
University of California

Los Angeles

Combining Stack Location Allocation

with

Register Allocation

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Venkata Krishna Nandivada

2005

c© Copyright by

Venkata Krishna Nandivada

2005

The dissertation of Venkata Krishna Nandivada is approved.

Majid Sarrafzadeh

Rupak Majumdar

Lei He

Bill Mangione-Smith

Jens Palsberg, Committee Chair

University of California, Los Angeles

2005

ii

To the almighty

iii

Table of Contents

1 Introduction . 1

1.1 Background . 2

1.1.1 Register Allocation . 2

1.1.2 Stack Location Allocation 3

1.2 Our Contributions . 8

2 Stack location allocation . 10

2.1 Introduction . 11

2.1.1 Background . 11

2.1.2 Our Results . 13

2.1.3 Example . 14

2.1.4 Related Work . 17

2.2 The SLA Algorithm . 19

2.2.1 Model Extraction . 19

2.2.2 Constraint Generation . 21

2.2.3 Constraint Solving . 23

2.2.4 Code Transformation . 24

2.3 Experimental Results . 25

2.3.1 Benchmark Characteristics 25

2.3.2 Measurements . 26

2.3.3 Assessment . 27

iv

2.4 Conclusion . 29

3 SARA: Combining Stack Allocation and Register Allocation . 30

3.1 Introduction . 31

3.1.1 Background . 31

3.2 ILP-based Register Allocation . 35

3.2.1 Model extraction. 35

3.2.2 Constraint Generation. 36

3.2.3 Objective function. 38

3.2.4 Constraint Solving. 39

3.3 SARA . 40

3.4 SARA Improvements . 43

3.4.1 Reducing the size of the ILP state space. 44

3.4.2 Improving the quality of the generated code. 46

3.5 Experimental Results . 47

3.6 Conclusion and Future work . 53

4 RALF: A register allocation framework 54

4.1 Introduction . 55

4.2 Framework description . 56

4.2.1 Input Interface . 57

4.2.2 Output Interface . 61

4.2.3 Correctness issues . 65

4.3 Versatility: Test by implementation 67

v

4.3.1 Naive Register Allocator 67

4.3.2 Linear Scan Register allocator 68

4.3.3 Iterative Register Coalescing 71

4.3.4 Usage count based register allocator 72

4.3.5 ILP based register allocator 73

4.3.6 SARA . 73

4.3.7 Register Allocation via Coloring of Chordal Graphs 74

4.4 Experimental results . 75

4.5 Tools for the framework . 77

4.6 Observations and limitations . 78

4.7 Conclusion . 79

5 Conclusion and Future Work . 80

5.1 Conclusion . 80

5.2 Future Work . 81

References . 82

vi

List of Figures

1.1 Layout of byte addressed SDRAM memory 5

1.2 Issues with current way of stack allocation. 7

2.1 Example C program and locations of variables with and with SLA

phase . 15

2.2 Code without and with SLA . 16

2.3 Experimental Results . 24

3.1 Phase ordering problem between register allocation and SLA . . . 32

3.2 Benchmark characteristics and compile time statistics 49

3.3 Execution time numbers . 50

3.4 Normalized execution times . 51

3.5 A comparison of different register allocator schemes 52

4.1 Framework block diagram. 56

4.2 Sample input program, using two pseudos. 60

4.3 Sample input interface data. 62

4.4 Sample output interface data. 65

4.5 Pseudo code for naive register allocator. 68

4.6 Output of Naive register allocator for the code snippet in Fig. 4.2. 69

4.7 Assembly code generated from the register alloctor output in Fig. 4.6 69

4.8 Iterated register coalescing. 71

4.9 Chordal graph based register allocation. 74

vii

4.10 Experimental evaluation of RALF. 76

4.11 Comparison of different register allocators 76

viii

List of Tables

ix

Acknowledgments

When the sun rises in the horizon tomorrow, having witnessed the approval of

this thesis, it would do so bearing witness to all the help, affection and cooperation

I have gotten throughout my stint as a PhD student both at Purdue as well as

UCLA.

The list above is a silent spectator to all the people whom I came in touch,

learnt something, and forgot about them in the most ungrateful way. One day, I

will remember their contribution and thank god that I met them.

x

Vita

1977 Born, and still alive!

1998 B.E. (Computer Science), Regional Engineering College,

Rourkela, India.

2000 M.E. (Computer Science), Indian Institute of Science, Banga-

lore, India.

2000–2001 Senior software engineer, Hewlett Packard.

2001–2003 Research assistant, computer science department, Purdue uni-

versity

2001 summer Intern, Sun Labs, Burlington.

2003–2005 Research assistant, computer science department, UCLA.

2005–present Teaching assistant, computer science department, UCLA.

Publications

Efficient Spill Code with SDRAM with Jens Palsberg. In Proceedings of 4th

International Conference on Compilers, Architecture and Synthesis for Embedded

Systems, pp:24-31, October 2003.

xi

Dynamic State Restoration Using Versioning Exceptions with Suresh Jagan-

nathan. To appear Higher Order Symbolic Computation(HOSC) in 2006.

Compile-Time Concurrent Marking Write Barrier Removal with David Detlefs.

In the proceedings of the 3rd annual IEEE/ACM international symposium on

Code Generation and Optimization, pp: 37-48, March 2005.

Timing analysis of TCP servers for surviving denial-of-service attacks with Jens

Palsberg. In the proceedings of the 11th IEEE Real-Time and Embedded Tech-

nology and Applications Symposium, pp: 541-549, March 2005.

SARA: Combining Stack Allocation and Register Allocation with Jens Palsberg.

manuscript

A framework for implementing and evaluating register allocators with Fernando

M Q Pereira and Jens Palsberg. manuscript

xii

Abstract of the Dissertation

Combining Stack Location Allocation

with

Register Allocation

by

Venkata Krishna Nandivada

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2005

Professor Jens Palsberg, Chair

Machine-specific optimizations are important to compiler technology because of

the significant performance improvements they can achieve. The increasing cost

of memory accesses has expanded the need for machine-specific optimizations

aimed at reducing the performance penalties associated with accessing memory.

Register allocation, which is the phase of compilation that assigns temporaries to

machine registers and/or memory locations, has been one of the most successful

machine specific optimization.

In this thesis, we present a new extension to register allocation, which we name

stack location allocation (SLA). The SLA phase rearranges the variables on the

stack, to facilitate merging of loads and stores, to speed up the memory access.

This optimization is particularly advantageous, in the context of processors such

as StrongARM with peripheral memories like SDRAM, where multiple loads and

stores can be executed efficiently in one single instruction.

We show that the core problem for SLA is NP-complete and present an exact

xiii

solution for SLA by implementing it as an integer linear program (ILP). We tested

the effect of an independent SLA phase, using both a heuristic based as well as an

ILP based register allocator. We found that in both the cases, programs compiled

with SLA give better performance. A phase ordering issue arises between SLA

and RA, which we solved by replacing the two sub phases by a single integrated

phase SARA. We found that SARA outperforms both the deployments of SLA

described before.

We show that as an independent phase code generated with SLA phase runs

on average 4.5% faster over the baseline gcc with -O2 optimization level. When

SLA is integrated with register allocation (SA+RA=SARA), the resulting code

is on average 4.1% faster than that of gcc-O2 with ILP based RA followed by

SLA and 7.4% faster than that of gcc-O2 with heuristic based RA followed by

SLA.

We have developed a new register allocator framework, RALF, that serves

as a basis for both the ILP based register allocator and SARA implementations.

RALF allows many different register allocation techniques to be implemented

independent of the data structures of the underlying compiler and generate end-

to-end numbers for different benchmarks. We show the versatility and the ease

of use of this framework by implementing a variety of register allocators in the

framework and presenting performance results for each.

xiv

CHAPTER 1

Introduction

Modern computing systems come with a lot of designer architectures that are

quite tailor made for the applications under consideration. Under such consider-

ations it becomes increasingly important that the compilers exploit more of the

low level issues to generate better (faster / smaller / ?) code.

One of the first low level optimization that proved it’s prowess was regis-

ter allocation [Cha82, BCT94]. One main reason for the importance associated

with the register allocation phase is the increasing gap between processor speed

and memory speed. With the advent of many custom memories researchers and

engineers have spent a lot of time and focus in trying to reduce memory la-

tencies. Along with better register allocation techniques various compiler-based

techniques have been proposed to reduce memory latencies, including compiler-

directed prefetching [CCH96] and value prediction [LS96, TA97]. In this thesis,

we propose another compiler-based technique, stack location allocation (SLA), as

an extension to the register allocation phase to reduce memory latency. This

phase involves moving and merging memory accesses next to each other and in

the process reduces the cost of memory accesses. Such an optimization phase

can be effective in processors such as StrongARM, which has load-multiple/store

multiple instructions, with SDRAM memory, which facilitates efficient access of

multiple memory locations.

We first show that as an independent phase SLA delivers good results com-

1

pared to gcc at -O2 level of optimization. Further, we show that there exists

a phase ordering problem with SLA’s efficiency being affected negatively by the

previously run register allocation phase. Thus to overcome this phase ordering

problem we propose a combined SLA and register allocation phase (SA+RA =

SARA). We show that this combined phase generates faster code than a sequence

of SLA and RA.

