNewInstructions : M×D → M×D
1 input: (m, d)
2 output: (m′, d′)
3 let m′ = m and d′ = d in
4 For all (i, t, r) ∈ storeSpilld
5 let iss : I such that iss /∈ m′ in
6 use(iss) := {t};def(iss) := ∅; in(iss) := ∅; out(iss) := ∅;
7 succ(iss) := succ(i);pred(iss) := {i}; succ(i) := {iss};
8 useRegd′ := useRegd′ ∪ {(iss, t, r)};
9 For all (i, t, r) ∈ loadSpilld
10 let ild : I such that ild /∈ m′ in
11 def(ild) := {t};use(ild) := ∅; in(ild) := ∅; out(ild) := ∅ ;
12 pred(ild) := pred(i); succ(ild) := {i};pred(i) := {ild};
13 defRegd′ := defRegd′ ∪ {(ild, t, r)};
14 For all i j, (t1, r1), (t2, r2) ∈ parallelCopyd

15 let ipc : I = edge(i, j) in
16 def(ipc) := def(ipc) ∪ {t1};use(ipc) := use(ipc) ∪ {t2};
17 defRegd′ := defRegd′ ∪ {(ipc, t1, r1)};
18 useRegd′ := useRegd′ ∪ {(ipc, t2, r2)};

Fig. 4. This algorithm adds instructions to m representing loads, stores, and parallel
copies. It also updates d to reflect the new instructions. The function edge assigns to
each edge of m a new instruction i′, such that i′ /∈ m.

f ∈ F , we generate the following inference rules for each instruction i ∈ f :

∀(t, r) ∈ use(i), (loc(t) = r ∧ temp(r) = t ∧ pc = i ∧ ¬isCall(i))

∀(t0, r0) ∈ def(i), (loc(t0) := r0; temp(r0) := t0;pc := any(succ(i)))
(1)

∀(t, r) ∈ use(i), (loc(t) = r ∧ temp(r) = t ∧ pc = i ∧ isCall(i)

∀r, (isCallerSave(r) ⇒ temp(r) := ⊥);pc := any(succ(i)))
(2)

pc = i ∧ ∃(t, r) ∈ use(i), loc(t) 6= r

pc := error
(3)

pc = i ∧ ∃(t, r) ∈ use(i), temp(r) 6= t

pc := error
(4)

Given a program f , we let i0 be the entry point of its control flow graph. We
have def(i0) = input(f), and use(i0) = ⊥. The following inference rule defines
the initial state of a computation:

true

pc := i0;∀r, temp(r) := ⊥;∀t, loc(t) := ⊥
(5)

We are now ready to formalize our definition of semantic consistency. In def-
inition 1 below, let m be a RTL program, let A be the implementation of a
register allocator, let d = A(m,K) be a set of allocation directives, and let f
= replaceRegisters (addNewInstructions (m, d)). Intuitively, f is seman-
tically consistent if, every time one of its instruction is executed, all the used
temporaries can be found in the locations stipulated by d .

Definition 1. [Semantic Consistency of Register Allocation Directives] Given a
solution f for the register allocation problem, let Σ be the set of states reachable
through the inference rules (1) to (5) when applied on f . The mapping f is
semantically consistent if Σ does not contain a state s such that s |= pc = error.

procedure replaceRegisters : M×D → F ×D
1 input: (m ′, d ′)
2 output: (f , d ′)
3 let f = m ′ in
4 For all i ∈ f
5 let use’ = ∅ in
6 For all t ∈ use(i)
7 use(i) := use(i) \ t;
8 use’ := use’ ∪ {(t,dir(d ′, i, t, r))};
9 use(i) := use′;
10 let def’ = ∅ in
11 For all t ∈ def(i)
12 def(i) := def(i) \ t;
13 def’ := def’ ∪ {(t,dir(d ′, i, t, r))};
14 def(i) := def’;

Fig. 5. This algorithm replace each temporary or pre-colored register t in S by a pair
(t, r), where r is the register assigned to t by D′.

3.4 Types of Register Allocation Errors

We define the following set of logic “macros” in order to make or presentation
more readable:

bindDef(t, r) ≡ ∃i, (pc = i) ∧ (t, r) ∈ def(i)
bindUse(t, r) ≡ ∃i, (pc = i) ∧ (t, r) ∈ use(i)
acrossCall(t) ≡ ∃i, (pc = i) ∧ isCall(i) ∧ isCallerSave(loc(t))

If the set of reachable states Σ contains an inconsistent state s, such that,
s |= pc = error, then s can only be reached via inference rules (3) and (4).
Below we describe the situations that can cause these rules to be satisfied:

1. The inference rule (3) describes the situation in which an instruction i is
about to be executed, there exists a temporary t, such that t ∈ use(i), but
the actual location of this temporary is different from the expected location,
i.e.: loc(t) 6= dir(d ′, i, t, in). Such errors may happen in only two situations:
(a) An error in the set of register allocation directives cause a temporary t

to be defined into a register r1 that is different from the register r2 in
which t is expected to be found 4:

s |= bindDef(t, r1) ∧ ¬bindDef(t, r2) U bindUse(t, r2) (6)

(b) There is a path ρ in S from the initial instruction i0 to an instruction
i where t is used, and t is not defined along ρ. Such situation can be
an error in the register allocator, or it can be a deficiency of the high
level programing language been compiled. Non-strict languages, such as

4 s |= φ1Uφ2 if s |= φ2 or for some successor s′ of s, s′ |= φ1 ∨ φ1Uφ2.

C, allow the use of undefined variables. This is not possible in strict
languages, such as Java.

s0 |= ¬bindDef(t, r) U bindUse(t, r) (7)

2. The inference rule (4) describes the situation in which a machine register
that holds the value of a live temporary has been overwritten, that is,
temp(dir(d ′, i, t, in)) 6= t. We assume that only variable definitions and
function calls can cause the overwriting of registers. The following events
can lead to this situation:
(a) There is a path in S in which the definition of a temporary t1 is over-

written by the definition of a temporary t2 while t1 is still alive.

s |= bindDef(t2, r) ∧ ¬bindDef(t1, r) U bindUse(t1, r) (8)

(b) A temporary t, stored in a caller save register, has its location overwritten
because it is alive across a function call.

s |= acrossCall(t) ∧ ¬ bindDef(t, loc(t)) U bindUse(t, loc(t)) (9)

4 Model Checking Register Allocation

Given a LTL program f , and Σ, the set of states that f produces, our model
checking problem consists in verifying if s0, the initial state specified by rule (5),
does not lead to an inconsistent state, that is: s0 |= ¬(true U (pc = error)). The
inference rules described in Section 3 produce O(|I|× |T |× |R|) states. However,
it is possible to use liveness analysis information to avoid the generation of the
graph of reachable states. For the sake of completeness, we outline the well
know liveness analysis algorithm in Figure 6. The control flow graph presented
in Figure 3 has its edges augmented with liveness information.

Once liveness analysis has been performed, the algorithm findBug, shown
in Figure 7, scans the control flow graph of f searching for inconsistency cases.
There are four different types of inconsistency cases, one for each error described
in Section 3.4. Figure 8 illustrates each case: (8 a) an instruction may expect
temporary t at location r2, although its actual location is r1 – findBug returns
badAlloc; (8 b) an unexpected pair alive at the in set of instruction i0 de-
notes the use of an undefined variable – findBug may return undefAlloc or
badAlloc; (8 c) The location of the live temporary t1 is overwritten by t2 –
findBugs returns instOvt; (8 d) t has been stored into a caller save register,
and its location is overwritten by a function call – findBug returns callOvt.

Theorem 1 states the correctness of the proposed algorithms. It is impor-
tant to notice that we are not validating the mapping between spilled values
and memory slots. For instance, it is possible that an ordinary memory access
overwrite the cell been used to store an evicted temporary. We have opted for
not dealing with this issue firstly because many register allocation algorithms
abstract this information, secondly, because addressing modes are highly archi-
tecture dependent. If the memory address of spilled temporaries is available, it is

procedure livenessAnalysis : F → F
1 input: f
2 output: f
3 For all i ∈ f
4 in(i) := ∅; out(i) := ∅;
5 repeat
6 for all i ∈ f
7 in’(i) := in(i); out’(i) := in(i);
8 in(i) := use(i) ∪ (out(i) \ def(i));
9 out(i) :=

S
s∈succ(i) in(s);