1.1 Background

1.1.1 Register Allocation

A compiler goes through many phases while translating high level code to the

target machine code. During the initial phases of the compiling the compiler uses

many symbolic registers (or pseudo registers) to represent both the declared

variables as well as all the temporary computations. However all the target

hardware are constrained by the limited number of available actual registers.

The task of register allocator is to map these pseudo registers to real registers

and memory locations.

The register allocation problem has been studied in great detail [Cha82,

CK91, BCT94, GW96, AG01, PLM01] for a wide variety of architectures. Reg-

ister allocation problem has been shown to be NP-complete [Set73, LFK99]and

researchers have explored both heuristic based [Cha82, CK91, BCT94] as well as

practically optimal solutions (e.g. solutions based on genetic algorithms [EA99],

solutions based on integer linear programs [GW96, AG01, PLM01]).

Register allocation problem has historically been studied under two sub-

problems: Register assignment and spilling. Register assignment is the phase

of assigning of machine registers to pseudos wherever possible. Spilling is the

2

combined act of storing a currently used pseudo to memory and reloading back

for the next use. Even though, these two subproblems can be solved sequentially,

but such an approach leads to inefficient solutions. This is the main reason why

researchers have tried to integrate the two subproblems into one super problem

and presented solutions for it. The scope of register allocation phase has also

increased due to the interdependence of this phase on other sub-phases, such

as coalescing, rematerialization, code scheduling etc. Researchers have proposed

solutions to these issues by closely integrating the solutions to these sub-phases

with the register allocation phase. In this thesis we present a new phase stack

location allocation as an extension to register allocation phase. We present our

experience of generating code in the presence of this new phase, both as a sep-

arate post pass to register allocator, and as a combined pass solving the two

problems together.

1.1.2 Stack Location Allocation

The widening gap between processor speed and memory speed motivates better

compiler techniques for reducing the number of memory accesses. The idea is

that even a small reduction in memory accesses can give a significant improve-

ment in execution time. One opportunity is given by a commonly-used memory

technology, namely memory with a 64-bit bus, including RAMBUS QRSL and

SDRAM. An increasing number of processors exploit this memory technology by

allowing loading and storing of multiple registers in one instruction. Processors

in this category include the Sun MAJC 5200 [TCC00] and several network pro-

cessors, such as the IBM PowerPC405 in the PowerNP NP4GS3 [np4] and the

Intel StrongARM in the IXP–1200 [ixpa]. Until now, little has been published

work on how a compiler can take advantage of the capabilities for multiple load

3

and store. In this thesis we present compiler techniques for maximizing the num-

ber of multiple load/store instructions, in the context of the Intel StrongARM

processor.

Processors like the Stargate [sta] and Intel IXP–1200 and contains a Strong-

ARM processor and a SDRAM unit along with many other units. On the Strong-

ARM, the register size is 32 bits and the basic load/store operations (called LDR

and STR) operate on one register at a time. However, the SDRAM has a 64 bit

bus, so if we are using a LDR instruction to load a 32 bit register, we are wasting

half of the bandwidth of the bus. Fortunately, the StrongARM also allows effi-

cient execution of multiple loads and stores to and from the SDRAM in a single

instruction (we refer to them as LDM and STM) [Sea]. If we use a LDM/STM in-

struction with two registers, then we save one full load/store instruction, which is

equivalent to saving around 40/50 cycles [SKP00]. The formats of the LDM/STM

instructions are:

LDM baseRegister, bitVector

STM baseRegister, bitVector

where baseRegister holds a memory address, called the base address, which we

write as [baseRegister], and bitVector denotes a subset (possibly all) of the

general-purpose registers. In the first instruction, LDM stands for “load-multiple,”

and the idea is to load several words, starting from [baseRegister], into the reg-

isters denoted by bitVector. In the second instruction, STM stands for “store-

multiple,” and the idea is to store the registers denoted by bitVector into the mem-

ory, starting from [baseRegister]. A load-multiple instruction loads the lowest-

numbered register from [baseRegister], the second-lowest register from [baseReg-

ister] + 4, and so on. A store-multiple instruction works similarly. For example,

let us consider loading four items. Loading them individually, with four LDR

4

0x04

0x08

0x0C

0x10

0x00

Figure 1.1: Layout of byte addressed SDRAM memory

instructions, will take 4 × (1 + 40) = 164 cycles (one cycle of processor time and

40 cycles for the memory access, for each load). Loading them all together, with

one LDM instruction, will take 1 + (2 × 40) = 81 cycles (the memory access is

done in two steps because the total number of words accessed is twice the bus

width). There is a middle ground here: we can load the four items in pairs, with

two LDM instructions, which will take 2 × (1 + 40) = 82 cycles. As the exam-

ple indicates, most of the benefit of multiple loads and stores can be achieved

using double loads and double stores. Hence, in this thesis we will concentrate

on double loads and double stores only. Investigation of triple loads and stores,

and beyond, is left to future work.

To be able to replace two load (store) instructions with a load-pair (store-pair)

instruction we need help from both the memory unit and the processor. We will

start by studying the memory issues.

Fig. 1.1 shows the layout of the byte addressed SDRAM. If we have to load

register r1 from [0x00] and r2 from [0x04] then we can issue one memory fetch

instruction to load from both the locations. And this whole process will take 40

cycles. However, if we have to load r1 from [0x00] and r2 from [0x08] then we

5

have to make two different memory access requests and it will take 40+40=80

cycles. In essence, the addresses have to be contiguous at 4 byte boundaries to

be able to merge the memory access requests.

Suppose we want to replace the following two LDR instructions with one

LDM.

LDR addr1 ri

LDR addr2 rj

Let us assume i 6= j. As we saw in Fig. 1.1 the two base addresses addr1 and

addr2 must be contiguous at 4 byte boundaries, that is, addr2 − addr1 = 4.

(If addr1 − addr2 = 4, then swap the two instructions.) There are two cases

depending on whether i < j or i > j. If i < j, then we replace the two LDRs by

the following code, in which r is a free register:

MOV r addr1

LDM [r] {ri,rj}

In the binary format of the LDM instruction, {ri, rj} is represented by a bit map

of 16 bits with one bit for each of r1 through r16. Thus, {ri, rj} and {rj, ri}

denote the same bit map.

If i > j, then we have an inversion: if we replace the two loads with LDM like

above, then the value from [addr1] would be loaded into rj and the value from

[addr2] would be loaded into ri. We handle inversions by swapping the contents

of ri and rj, using the standard trick involving three exclusive-or instructions

(called eor on the StrongARM):

eor ri, ri, rj

eor rj, ri, rj

eor ri, ri, rj .

6

foo(){ int a,b,c;

· · ·

a=c+a;

return a+e; }

var old loc new loc

a sp+0 sp+4

b sp+4 sp+8

c sp+8 sp+0

(a) (b)

Figure 1.2: Issues with current way of stack allocation.

The advantage of using exclusive-or instructions in this fashion is that no extra

temporary register is needed. Note that the exclusive-or instructions operate on

registers only, and hence are much faster than load and store instructions. Thus,

even with three extra exclusive-or instructions, the resulting code is faster than

two single loads.

The case of replacing two store instructions with a store-multiple instruction

is similar to that of load, except for two differences in the case of an inversion.

First, the swapping of registers is done before the MOV instruction. Second, if

both registers are live after the stores, then, additionally, we need to swap the

contents of the registers after the store-multiple instruction, resulting in a total

of six exclusive-or instructions.

We have shown that it is advantageous to replace two individual loads (stores)

with a load-pair (store-pair). The gcc 2.95.2 compiler does not take full advantage

of this idea. To understand the reasons let us look at a snippet of a C function in

Fig. 1.1.2(a). The function foo, does some computations and then it reaches the

addition statement shown. Let us assume that both the variables ‘c’ and ‘a’ have

been spilled by the register allocator and both have to be loaded just before this

addition statement. That is, we have two load instructions next to each other.

However, for the compiler to replace these two loads with a load-pair they have

7

to be accessing consecutive memory locations.

The second column in Fig. 1.1.2(b) shows the locations assigned to these

variables. Variable ‘a’ is assigned sp+0 and variable ‘c’ is assigned sp+8. This

makes it impossible for the current compiler to merge these two loads. However,

if stack locations assigned to the variables were done, as shown in the second

column in Fig. 1.1.2(b), then variables ‘a’ and ‘c’ would have been neighbors and

the compiler could have merged the two loads into one single load-pair instruction.

In this thesis we propose a new phase, stack location allocation (SLA) that

rearranges variables on the stack to generate efficient code. We present a case

for SLA, that is, making a sincere effort in the compiler to maximize the usage

of double-loads and double-stores by merging as many single loads and singles

stores as possible.

1.2 Our Contributions

We have three main contributions.

1. We implement stack location allocation (SLA) as a post phase to register

allocation in gcc. We show that our phase SLA phase makes the code run

on average 4% over code generated by gcc at -O2 level of optimization.

2. We show that SLA as an independent phase suffers from phase ordering

issues generating from register allocation (RA). And thus to overcome this

problem we present a combined phase of SLA and RA, named SARA, that

does stack location allocation along with register assignment and spill code

generation. Our implementation results in code that runs on average 8%

faster than the code that is generated by a compiler doing RA and SLA in

a sequence.