10 until in’(i) = in (i) ∧ out’(i) = out(i) for all i

Fig. 6. Liveness analysis algorithm as given by Appel and Palsberg [4, p.206].

procedure findBug : F → msg
1 input: f
2 output: { badAlloc, undefAlloc, instOvt, callOvt, correct }
3 for all i ∈ f
4 if ∃((t, r2) ∈ in(i))∧ ∃((t, r2) ∈ out(i)) ∧ ∃((t, r1) ∈ def(i)) ∧ r1 6= r2

5 return badAlloc;
6 if ∃((t2, r) ∈ in(i)) ∧ ∃((t2, r) ∈ out(i))
7 if ∃((t1, r) ∈ def(i)) ∧ t1 6= t2
8 return instOvt;
9 else if isCall(i) ∧ isCallerSave(r)
10 return callOvt;
11 if ∃((t, r) ∈ in(i0)) ∧ t /∈ input(F)
12 return undefAlloc;
13 else
14 return correct;

Fig. 7. This algorithm reports the existence of a bug in the set of allocation directives.
msg is any of the five possible result messages.

possible to circumvent such limitation by regarding memory cells as variables in
our data flow analysis. In the proof of Theorem 1 we assume that the mapping
between spilled values and memory is correct.

Theorem 1. Let f = replaceRegisters (addNewInstructions (m, d)).
findBug (livenessAnalysis (f)) returns correct, if, and only if, m and d
are semantically consistent.

Proof. ⇒) If findBug 6= correct, then four cases, one for each possible outcome
of findBugs must be considered. All the cases have similar analysis; we present
two of them:

1) findBug = badAlloc ⇒ f contains the configuration shown in Figure 8
(a)⇒ There exists path i1, i2, . . . , in such that (t, r1) ∈ def(i1), (t, r2) ∈ use(in),
and ∀k, 1 < k < n, (t, r2) /∈ def(ik) ⇒ There exists a sequence S of states

i : (t, r) :=1

(t, r)2

(t, r)2
i :0

(t,r)
t not in
input

...

i : (t , r) :=2

(t , r)1

(t , r)1

i : isCall(i) = true

(t, r)

(t, r)

isCallerSave(r) = true

(a) (b) (c) (d)

Fig. 8. Source of semantic inconsistencies: (a) Temporary found in unexpected location.
(b) Undefined variable. (c) Live temporary overwritten by another temporary. (d)
Caller save register overwritten in function call.

s1, s2, . . . , sn such that ∀k, 1 ≤ k ≤ n,pc = ik ⇒ s1 satisfies Equation (6) given
in Section 3.4.

2) findBug = callOvt ⇒ f contains the configuration show in Figure 8
(d) ⇒ There exists path i1, i2, . . . , in such that, for some pair (t, r), i1 satisfies
conditions in lines (6) and (9) of findBug ⇒ (t, r) ∈ use(in), and ∀k, 1 < k <
n, (t, r) /∈ def(ik) ⇒ There exists a sequence S of states s1, s2, . . . , sn such that
∀k, 1 ≤ k ≤ n,pc = ik. ⇒ s1 satisfies Equation (9) of Section 3.4.

The cases where findBug = undefAlloc, or findBug = instOvt are sim-
ilar. In the first case, there will be a state s that satisfies equation (7), and in
the latter, Equation (8) will be satisfied.

⇐) If (m, d) is not semantically consistent, then one of the four equations of
Section 3.4 must be true. We consider the case where Equation 6 or Equation 8
is satisfied. The other cases are similar:

1)Equation 7 is satisfied. ⇒ The initial state s0 is such that s0 |=
¬bindDef(t, r) U bindUse(t, r). ⇒ s0 |= (¬∃i1,pc = i1 ∧ (t, r) ∈
def(i1)) U (∃i2,pc = i2 ∧ (t, r) ∈ use(i2). ⇒ Let i0 be the first instruction
of the control flow graph. There is a path from i0 to i2, such that (t, r) is used
at i2, but never defined. ⇒ (t, r) is alive at the entry point of i0. ⇒ Conditions
in line (11) of findBug are true. ⇒ findBug returns undefAlloc.

2) Equation 8 is satisfied⇒ There is a state s such that s |= bindDef(t2, r)∧
¬bindDef(t1, r) U bindUse(t1, r) ⇒ s |= (∃i1,pc = i1 ∧ (t2, r) ∈ def(i1)) ∧
¬(∃i2,pc = i2 ∧ (t1, r) ∈ def(i2)) U (∃i3,pc = i3 ∧ (t1, r) ∈ use(i3) ⇒ The
control flow graph contains a path from instruction i1 to instruction i3, such that
(t1, r) is used at i3, but not defined until i1, where (t2, r) is defined.⇒ Conditions
in lines (6) and (7) of findBug are true. ⇒ findBug returns instOvt.

Using similar reasoning, one can show that if Equation 6 is satisfied, findBug
returns badAlloc, and if Equation 9 is true, findBug returns callOvt. ut

A number of properties can be proved about a program f that contains a se-
mantically consistent mapping from temporaries to registers. Examples include:

1. Two live ranges of different temporaries reach a joint point assigned to dif-
ferent registers.

2. Two live ranges of the same temporary reach a joint point assigned to the
same register.

3. All the temporaries in the def set of an instruction are assigned to machine
registers immediately after the instruction is executed.

4. The interference graph derived from f is K colorable, where K is the number
of available machine registers.

We give a proof of the last property as a corollary of Theorem 1. Similar
reasoning can be used to proof the other properties.

Corollary 1. If the allocation directives are correct, the interference graph de-
rived from f is K-colorable, where K is the number of machine registers available
in the target architecture.

Proof. Assume that the interference graph is not K colorable ⇒ Two interfering
pairs, e.g. (t1, r) and (t2, r), are simultaneously alive at some point of the control
flow graph f ⇒ If both temporaries are defined in f , then, or the live range of
(t1, r) crosses the definition point of (t2, r), or vice-versa. In this case, findBug
reports instOvt. If at least one of the temporaries is undefined, then its live
range reaches i0, and findBugs reports undefAlloc. In both cases the set of
allocation directives is not semantically consistent. ut

The four equations defined in Section 3.4 yield a graph reachability algorithm
that can be used to list the instructions that cause semantic inconsistencies.
Figure 9 outlines such algorithm.

4.1 Complexity Analysis

The table below shows the complexity of the algorithms discussed in this paper.
All the complexity results refer to a program m containing |I| instructions and
|T | temporaries. K is the number of registers available in the target architec-
ture. It is interesting to notice that the algorithms tend to run faster if m is
semantically consistent. This difference is due to the fact that, in a semantically
consistent program, there are at most K interferences at each program point,
whereas the number of interferences in a inconsistent program is upper bounded
by |T | (see Corolary 1). Therefore, at most K set operations will be performed
in the in’s and out’s bitsets of a correct program.

Algorithm Worse case correct program
addNewInstructions O(|I| ×K) O(|I| ×K)
replaceRegisters O(|I| ×K) O(|I| ×K)
livenessAnalysis O(|I|2 × |T |2) O(|I|2 ×K2)
findBug O(|I| × |T |) O(|I| ×K)
listBugs O(|I|2 × |T | ×K) O(|I|2 ×K2)

procedure visit : F × I × T × R → set of (I× msg)
1 input: f , i, (t, r)
2 output: (Instruction, { undefAlloc | badAlloc | instOvt | callOvt })
3 external: array of Instruction: visited
4 if (not visited(i))
5 visited(i) := true;
6 if ∃((t, r2) ∈ in(i)) ∧ ∃((t, r2) ∈ out(i)) ∧ ∃((t, r1) ∈ def(i)) ∧ r1 6= r2
7 return (i, badAlloc);
8 else if ∃((t2, r) ∈ in(i)) ∧ ∃((t2, r) ∈ out(i))
9 if ∃((t1, r) ∈ def(i)) ∧ t1 6= t2
10 return (i, instOvt);
11 else if isCall(i) ∧ isCallerSave(r)
12 return (i, callOvt);
13 else if ∃((t, r) ∈ in(i0)) ∧ t /∈ input(f)
14 return (i, undefAlloc);
15 for all ip ∈ pred(i)
16 if((t, r) ∈ out(ip))
17 print(visit(f , ip, (t, r)));

procedure listBugs : F → ⊥
1 input: f
2 output: ⊥
3 internal: array of Instruction: visited
4 livenessAnalysis(f);
5 for all i ∈ f
6 for all (t, r) ∈ use(i)
7 for all i ∈ f
8 visited(i) := false;
9 print(visit(f , i, (t, r)));

Fig. 9. This algorithm recursively lists the sources of semantic inconsistencies in f .