8

3. We also present a framework (RALF), which allows easy coding of the

register allocators in a production compiler. The framework, can help dif-

ferent register allocators generate end-to-end execution time numbers with-

out requiring the compiler writer to familiarize with the underlying data

structures of a compiler. We show the versatility and ease of use of our

framework by implementing and analyzing a variety of register allocators

in the framework.

In chapter 2 we present the details about our SLA phase. We show the issue of

phase ordering problem arising from SLA and RA along with our solution SARA

in section 3. We present our register allocation framework (RALF) in section 4

and conclude in section 5.

9

CHAPTER 2

Stack location allocation

Processors such as StrongARM and memory such as SDRAM enable efficient

execution of multiple loads and stores in a single instruction. This is particularly

useful in connection with register allocation where spill code may need to save

and restore multiple registers. Until now, there has been no effective strategy

for utilizing this to its full potential. In this chapter we investigate the use of

SDRAM for optimization of spill code. The core of the problem is to arrange

the variables in the spill area such that loading to and storing from the SDRAM

is optimally efficient. We show that the problem is NP-complete and present

a method based on integer linear programming (ILP) to solve the problem. We

have implemented our approach as an additional phase in a gcc-based compiler for

the StrongARM core of Intel’s IXP–1200 network processor. Our optimizer, SLA

(stack location allocator), rearranges the scalar variables so that memory accesses

can be made cheaper. Our experimental results show that our ILP-based method

is efficient and that the code generated for our benchmarks runs 0.8–15.1% faster

than the code produced by the original compiler with –O2 optimization. Our

SLA phase is guaranteed to not deteriorate the execution-time performance and

can be configured such as not to increase the code size.

10

2.1 Introduction

2.1.1 Background

Popular memory units like SDRAM enable a processor to load and store multiple

32 bit register registers in one instruction. In this chapter we investigate how

a compiler can maximize the number of double loads and double stores, while

minimizing the number of inversions as an independent phase. While this problem

can be tackled at various stages of a compiler, we focus on the late stages that

follow register allocation and spilling, in the context of the gcc compiler for the

StrongARM. We do that because, once spill code is inserted, the locations of all

the loads and stores in the code are known. The register allocator will assign

some variables to registers and other variables to stack locations. On the IXP–

1200, the gcc compiler represents those stack locations on the SDRAM. When

a variable on the stack needs to be loaded and stored, the gcc compiler first

generates only individual load and store instructions. Only during the peephole

optimization phase, the compiler attempts to combine the load/store instructions.

But the peephole optimizer does these replacements only if the two loads/stores

are accessing consecutive locations and the registers being loaded/stored are in

the same order (ascending or descending) as that of the memory addresses that

are being accessed. The compiler does not attempt to rearrange the variables, and

in case of inversion, no load-multiple or store-multiple instructions are introduced.

We can do better.

To generate double-load and double-store instructions from individual-load

and individual-store instructions, we need to (1) be able to move them next to

each other and (2) have them access consecutive memory addresses. The first

of these tasks is a standard code motion problem which must be done without

11

changing the program behavior. The second task is a memory layout problem. To

solve it, we can change the stack layout for the local variables of each procedure.

It is now of paramount importance to note how much we can change the stack

layout without changing the behavior of the code. When compiling C programs,

we make changes to two parts of the stack layout, namely (1) the stack area

for scalar variables (int, float, double, char, enum) and (2) the stack area for

arguments that are passed in registers and are saved by the callee (at most 4

in case of the StrongARM). The reason for this choice is that only in these two

cases, the C language standard does not specify the stack layout [c9999, Section

6.9.1#9], while it prohibits rearrangement of the fields inside aggregate types

[c9999, Section 6.7.2.1]. The good news is that the gcc compiler stores all of the

variables listed in (1) and (2) in one contiguous memory area, irrespective of the

order in which they are declared. We will refer to this memory area as the scalar

memory area, and we will use placement function to refer to any permutation

of the locations in the scalar memory area. Intuitively, a placement function

produces a new stack layout by rearranging the variables in the scalar memory

area. We now reformulate our problem into our core challenge, which we state

both as an optimization problem and as a decision problem for blocks (i.e., sets)

of memory accesses.

The Placement Problem: Given a set of blocks of memory ac-

cesses, find a placement function that leads to maximizing the number

of double loads and double stores, while minimizing the number of in-

versions.

The Placement Decision Problem: Given a set of blocks of

memory accesses and natural numbers q, r, does there exists a place-

12

ment function that leads to at least q double loads and double stores,

and at most r inversions.

2.1.2 Our Results

First we characterize the complexity.

Theorem The placement decision problem is NP-complete.

It is straightforward to show that the placement decision problem is in NP: a

placement function is polynomial in the size of the scalar memory area, and we

can check in polynomial time whether a given placement function leads to at least

q double loads and double stores, and at most r inversions.

To show NP-hardness, we do a reduction from the hamiltonian path problem.

Suppose we are given a graph (V, E) of vertices V and undirected edges E. We can

assume, without loss of generality, that for every edge (v1, v2), we have v1 6= v2.

From the graph, we construct a program where each vertex becomes a stack

location and each edge (v1, v2) becomes a basic block consisting of two consecutive

instructions which access exactly two different stack locations, corresponding to

v1, v2, and operate on two different registers. We now claim that the graph has

a hamiltonian path if and only if the program has a placement function which

enables (at least) |V | − 1 double loads/stores and any number of inversions. To

see that, notice that a hamiltonian path and a placement function essentially are

the same thing: they both order the stack locations. Since the hamiltonian path

problem is NP-complete [GGJ78], the placement decision problem is NP-hard.

Given that the placement decision problem is NP-complete, we are discour-

aged from trying to find a polynomial-time algorithm for the placement problem.

Instead, we can either try to find approximate solutions or we can use exact

methods that run in exponential time.

13

In this chapter we present an exact method for solving the placement problem.

Our approach is based on integer linear programming (ILP) and is therefore an

NP algorithm. We have implemented our method in the gcc 2.95.2 compiler for

the StrongARM and we have experimented with it in the context of the IXP–

1200. Our approach is implemented in gcc as an additional phase, named SLA

(stack location allocator), that follows immediately after register allocation and

spilling.

Our experimental results show that our ILP-based method is effective and

that the code generated for our benchmarks runs 0.8–15.1% faster. Considering

the fact that we get this improvement over an already optimized code (compiled

with –O2 option of gcc), this is significant. Most importantly, our SLA phase of

optimization is guaranteed not to deteriorate the execution time. The Strong-

ARM supports the efficient implementation of double loads and stores that we

consider in this chapter. For machines that break down the double loads and

stores into individual bus transactions for each register, there would not be any

gains in speed.

2.1.3 Example

Consider the C code in Figure 2.1.3. The example illustrates that if we are

accessing scalars that are more than 4 bytes apart, then the code generated by

the standard gcc compiler is poor. Notice the calls to the functions bar1, bar2,

and bar3. Each one takes one or more addresses of variables as arguments; the

calls were inserted to ensure that the compiler reloads the variables after the

function call, because the callee might modify the variables.

The table in Figure 2.1.3 shows the locations of the variables before and after

the SLA pass. Notice that a permutation has been done and that after the

14

foo(){ int a,b,c,d,e;

bar1(&a,&b,&c);

a=c+a;

bar2(&b,&d);

e=b+d;

bar3(&e);

return a+e; }

var old loc new loc

a fp-20 fp-24

b fp-24 fp-32

c fp-28 fp-20

d fp-32 fp-36

e fp-36 fp-28

Figure 2.1: Example C program and locations of variables with and with SLA

phase

SLA phase, the variables that are accessed together (a and c, b and d, a and

e) have consecutive addresses. In Figure 2.2 we show the code generated by the

standard gcc compiler and the code generated by the gcc compiler with SLA

for the example C program. We have omitted the code that stores and restores

the callee-save registers and sets the stack frame. For the code shown we have

sp=fp–36.

The function bar1 expects the addresses of the variables a, b and c to be passed

in the registers r0, r1 and r2, respectively. Because the SLA phase modifies the

locations of the variables, we can see different locations for these variables in the

SLA and non-SLA version of the code (lines 1, 2, 4), in accordance with the new

mapping shown in the table in Figure 2.1.3. We can see similar changes in lines

10, 12, 18, 19.