4.2 Implementation

We have implemented the proposed algorithms as an extension of the Ralf frame-
work. The main parts of this framework are outlined in Figure 10 (a). Ralf uses a
format known as MIRA (Mathematical Intermediate representation for Register
Allocation) to represent the RTL language M. In order to represent allocation
directives (D), Ralf uses a format called FORD (FOrmat for Register Allocation
Directives). Any implementation of a register allocator that is able to read MIRA
and output FORD can be plugged into Ralf. Our translation validator compares
the FORD and MIRA files in order to certify their semantic consistency, or to
give a counter-example if they are not consistent, as shown in Figure 10 (b).

In order to facilitate the identification of errors, our debugging environment
provides the application developer with a visual representation of the control flow
graph. This software generates files in the “.dot” format [7], which is a popular
representation of graphs. It can produce plain graphs for programs written in
MIRA, or it can show register assignments, given the MIRA description and the
set of register allocation directives. Figure 11 (a) shows a simple C program,
and Figure 11 (b) gives its F representation, with liveness analysis results in the
edges. The algorithms discussed in the previous sections have been implemented
in Java, and are completely independent on the implementation of Ralf: they can
be used with any compiler that read MIRA specifications, and output FORD
directives. For more information about both formats, see [12].

Ralf

file.c file.mira

Register
Allocator

file.fordfile.exe

gcc

Correct
allocation
 - or -
Error in line
number XXX

file.mira

file.ford

Register
Allocation
Debugger

(a) (b)

Fig. 10. (a) The main components of the Ralf framework. (b) The proposed translation
validation tool.

/*
* This program counts the number
* of characters passed to it as
* command line arguments.
*/

int main(int argc, char **argv) {
int sum = 0;
int c = 0;
for(c = 1; c < argc; c++) {

char *aux = argv[c];
while(*aux != ’\0’) {

aux++;
sum++;

}
}
printf("Sum = %d\n", sum);

}

0 : <=

2 : t3(r10) <=

 r0 r1

4 : t4(r7) <=

 r0 r1 t3(r10)

6 : t1(r0) <= r0

 r0 t4(r7) r1 t3(r10)

8 : <= t1(r0) t4(r7)

 t1(r0) t4(r7) r1 t3(r10)

10 : t2(r1) <= r1

 r1 t4(r7) t3(r10) t1(r0)

12 : t10(r12) <=

 t2(r1) t4(r7) t3(r10) t1(r0)

14 : <=

 t2(r1) t10(r12) t4(r7)
 t3(r10) t1(r0)

44 : r0 <= t10(r12)

42 : <=

 t10(r12) t3(r10)

46 : r1 <= t3(r10)

 t3(r10) r0

48 : r0 <= r1 r0

 r0 r1

16 : t5(r4) <= t2(r1) t4(r7)

 t2(r1) t4(r7) t1(r0) t3(r10) t10(r12)

18 : t8(r6) <= t5(r4)

 t5(r4) t4(r7) t1(r0) t3(r10) t2(r1) t10(r12)

20 : t9(r6) <= t8(r6)

 t8(r6) t4(r7) t5(r4) t1(r0) t3(r10) t2(r1) t10(r12)

22 : <= t9(r6)

t9(r6) t4(r7) t5(r4) t1(r0)
t3(r10) t2(r1) t10(r12)

24 : t11(r7) <= t4(r7)

 t4(r7) t5(r4) t1(r0) t3(r10) t2(r1) t10(r12)

26 : <=

 t5(r4) t11(r7) t1(r0) t3(r10) t2(r1) t10(r12)

28 : t6(r6) <= t5(r4)

36 : <=
t5(r4) t3(r10) t11(r7)
t1(r0) t2(r1) t10(r12)

t5(r4) t3(r10) t11(r7)
t1(r0) t2(r1) t10(r12)

30 : t3(r10) <= t3(r10)

 t3(r10) t6(r6) t5(r4) t11(r7) t1(r0) t2(r1) t10(r12)

32 : t7(r6) <= t6(r6)