In lines 7–8 the two loads in the non-SLA version of the code cannot be merged

as the memory accesses are not consecutive. In the SLA version of the code, we

first set r2 with the address of the a and the two loads are replaced by one LDM

instruction (ldmia). We can see similar changes in lines 22-23. Finally let us look

15

Without SLA

1 sub r0, fp, #20

2 sub r4, fp, #24

3 mov r1, r4

4 sub r2, fp, #28

5 bl bar1

6

7 ldr r3, [fp, #-28]

8 ldr r2, [fp, #-20]

9 add r3, r3, r2

10 str r3, [fp, #-20]

11 sub r0, r4

12 sub r1, fp, #32

13 bl bar2

14

15 ldr r3, [fp, #-24]

16 ldr r2, [fp, #-32]

17 add r3, r3, r2

18 str r3, [fp, #-36]

19 sub r0, fp, #36

20 bl bar3

21

22 ldr r3, [fp, #-20]

23 ldr r0, [fp, #-36]

24 add r0, r3, r0

With SLA

sub r0, fp, #24 ;&a

sub r4, fp, #32 ;&b

mov r1, r4

sub r2, fp, #20 ;&c

bl bar1 ;call

sub r2, fp, #24

ldmia r2, {r2-r3} ;load a,c

add r3, r3, r2 ;a=a+c

str r3, [fp, #-24] ;store a.

mov r0, r4

sub r1, fp, #36 ;&d

bl bar2 ;call

ldmia sp, {r2-r3} ;load b,d

add r3, r3, r2 ;e=b+d

str r3, [fp, #-28] ;store e

sub r0, fp, #28 ;&e

bl bar3 ;call

sub r0, fp, #28

ldmia r0, {r0,r3} ;load a,e

add r0, r3, r0 ;a+e

Figure 2.2: Code without and with SLA

16

at lines 15-16. In the SLA version of the code, we need not insert any ‘add/sub’

instruction as the location first accessed is already there in register sp.

2.1.4 Related Work

Various compiler-based techniques have been proposed to reduce memory la-

tencies, including compiler-directed prefetching [CCH96] and value prediction

[LS96, TA97]. In this chapter we propose a compiler-based technique that uses

the StrongARM processor’s load-multiple/store multiple instructions, in the pres-

ence of SDRAM memory, by rearranging local variables to reduce the overhead

of memory accesses.

The storage assignment problem was first studied by Bartley [Bar92], and later

by many authors [LDK96, AS99, SLD97, PLM01, SP01, LM96, LD98, PDN97] in

the last decade, for many different types of special purpose architectures. Tradi-

tionally the problem has been studied from two angles. (i) One range of benefits

from good storage assignment include allocating variables in registers, reducing

the cost of inter-bank copy, and reducing the code size [PLM01]. Sjödin and

Platen [SP01] present a model for storage allocation to describe architectures

with memories of varying speed and with several native pointer types. The goal

here is to ensure heavily accessed variables are placed in faster memory and are

accessed with cheap pointers (registers). They frame the problem as an ILP for-

mulation and use the solution to allocate non-local-scoped variables. (ii) Another

range of benefits from good storage assignment come from good allocation of vari-

ables in memory after register allocation has been done. Most of the work here is

done by keeping in mind the presence of auto increment/auto decrement indirect

addressing modes in DSP processors. The goal here is to reduce the number of

explicit instructions to load the address of variables into the address registers. For

17

example, Liao et al [LDK96] present an approach for optimal storage assignment

such that explicit instructions for address arithmetic are minimized, and, hence

resulting in compact code. Leupers and Marwedel [LM96] present approximate

algorithms to optimize the utilization of a proposed parallel Address Generation

Units(AGUs) by computing appropriate memory layouts for scalar variables. Le-

upers and David [LD98] present a genetic algorithm based approach to generate

new offsets to handle different register file sizes and auto increment ranges. Rao

and Pande [AS99] give techniques based on approximation algorithms to opti-

mize the access sequence of variables by applying algebraic transformations on

expression trees. Sudarsanam et al [SLD97], present a formulation of the storage

assignment problem, parameterized by the maximum allowable increment limit

and the number of address registers. Panda et al [PDN97] present a heuristic

based approach for storage assignment to data improve cache locality. Our work

goes for yet another advantage from good storage allocation: better utilization

of a 64-bit bus.

Recently, network processors have received considerable attention. Most soft-

ware for network processors is written directly in machine code because most

current compilers cannot achieve wire-speed performance of the generated code.

For complicated applications such as routers with firewalls and sniffing capabili-

ties, even carefully crafted machine code can have trouble keeping up with wire

speed. These observations motivate better optimizing compilers for network pro-

cessors, and make almost any performance gain important. Our results are a step

in this direction. There are a few other recent projects on compiling for network

processors and exploiting many of their special features. Wagner and Leupers

[WL01] talk about register allocation for processors that support bit section ref-

erencing. George and Blume [GB03] propose a new language and address issues

with register banks and aggregate registers.

18

There has been widespread interest in using ILP for compiler optimizations

such as instruction scheduling, software pipelining, and particularly register allo-

cation [AG01, GW96, LFK99, RGL96, Sto97]. Our work shows that solving ILPs

is sufficiently fast for our per-procedure placement problem.

We have three main contributions. (a) We observe that the amount of time

taken to execute three exclusive-or instructions is far less than the time to do two

memory accesses. Hence we introduce the concept of inversions to help improve

performance. However note that the number of double loads/double stores and

the number of inversions are not linearly correlated. We handle this by prioritizing

two requirements in our objective function. (b) Liao et al [LDK96] assume a

fixed evaluation order for each basic block. Rao and Pande [AS99] relaxed this

assumption by allowing code motion inside algebraic expression trees. We further

relax this by allowing code motion to take place anywhere inside the basic block,

as long as the dataflow is not affected. This gives us more opportunities to get

consecutive memory accesses next to each other. (c) We present an exact method

using ILP to solve the storage assignment problem along with inversions.

2.2 The SLA Algorithm

The SLA algorithm has four phases: model extraction, constraint generation,

constraint solving, and code transformation.

2.2.1 Model Extraction

We first extract a model from the program. We use the following notation for

arrays, for example, array {1..n} of {0,1}, which denotes an array of size n with

elements from {0,1}. The model has eight components:

19

• vars = {1..n}. This is the set of the n scalar variables present in the function

currently being compiled.

• blocks = {1..k}. A block is an unordered collection of loads/stores that can

be moved together. Each element of blocks identifies one of the k blocks.

• triples = blocks × vars × vars.

• edge: array {triples} of {0,1}. If edge[b, v1, v2], then the memory accesses

of v1, v2 are candidates to be replaced by one load/store multiple instruction in

block b. For simplicity, we insist that if edge[b, v1, v2]=1, then v1 < v2. We can

guarantee that v1 6= v2, because if we have two consecutive accesses to the same

location, then one of them can be removed (in case of store), or replaced by a

mov instruction (in case of load).

• inv: array {triples} of {-1,1}. For an edge e = (b, v1, v2), suppose v1, v2

are loaded/stored to/from the registers ri, rj. If i < j, then inv[e] = 1, else

inv[e] = −1. The idea is that if inv[e] = 1, then we would prefer that the new

address of v1 be smaller than the new address of v2. Similarly, if inv[e] = −1

then we would prefer that the new address of v1 be greater than the new address

of v2. We use inv to help minimize the number of inversions. We can guarantee

that i 6= j, because if the destinations of two loads are the same register, then

we eliminate the first instruction. Similarly, if the sources of two stores are the

same register, then if we have a free register available then we use that register

here else we do not add an edge for those two instructions.

• cost: array {triples} of {40,50}. Gives the cycle count for each element of

the edge, where cost[e] = 40 if the edge consists of two load instructions, and

cost[e] = 50 if the edge consists of two store instructions.

• eorCost: array {triples} of {3,6}. Gives the number of eor instructions that

have to be inserted if an inversion occurs for the edge. In case of a load it is 3,

20

and in case of a store it is either 6 or 3, depending on whether the source registers

are live after the store or not.

• w : array {triples} of {1,50}. Gives an estimate of the execution frequency

of each edge. The weight of an edge is statically assigned as 50 if the instruction

corresponding to the edge is in a loop and 1 otherwise.

The quality of the model generated, and consequently the resulting code, de-

pends on precise nature and power of code motion algorithm we use. We use a

simple code motion algorithm which tries to move memory accessing instructions,

present within one basic block, next to each other, based on memory dependencies

and anti/output dependencies. We get the register liveness details, dependence

constraints, and basic block information from the underlying gcc compiler’s op-

timization framework.

2.2.2 Constraint Generation

Once we have done the model extraction, we generate an ILP from the program

model. A solution to the ILP expresses a placement for the local variables.

Variables. The ILP uses the following variables:

• f : array {vars × vars} of {0,1}. In the solution to the ILP, f represents

the desired placement function as a permutation matrix: if f [v, p] = 1, then the

variable v has the position p.

• diff : array {triples} of integer. In the solution to the ILP, for an edge

e = (b, v1, v2), if f [v1, p1] = 1 and f [v2, p2] = 1, then diff[e] = p2 − p1.

• isPair : array {triples} of {0,1}. If isPair[e] = 1, then we can introduce a

load/store multiple instruction for e.

Objective function. Solving the placement problem contributes to saving cy-

21

cles in the overall execution. So, our ILP maximizes an objective function which

approximates the number of saved cycles:

∑

e∈triples
edge[e] × w[e] × s[e]

We use s[e] to denote the number of cycles that are saved in one execution of

edge e. Note that savings only happen when isPair[e] = 1. The precise formula

for s[e] is:

s[e] = isPair[e] × cost[e] +

isPair[e] × 1
2
× (diff[e] × inv[e] − 1) × eorCost[e].

The first part, isPair[e] × cost[e], expresses that we save the cost of one load or

one store. The second part says that if diff[e] × inv[e] = −1, that is, if we have

an inversion, then the second part is negative, and we pay eorCost[e].

Notice that the second part of s[e] contains a product of isPair[e] and diff[e],

which makes the objective function nonlinear. The nonlinearity takes us outside

the realm of ILP, so instead we use the term diff[e] × inv[e] × eorCost[e]. The

term diff[e]× inv[e] is in the interval [−(n−1), n−1] and so it can overwhelm the

first part of s[e]. To compensate, we multiply the first term of s[e] by n, arriving

at this definition:

s[e] = n × isPair[e] × cost[e] + diff[e] × inv[e] × eorCost[e].

We have not seen any deterioration in the quality of the final solution due to this

approximation for many hand-coded examples.

Constraints. We generate the following integer linear constraints. The follow-

ing constraints ensure that f is a permutation matrix.

∀v ∈ vars :
∑

p∈vars
f [v, p] = 1 ; ∀p ∈ vars :

∑

v∈vars
f [v, p] = 1

22

The following constraint expresses that we can introduce a load/store multiple

instruction only for edges that are present in the program model.

∀e ∈ triples : isPair[e] ≤ edge[e].

A vertex can appear only once in a Pair per block. For each block, the following

constraints say that if an edge is counted as a Pair, then we cannot have any

other edge with common vertices in the same block. Note that these constraints

are per block and do not restrict pairs in different blocks from having common

variables.

∀b ∈ blocks : ∀v1, v2, v ∈ vars (v1, v2, v are different) :

isPair[(b, v1, v2)] + isPair[(b, v1, v)] ≤ 1

isPair[(b, v1, v2)] + isPair[(b, v2, v)] ≤ 1

isPair[(b, v1, v2)] + isPair[(b, v, v1)] ≤ 1

isPair[(b, v1, v2)] + isPair[(b, v, v2)] ≤ 1

The idea of the following constraint is that for all triples e, if isPair[e] = 1, then

|diff[e]| = 1.

∀e ∈ triples : n × isPair[e] ≤ (n + 1) − diff[e]

n × isPair[e] ≤ (n + 1) + diff[e]

The following constraint computes diff.

∀e = (b, v1, v2) ∈ triples :

diff[e] =

∑

p2∈vars
f [v2, p2] × p2

 −

∑

p1∈vars
f [v1, p1] × p1

2.2.3 Constraint Solving

We use AMPL [FGK93] to generate the ILP, and CPLEX [CPL00] to solve it.

The gcc compiler invokes the constraint generator by providing the data in a file.

23

Bench characteristics Compile time (secs) Xformations Execution time (secs)

name funcs lines -SLA +SLA % worse lds strs eor -SLA +SLA % imp

GSM 98 8643 5.22 5.90 13.5 18 8 6 0.57 0.55 3.6

EPIC 49 3540 1.34 2.67 99.2 228 30 24 0.65 0.61 6.2

Url 12 790 0.25 0.52 108.0 12 4 0 6.32 6.27 0.8

Md5 17 753 0.27 0.30 14.8 4 0 0 0.75 0.73 2.7

IPCh 76 3453 1.69 2.67 58.0 44 14 9 0.23 0.20 15.1

Classify 25 2850 2.27 4.73 107.0 26 2 6 2.71 2.70 0.8

Firewall 30 2281 1.84 2.71 47.3 24 0 6 3.49 3.41 2.4

Figure 2.3: Experimental Results

Once constraints are generated the constraint generator calls the solver, which

returns the resulting solution to gcc in a file.

2.2.4 Code Transformation

Finally we use the ILP solution to replace all stack offsets and introduce double

loads and stores in the code.

Offsets. For each instruction: (1) if it is an add or sub instruction with the

stack pointer as the source and an integer constant as the second operand (offset)

then if the offset is in the scalar memory area, we replace it by the new offset

computed; and (2) if it is a load/store instruction with the stack pointer as the

base register then if the offset is in the scalar memory area, we replace it by the

new offset computed.

Double loads/stores. For each edge e where isPair[e] = 1, we replace the cor-

responding two instructions with a load/store multiple instruction. If the lowest

address of the loads/stores being merged is not already present in a register, then

24

we insert an add instruction to set up the base register. In the case of inserting

an add instruction before a double store, we need a free register; if we don’t find

one, then we do not do the replacement. In the case of inserting an add instruc-

tion before a double load, we can use one of the target registers for the two load

instructions.

2.3 Experimental Results

We have implemented SLA as a phase of optimization in the gcc 2.95.2 compiler

for the StrongARM processor. In addition, our implementation has a peephole

optimization phase that tries to combine loads/stores of non-scalar variables

without rearranging them, in a way that goes beyond the peephole phase of gcc.

2.3.1 Benchmark Characteristics

We have evaluated our implementation using a total of seven benchmark pro-

grams, drawn from three different suites. Some statistical details about them can

be found in Figure 2.3, columns 2–3.

Our first two benchmarks are from the MediaBench [LPM97] suite: GSM is

an implementation of the European GSM 06.10 provisional standard for full-rate

speech transcoding. EPIC is an experimental image compression utility.

The second set is a collection of three benchmarks drawn from the NetBench

[MBW01] suite: Url implements a context switching mechanism called URL-

based switching. Md5 is a message digest algorithm that creates a cryptograph-

ically secure signature for each outgoing packet. IPCh is a firewall application.

NetBench has three classes benchmarks: small, medium and large. The subset we

present here includes a benchmark from each class. Note that we have presented

25

all the benchmarks from the NetBench and MediaBench suites that we could run

on our setup. The rest of the benchmarks programs could not be run even in the

absence of our optimization.

The third set of two benchmarks were written specifically for the Intel IXP–

1200 processor: Classify is a network packet classifier that classifies ARP and

TCP packets. FireW implements a firewall. For each packet received, it ei-

ther drops it or stores it depending on the rules set and the contents of the

packet. Developed by graduate students for the Network Processors course of-

fered by Douglas Comer at Purdue University, these programs have two parts.

The first part runs on the StrongARM processors, and the second one runs on

microengines. To be able to time the StrongARM code alone, we added code to

simulate microengine code. The microengine simulation code supplies network

packets that we collected offline. The source code of these benchmarks can be

obtained from the authors.

2.3.2 Measurements

We measured the compile time deterioration and the execution time improve-

ment. Figure 2.3, columns 4–9, show the compile time statistics measured on

a Pentium i686 machine running Linux. For each benchmark it gives the time

taken to compile at –O2 level of optimization without and with SLA, percent-

age deterioration in compile time, number of loads/stores replaced with dou-

ble loads/stores, and number of eor instructions added. Note that the current

peephole-optimization phase of gcc is switched on by default, at the O2 level of

optimization.

Columns 10–11 in Figure 2.3 show the execution time statistics in terms of

the time taken to execute the benchmark program compiled without and with

26

SLA. The execution time reported is the execution time as an average over four

runs on the Intel IXP Network processors. The last column shows the percentage

improvement in execution time. The figures we show here are from the runs of

our programs in the presence of data cache. We believe that in the absence of

data cache the comparative gains would be bigger.

2.3.3 Assessment

For our benchmarks, the execution time improvements are in the range 0.8–

15.1%. The geometric average improvement is 2.8% and the arithmetic average

improvement is 4.5%. The improvement is over a powerful baseline, namely code

generated at –O2 level of optimization. Hence, we believe the improvement is

significant.

The compile time overhead is up to a factor of about two. For our bench-

marks, this amounts to at most one or two extra seconds. We believe that the

compile time overhead is affordable for a significant improvement in execution

time. Such optimizations can be run for the production builds and omitted for

regular debug builds. Notice that Url and Classify have the highest overhead in

compile time and the lowest performance improvement. The long compilation

times are due to a large number of edges in the generated ILPs. However, for

both benchmarks, most of the replacements are done in infrequently executed

code, giving a small performance improvement of 0.8%. So, longer compilation

times do not necessarily entail larger performance gains.

For some benchmarks, there were few replacements and, yet, there were sig-

nificant improvements in execution time. For example, for Md5, even though

only four instructions got replaced, the replacements took place in a frequently

executed function giving a significant performance improvement of 2.7%. So,

27

large performance gains do not always require many replacements.

For all benchmarks, the number of replaced load instructions is significantly

higher than the number of replaced store instructions. This was expected because

there are fewer store edges than load edges for each benchmark (we omit the

detailed counts).

The number of inserted exclusive-or (eor) instructions is moderate and in two

cases even zero. However, the two benchmarks for which the most eor instructions

were inserted also saw the largest performance gains. This suggests that the

ability to handle inversions is important. However, if code size is a constraint,

then we can maximize the number of double loads and double stores only, and

ignore inversions. This would mean that no exclusive-or instructions would be

inserted, and hence the code generated would always be at most the size of the

code generated without SLA.

The first two applications, the largest of our benchmarks, show significant

improvements. They were run against the standard data files that come with the

benchmarks.

The last two sets of benchmarks are network applications. They typically

have an initialization code, followed by a main loop where each incoming packet

is processed. The initialization part is run only once, while the main loop is

executed many times. In our measurements, we ensure that gains made in the

initialization part of the code are mostly amortized away and that gains in the

main loop are reflected well. In Table 2.3, we report the time taken to process a

fairly high number of packets, namely 5000.