34 : <= t7(r6)

t5(r4) t11(r7) t3(r10)
t1(r0) t2(r1) t10(r12)

38 : t4(r7) <= t11(r7)

 t11(r7) t1(r0) t2(r1)
 t10(r12) t3(r10)

 t11(r7) t1(r0) t2(r1)
 t10(r12) t3(r10)

40 : <= t1(r0) t4(r7)

 t1(r0) t4(r7) t2(r1)
 t10(r12) t3(r10)

 t2(r1) t10(r12) t4(r7)
 t3(r10) t1(r0)

 t10(r12) t3(r10)

 t6(r6) t5(r4) t11(r7) t3(r10) t1(r0) t2(r1) t10(r12)

 t7(r6) t5(r4) t11(r7) t3(r10)
 t1(r0) t2(r1) t10(r12)

 t2(r1) t4(r7)
 t1(r0) t3(r10)
 t10(r12)

r0 r1

r0

(a) (b)

Fig. 11. (a) Target program written in C. (b) Its control flow graph F , generated by
our debugging tool.

5 Conclusion

This paper has introduced the concept of semantic consistency of register al-
location directives, and has presented a collection of data flow algorithms that
statically validate the output of register allocators. The interest for such algo-
rithms arouse from the real necessity of debugging different implementations of
register allocators, and greatly improved our ability to detect errors in their out-
puts. We hope that our validation framework can help other researchers who are
developing new register allocation techniques as much as it has help us. The al-
gorithms discussed in this paper can be employed to validate the output of most
of the well-known register allocation paradigms: graph-coloring based, control
flow based, ILP based, etc. Moreover, they don’t depend on any particular in-
struction set. Our implementation and further reading material can be found at:
http://compilers.cs.ucla.edu/fernando/projects/debugger/

References

1. Johan Agat. Types for register allocation. Lecture Notes in Computer Science,
1467:92–111, 1997.

2. Christian Andersson. Register allocation by optimal graph coloring. In 12th Con-
ference on Compiler Construction, pages 34–45. Springer, 2003.

3. Andrew W Appel and Lal George. Optimal spilling for cisc machines with few
registers. In International Conference on Programming Languages Design and
Implementation, pages 243–253. ACM Press, 2001.

4. Andrew W Appel and Jens Palsberg. Modern Compiler Implementation in Java.
Cambridge University Press, 2nd edition, 2002.

5. Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh. Polynomial-
time graph coloring register allocation. In 14th International Workshop on Logic
and Synthesis. ACM Press, 2005.

6. R. A. Freiburghouse. Register allocation via usage counts. Communications of the
ACM, 17(11):638–642, 1974.

7. Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. SoftwarePractice and Experience,
30(11):1203 – 1233, 2000.

8. Lal George and Andrew W Appel. Iterated register coalescing. Transactions on
Programming Languages and Systems (TOPLAS), 18(3):300–324, 1996.

9. Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation for pro-
grams in SSA-form. In 15th International Conference on Compiler Construction.
Springer-Verlag, 2006.

10. Xavier Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In Annual Symposium on Principles of Programming
Languages, pages 42–54. ACM Press, 2006.

11. Mayur Naik and Jens Palsberg. Compiling with code size constraints. Transactions
on Embedded Computing Systems, 3(1):163–181, 2004.

12. Venkata Krishna Nandivada. Combining Stack Location Allocation with Register
Allocation. PhD thesis, University of California, Los Angeles, 2005.

13. Venkata Krishna Nandivada and Jens Palsberg. Sara: Combining stack allocation
and register allocation. In International Conference on Compiler Construction.
Springer-Verlag, 2006.

14. George C. Necula. Translation validation for an optimizing compiler. In Conference
on Programming Language Design and Implementation, pages 83–95. ACM, 2000.

15. George C. Necula and Peter Lee. The design and implementation of a certifying
compiler. In Conference on Prgramming Language Design and Implementation
(PLDI), pages 333–344, 1998.

16. Atsuchi Ohori. Register allocation by proof transformation. Science of Computer
Programming, 50(1-3):161–187, 2004.

17. Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation via color-
ing of chordal graphs. In The Third Asian Symposium on Programming Languages
and Systems, pages 315–329. Springer, 2005.

18. Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation after
classic SSA elimination is np-complete. In Foundations of Software Science and
Computation Structures. Springer, 2006.