In addition to the numbers reported, we also ran the last two sets of bench-

marks against varying number of input packets. Leaving aside IPCh, in all these

benchmarks, we found that the SLA phase modifies the initialization part of the

28

code significantly. Due to this we observed high gains when the number of pack-

ets are in the order of few hundreds. However, when we observed it for longer

duration, these high peaks got amortized away and we noticed more stabilized

gains, due to the replacements done in the main loops. In case of IPCh, we did

not find many replacements in the initialization part of the code, and accordingly

we have observed low gains for very low packet counts. Most of the replacements

in this application were in the main loop. Due to this, for higher packet counts

(around 1000), we got around 15% improvement and the gain maintained itself

around that level for higher packet counts.

2.4 Conclusion

We have implemented the SLA phase in the gcc compiler for the StrongARM.

The code generated with SLA will always run faster; for our benchmarks the

improvements are in the range 0.8–15.1%. As the gap between processor speed

and memory latency continues to widen, optimizations such as SLA will be in-

creasingly important.

We have given an ILP formulation independent of the compiler’s target pro-

cessor. We believe our ILP formulation can be used with little modification as

a placement function for many other targets, such as the Microengines in the

IXP’s, the IBM NP4GS3, or the Sun MAJC 5200.

Our optimization will be beneficial even for processors with 64-bit registers

and a 64-bit memory bus. This is due to the fact that even in the presence of

64 bit registers, it would, most likely, still be possible to access 32 bit registers

which would hold the smaller data units.

29

CHAPTER 3

SARA: Combining Stack Allocation and

Register Allocation

Commonly-used memory units enable a processor to load and store multiple

registers in one instruction. We showed in chapter 2 how to extend gcc with a

stack-location-allocation (SLA) phase that reduces memory traffic by rearranging

the stack and replacing some load/store instructions with load/store-multiple

instructions. While speeding up the target code, our technique leaves room for

improvement because of the phase ordering of register allocation before SLA. In

this chapter we present SARA which combines SLA and register allocation into

a single phase. SARA creates a synergy among register assignment, spill-code

generation, and SLA that makes the combined phase generate faster code than a

sequence of the individual phases. We specify SARA by an integer linear program

generated from the program text. We have implemented SARA in gcc, replacing

gcc’s own implementation of register allocation. For our benchmarks, our results

show that the target code is up to 16% faster than gcc with a separate SLA phase.

30

3.1 Introduction

3.1.1 Background

Processors such as Intel StrongARM together with memory such as SDRAM en-

able efficient execution of multiple loads and stores in a single instruction. We can

find such a combination of processor and memory in Intel’s IXP-2400 [ixpb], Star-

gate (http://www.xbow.com/Products/XScale.htm), Sun MAJC 5200 [TCC00],

etc. Multiple loads and stores are particularly useful in connection with register

allocation where spill code may need to save and restore multiple registers.

In the previous chapter we show how to extend gcc with a stack-location-

allocation (SLA) phase that reduces memory traffic by

• moving some load and store instructions such that they occur in pairs,

• rearranging the stack such that the temporaries used in a pair of load/store

instructions have neighboring stack locations, and

• replacing some loads and stores with load/store-multiple instructions.

While speeding up the target code, our technique leaves room for improvement

because of the phase ordering of register allocation before SLA.

For an example of the shortcomings of gcc extended with SLA, consider the

code snippet in Figure 3.1(a). The code snippet is part of a synthetic benchmark

program in which c and d are needed somewhere after line 3. For the benchmark

program, gcc spills the four pseudos a, b, c, and d to the memory locations shown

in Figure 3.1(b) and generates the code shown in Figure 3.1(c); gcc extended with

SLA generates exactly the same code. To see why SLA fails to merge the two

loads and the two stores, notice first that the register allocator has done a good

31

int a,b,c,d;

1. c = a;

2.

3. d = b;

4.

5. ...

(a)

pseudo line reg stack

gcc SARA

a 1 r3 r1 fp-16

b 3 r3 r2 fp-20

c 2 r3 r1 fp-24

d 3 r3 r2 fp-28

(b)

ldr r3, [fp, #-16] ; load a

str r3, [fp, #-24] ; store into c

ldr r3, [fp, #-20] ; load b

str r3, [fp, #-28] ; store into d

(c)

sub r1, fp, #20 ;

ldmia r1, {r1,r2} ; load a and b

sub r9, fp, #28 ;

stmia r9, {r1,r2} ; store into c and d

(d)

Figure 3.1: Phase ordering problem between register allocation and SLA

job using register r3 both when loading a and when loading c. However, the

use of r3 in both load instructions and both store instructions prevents SLA

from moving the instruction for loading b to the program point just before the

instruction for storing into c; the code motion would change the behavior of the

program. Thus, the good register allocation is counterproductive to merging loads

and stores. The compiler can generate better code for the benchmark program by

first doing a worse register allocation which uses different registers when loading

a and when loading c. The reason is that now the SLA phase can safely move the

two load instructions together and also move the two store instructions together,

then replace those instructions with a double-load (ldmia) and a double-store

(stmia), and ultimately generate the code shown in Figure 3.1(d).

32

Another weakness of gcc extended with SLA is that first the register allocator

will assign stack locations to all spilled pseudos and then SLA will try to reor-

ganize the stack as best as it can to enable double-loads and double-stores. If

SLA does not manage to find the best permutation of the stack locations, then

the target code may not contain the highest possible number of double-loads and

double-stores. A better approach may be is to let the register allocator know

about double-loads and double-stores and do the spilling of pseudos accordingly.

Our observations about gcc extended with SLA suggest that a compiler can

do better if register allocation and SLA are more tightly integrated.

Question: Can a combined phase be better than a two-phase se-

quence of register allocation and SLA?

Our Results. In this chapter we present SARA which combines SLA and regis-

ter allocation into a single phase. Our technique creates a synergy among register

assignment, spill-code generation, and SLA that makes the combined phase gen-

erate faster code than a sequence of the individual phases. We specify SARA

by an integer linear program (ILP) generated from the program text. Our ILP

formulation uses an objective function which estimates the execution time of the

memory instructions. We have implemented SARA in gcc, replacing gcc’s own

implementation of register allocation. For our benchmarks, our results show that

the target code is up to 16% faster than gcc with a separate SLA phase.

We specify SARA by an ILP because (1) register allocation can be specified

by an ILP [GW96, KW98, LFK99, AG01, FW02, NP04], (2) SLA can be specified

by an ILP (chapter 2), and (3) ILPs are often easy to combine. We speculate

that it would be much more difficult to build a one-phase combination of register

allocation and SLA based on one of the classical non-ILP-based register allocators

[Cha82, CK91, BCT94].

33

While solving ILPs can be slow, we note that all of the following three prob-

lems are NP-complete: (a) register assignment [Set73], (b) spill code genera-

tion [GJ79], and (c) SLA (see chapter 2). The combination of (a)+(b)+(c) is

also NP-complete. We view our ILP formulation of (a)+(b)+(c) as a high-level

specification which, as we demonstrate, leads to good target code. We present a

technique that enables us to contain the state space explosion and allow the solver

to terminate in reasonable time limits. Our proposal uses the variable liveness

information that is available to the register allocator in most optimizing compil-

ers. In future work one might investigate how to implement fast approximation

algorithms for our ILP formulation.

To show that the combined phase SARA works better than the individual

phases performed sequentially, we specify an ILP-based register allocation phase

(RA) without SLA. Our results show that RA leads to faster code than the code

generated by gcc at O2 level of optimization. Next we re-confirm our results pre-

sented in chapter 2 by showing that RA followed by SLA is better than RA alone.

And finally we show that the combined phase SARA is better than the sequential

composition of ILP-based register allocation and SLA. In slogan form, if P is one

of our benchmark programs, and ET denotes an execution time monitor, we have

ET(SARA(P)) ≤ ET(SLA(RA(P))).

In related work, Bradlee et al. [BEH91] and Motwani et al. [MPS95] demon-

strated how to combine register allocation and code scheduling to obtain faster

code. Lerner et al. [LGC02] presented a framework for composing dataflow anal-

yses and thereby overcoming the phase ordering problem. Our approach differs

from theirs in that we use and combine ILPs.

In the following section we specify an ILP-based register allocator. In Section

3 we extend the ILP-based register allocator with facilities for SLA; the result is

34

SARA. In Section 4 we discuss how we control state-explosion problem, and in

Section 5 we present our experimental results.

3.2 ILP-based Register Allocation

Our ILP-based register allocator does register assignment and spill code genera-

tion. We defined our register allocator with inspiration from the ILP-based regis-

ter allocators of Goodwin and Wilken [GW96] and of Appel and George [AG01].

The key property of our register-allocator specification is that we can easily add

SLA, as shown in the following section. We will now present the three main

phases of the register allocator: model extraction, constraint generation, and

constraint solving.

3.2.1 Model extraction.

From the input program we extract a model consisting of sets and parameters.

Insts ⊆ {1..nInsts} Req : Insts × Pseudos → {0, 1}

Pseudos ⊆ {1..nPseudos} Def : Insts × Pseudos → {0, 1}

Regs ⊆ {1..nRegs} prevInst : Insts → Insts

Loc ⊆ {1..nPseudos} joinInst : Insts × Insts → Insts

callInst : Insts → {0, 1}

The set of instructions, pseudos, registers, and stack locations for the pseudos

is given by Insts, Pseudos, Regs, Loc, respectively. For the example shown in

Figure 3.1, Insts = {1,2,3,4}, Pseudos = {a,b,c,d}, Regs = {1,2,3,4,5,6,7,8,9,10}.

The parameter Req(i, p) is set to 1 if instruction i requires pseudo p and hence

needs p to be present in a register. The parameter Def(i, p) is set to 1 if instruction

i sets pseudo p. The control flow of the program is given by three parameter maps.

35

The parameter prevInst(i) is a singleton set containing the previous instruction

of i if it has only one previous instruction, and null otherwise. The parameter

joinInst(i) is the set of previous instructions of i if instruction i is a join point with

multiple previous instructions, and null otherwise. The parameter callInst(i) has

value 1 if the instruction i is a call instruction, and 0 otherwise.

For each instruction i, the parameter freq(i) returns the frequency of exe-

cution of that instruction. In this thesis, we use static estimates of freq(i); al-

ternatively one might use a profiling-based approach. The parameters loadCost

and StoreCost give the cost of one single load and one single store respectively.

Also a subset of Regs is designated as caller save registers and are represented by

callerSaveRegs For the target environment we have the set of caller save registers

is {0,1,2,3,9,12}. Each function must save and restore any register that is a callee

save register, that is, not a caller save register.

3.2.2 Constraint Generation.

From the input program we generate an ILP whose main purpose is to ensure the

following properties: (1) each pseudo is assigned at most one register, (2) each

register is assigned at most one pseudo, (3) at any instruction, the number of used

registers is bound by the available number of registers, (4) for every definition

and use of a pseudo, the pseudo has a register assigned to it, and (5) a pseudo

keeps it’s mapping to a register, unless the pseudo is no longer live or the pseudo

is defined, loaded, or stored.

We will use the following maps. Intuitively, the map PsR maps pseudos to

registers for each instruction, the map xDef gives the register map for a pseudo

p at a given instruction defining p, the maps SpLoad and SpStore represent the

load and store instructions that need to be inserted into the program, and the

36

map inUse tracks whether a register is used.

PsR : Insts × Pseudos × Regs → {0,1}

xDef : Insts × Pseudos × Regs → {0, 1}

SpStore : Insts × Pseudos × Regs → {0, 1}

SpLoad : Insts × Pseudos × Regs → {0, 1}

inUse : Regs → {0, 1}

PsR(i, p, r) returns 1 if pseudo p is present in register r at instruction i. xDef(i, p, r)

returns 1 if pseudo p is defined in instruction i, in register r. Pseudo p will be

present in register r in the next instruction. SpStore(i, p, r) returns 1 if pseudo p

is spilled after instruction i and is currently mapped to register r. SpLoad(i, p, r)

returns 1 if pseudo p is (re)loaded before instruction i into register r. We generate

the following constraints.

Each pseudo is assigned to at most one register and each register is assigned

to at most one pseudo:

∀i ∈ Insts, ∀p ∈ Pseudos :
∑

r∈Regs
PsR(i, p, r) ≤ 1

∀i ∈ Insts, ∀r ∈ Regs :
∑

p∈Pseudos
PsR(i, p, r) ≤ 1

At any program point the number of pseudos that are available in registers is

bound by the number of registers available:

∀i ∈ Insts :
∑

p∈Pseudos,r∈Regs

PsR(i, p, r) ≤ nRegs

A pseudo that is used in an instruction has to be present in a register at that

point:

∀i ∈ Insts, ∀p ∈ Pseudos :
∑

r∈Regs
PsR(i, p, r) ≥ Req(i, p)

37

A pseudo being defined needs a register:

∀i ∈ Insts, p ∈ Pseudos :
∑

r∈Regs
xDef(i, p, r) = Def(i, p)

A pseudo p retains it’s mapping to a register unless it is spilled or another pseudo

is mapped to that register. If the instruction has only one previous instruction:

∀i ∈ Insts, p ∈ Pseudos, r ∈ Regs, pr ∈ prevInst(i) :

PsR(i, p, r) = (SpLoad(i, p, r) ∨ PsR(pr, p, r) ∨ xDef(pr, p, r)) ∧ ¬SpStore(pr, p, r)

If the instruction is next to a join point and hence have multiple predecessors:

∀i ∈ Insts, p ∈ Pseudos, r ∈ Regs :

PsR(i, p, r) = (
∧

pr∈joinInst(i)

PsR(pr, p, r) ∧ ¬SpStore(pr, p, r)) ∨ SpLoad(i, p, r)

Pseudos mapped to caller save registers loose their mapping after a call instruc-

tion:

∀i ∈ Insts, ∀p ∈ Pseudos ∀r ∈ callerSaveRegs : callInst(i) ⇒ PsR(i, p, r) = 0

A register is used if it is mapped to a pseudo:

∀i ∈ Insts, ∀p ∈ Pseudos ∀r ∈ Regs : inUse(r) ≥ PsR(i, p, r)

3.2.3 Objective function.

Our objective function estimates the execution time of the inserted loads and

stores for spilling and for storing and restoring the callee save registers at the

beginning and end of a function. The objective of our ILP solver is to minimize

SpillCost + CalleeSaveCost where

38

SpillCost =

∑

i∈Insts
freq(i) ×

∑

p∈Pseudos, r∈Regs

(SpLoad(i, p, r) × loadCost)

+

(SpStore(i, p, r) × StoreCost)

and

CalleeSaveCost =

∑

r∈Regs−callerSaveRegs

inUse(r) × (loadCost + StoreCost)

3.2.4 Constraint Solving.

We use AMPL [FGK93] to generate the ILP, and CPLEX (http://www.cplex.com)

to solve it. The gcc compiler invokes the constraint generator by providing the

data in a file. Once constraints are generated the constraint generator calls the

solver, which returns the resulting solution to gcc in a file.

The result of solving the constraints for the running example in Figure 3.1 is

shown in the following table. (Only tuples with non-zero values are shown.)

PsR = {(1,a,r3),(2,c,r3),(3,b,r3),(4,d,r3)}

SpLoad = {(1,a,r3),(3,b,r3)}

SpStore = {(2,c,r3),(4,d,r3)}

xDef = {(1,c,r3),(3,d,r3)}

inUse = {(r3,1)}

SpillCost = 2 × loadCost + 2 × StoreCost = 184

CalleeSaveCost = 0

39

3.3 SARA

The advantage of using an ILP-based framework for combining multiple phases

is that each phase can be added as a module on top of an already existing ILP.

SARA, the combined phase of SLA and RA, is built upon the set of parameters

and constraints given for the ILP-based RA in section 3.2. We now present the

additional parameters, variables and constraints required for SARA over RA. The

new phase SARA requires five additional variables:

LoadPair : Insts × Pseudos × Pseudos → {0, 1}

StorePair : Insts × Pseudos × Pseudos → {0, 1}

InverseLoad : Insts × Pseudos × Pseudos → {0, 1}

InverseStore : Insts × Pseudos × Pseudos → {0, 1}

f : Pseudos × Loc → {0, 1}

For a given instruction i, and two pseudos p1 and p2 (p1 6= p2), the map

LoadPair(i, p1, p2) returns 1 if we can replace the two spill loads by a pair, and

0 otherwise. Map InverseLoad(i, p1, p2) returns 1, if pseudos p1 and p2 can be

paired as one load-pair but would need inversion, 0 otherwise. Maps StorePair

and InverseStore behave similarly for stores. The map f maps a pseudo to it’s

location: f(p, l) returns 1 if pseudo p is placed in location l. Note that, in practice,

not all pseudos would need a location.

A pseudo can have at most one location and a location can have at most one

pseudo mapped to it.

∀p ∈ Pseudos :
∑

l∈Loc
f(p, l) ≤ 1 ∀p ∈ Loc :

∑

l∈Pseudos

f(p, l) ≤ 1

40

A pseudo needs a location if it is spilled and/or reloaded.

∀i ∈ Insts, p ∈ Pseudos :

2 ×
∑

l∈Loc
f(p, l) ≥

∑

r∈Regs
(SpLoad(i, p, r) + SpStore(i, p, r));

Two consecutive loads or stores can be replaced by an LDM or STM instruction.

∀i ∈ Insts, ∀p1, p2 ∈ Pseudos :

2 × LoadPair(i, p1, p2) ≤
∑

r∈Regs
(SpLoad(i, p1, r) + SpLoad(i, p2, r))

2 × StorePair(i, p0, p2) ≤
∑

r∈Regs
(SpStore(i, p1, r) + SpStore(i, p2, r))

LDM and STM require that the memory locations are consecutive.

∀i ∈ Insts, ∀p1, p2 ∈ localPseudos :

LoadPair(i, p1, p2) ≤ 1 only if diff(p1, p2) == 1 else 0.

StorePair(i, p1, p2) ≤ 1 only if diff(p1, p2) == 1 else 0.

diff(p1, p2) = ((
∑

l∈Loc l × f(p1, l)) − (
∑

l∈Loc l × f(p2, l)))

It may be noted that we do not need to check for the absolute value of diff. This

is because the optimizing solver will consider both the options (p1, p2) and (p2, p1)

and can pick the best one.

Inversion takes place if we have LoadPair(i, p1, p2) = 1 and the register as-

signed to p1 is smaller than that of p2. In the case of an inversion, we will have

to swap the contents of the registers at run-time.

∀i ∈ Insts, ∀p1, p2 ∈ Pseudos :

InverseLoad(i, p1, p2) =
isSmaller(i, p1, p2) + LoadPair(i, p1, p2)

2

InverseStore(i, p1, p2) =
isSmaller(i, p1, p2) + StorePair(i, p1, p2)

2

41

∀i ∈ Insts, ∀p1, p2 ∈ Pseudos :

isSmaller(i, p1, p2) =
∑

r1∈Regs
r1 × PsR(i, p1, r1) <

∑

r2∈Regs
r2 × PsR(i, p2, r2))

Objective function. The objective function used in SARA is similar to

the one used by our ILP-based RA given in section 3.2. The new twist is that

SpillCost takes pairs into account. and inversions.

SpillCost =

∑

i∈insts

freq(i) ×

∑

p∈Pseudos SpLoad(i, p, r) × loadCost −
∑

p1,p2∈Pseudos(LoadPair(i, p1, p2) × loadPairSave)
∑

p1,p2∈Pseudos(InverseLoad(i, p1, p2) × invLoadCost) +

∑

p∈Pseudos SpStore(i, p, r) × StoreCost −
∑

p1,p2∈Pseudos(StorePair(i, p1, p2) × StorePairSave)
∑

p1,p2∈Pseudos(InverseStore(i, p1, p2) × invStoreCost)

Here loadPairSave is the savings that one gets because of replacing two loads by

a load-pair and StorePairSave is the savings that one gets by replacing two stores

by a store-pair. If loadPairCost is the cost of executing one load-pair instruc-

tion (this will include the cost of setting the base register) then loadPairSave is

given by (loadCost− 2× loadPairCost). Similarly StorePairSave is calculated as

(StoreCost − 2 × StorePairCost). Cost of introducing inversions for loads and

stores are given by invLoadCost and invStoreCost respectively. In the model

generated by the compiler loadPairCost and StorePairCost , invLoadCost, and

invStoreCost are given as parameters.

The result of solving the above constraints for the running example shown

in Figure 3.1 is shown below. As can be seen the cost has gone down by nearly

42

50% as compared to the ILP-based RA in section 3.2. This is because of the

introduction of the load-pair and store-pair instructions in the code.

PsR = {(1,a,r1),(2,c,r1),(3,b,r2),(4,d,r2)}

SpLoad = {(1,a,r1),(3,b,r2)}

LoadPair = {(1,a,b)}

StorePair = {(4,c,d)}

xDef = {(1,c,r1),(3,d,r2)}

inUse = {(r1,1),(r2,1)}

SpillCost = loadPairCost + StorePairCost = 94

CalleeSaveCost = 0

Our implementation of SARA uses a superset of the constraints presented

in this chapter. The additional constraints take care of (1) pre-colored pseu-

dos (pseudos that require a certain register, as required, for example, in con-

nection with parameter passing), and (2) non-spill memory instructions (gener-

ated in the presence of pointer based accesses in the code). A practical regis-

ter allocator has to take care of these issues to be able to generate executable

code. The reader can obtain the full set of constraints from our webpage,

http://compilers.cs.ucla.edu/nvk/sara.mod.

3.4 SARA Improvements

In this section we will explain three techniques that are used in SARA, namely

two techniques for reducing the size of the ILP state space and one technique for

improving the quality of the generated code.

43

3.4.1 Reducing the size of the ILP state space.

Our first technique uses liveness information. Notice first that the domain of the

pseudo-to-register map PsR is Insts×Pseudos×Regs. However, for a pseudo to

be assigned a register, the pseudo has to be live, that is, the map PsR is valid

only at those instructions where the pseudo is live. For our benchmarks, most of

the pseudos are live in only small parts of the program. So we define PsR only

for live pseudos. Similarly, we define SpLoad, SpStore, LoadPair, and StorePair

only for live pseudos. By the same token, we define constraints only for defined

ILP variables. Our focus on live pseudos let us reduce the number of variables

and constraints by a big factor. We have tried a version of SARA without this

optimization on our benchmark programs, and in many case the preprocessor that

translates the constraints specified in high level language (AMPL) to a format

that is understood by the solver (CPLEX) runs out of memory and fails. With

the liveness-based optimization in place, SARA does not run out of space when

handling our benchmark programs.

Our second technique manages the number of ILP variables needed to repre-

sent the generated load and store instructions. Our technique inserts a dummy

instruction after each instruction, generates load instructions only before real

instructions, and generates store instructions only after dummy instructions. A

dummy instruction does not use any pseudos nor define any; we use dummy in-

structions as place holders for spill instructions. Let us now explain the details

and merits of dummy instructions in more detail. We are trying to track the

mapping of pseudos to registers at each instruction. However, sometimes it is

not sufficient to know the mapping of a pseudo just at each instruction! For

example, in the code fragment without dummy instructions:

44

i1 : x = y + p ; // p dies after i1

i2 : y = y + z ;

let us assume pseudo x has to be spilled (because of register pressure) to memory

after the instruction labeled i1 but before i2, and let us assume pseudo z has to

be loaded before i2. In the case where we do not have any more free registers,

we could use the same register (say r1) for p, x and z. Notice that because x is

being set, x needs a register. But since x will be spilled that register will be free

immediately afterwards and can be used for loading z. So we have a mapping of

x to r1 between i1 and i2. But at i1, p is mapped to r1, and at i2, z is mapped

to r1. This leads to the situation that x does not have a mapping to r1 in PsR.

To avoid such situations, we inserted a dummy instruction after each instruction

before generating the ILP:

i1 : x = y + p ; // p dies after i1

d1 :

i2 : y = y + z ;

d2 :

The register allocator can assign register r1 to pseudo x at the dummy instruction

d1. Additionally, the register allocator can emit an instruction to spill x after d1,

and an instruction to load z before i2, thereby establishing the desired pseudo-to-

register mapping. Our notion of dummy instructions is related to the notion of

points between instructions that was used by Appel and George [AG01]. Instead

of using dummy instructions or points between instructions, one might find a way

to allow the generation of loads and stores before and after every instruction,

although we believe such an approach is more awkward.

45

3.4.2 Improving the quality of the generated code.

SARA can benefit from having freedom to move the spill and reload instruc-

tions around. Perhaps surprisingly, the use of strict (exact) liveness information

can lead to the generation of inefficient code. For example, in code for copying

structures, we come across patterns like:

// x1, x2, y1, y2 are dead

i1: y1 = x1; // live x1

i2: // x1 and y1 are dead

i3: y2 = x2; // live x2

i4: // x2 and y2 are dead

· · ·

Here x1, x2, y1, y2 could be globals or be accessed by globals. We must load

x1 before instruction i1 and x2 before i3. Recall that a load/store requires that

the pseudo is live. Forcing the such liveness constraints would constrain SARA

so much that it cannot move these two loads together. The same logic holds

for the spill of pseudo y1 and y2 after instruction i1 and i3. Assuming that we

have an additional register for the duration of these instructions, and the liveness

constraints were a bit relaxed, we would give SARA a bit more breathing room to

pair up more loads and stores. For example, if we deliberately make the liveness

information a bit more conservative and convey to SARA that x2 is live at i1 as

well, then SARA could generate a load-pair for x1 and x2. A similar argument can

be given for y1 and y2 as well. This leads to an interesting trade off issue: strict

liveness reduces the search space and state space but might result in inefficient

code.

We have experimented with relaxing the liveness information by different

amounts: (a) strict liveness, (b) liveness extended to basic blocks—each pseudo

46

is live from the beginning of the basic block until the end; unless it dies in between,

(c) liveness relaxed by three instructions. Let us consider (c) in more detail. If

a pseudo is live starting at instruction i1, then the pseudo is assumed to be live

starting at i1 − 2 × 3 (multiplied by 2, to take care of the dummy instructions)

unless i1 is one of the first three instructions in the basic block. And if it is,

then the pseudo is assumed to be live starting from the beginning of the basic

block until it’s death or end of basic block. We arrived at the magic number

three from our experience with the benchmarks code. Our experience confirmed

our belief that most of the need for code motion arises in code that does copying

of structures, etc. In such cases, relaxing the liveness by three instructions is

effective.

From our experience, we found that case (b) above, even though it gives more

flexibility to the solver to move the spill code, it often resulted in large data sets

that causes the ILP solver to return no feasible solution even after a lengthy

execution. We present in this chapter our experience with cases (a) and (c). We

refer to the case (c) as SARA and case (a) as SARAs (the subscript denoting

strict liveness).

3.5 Experimental Results

We have implemented SARA in gcc-2.95.2, replacing gcc’s own implementation

of register allocation, and we have tested the target code from the new compiler

on a Stargate platform. Stargate has a StrongARM/XScale processor and 64MB

SDRAM and no cache. We have drawn our benchmark programs from a variety

of sources:

• Stanford Benchmark suite: The first four benchmarks small and simple,

47

but typical of the subroutines of many other benchmarks.

• NetBench: Route and url are network related benchmarks from the Net-

Bench [MBW01] suite. Route is an implementation of IPv4 routing accord-

ing to RFC 1812, and url is a switching protocol that implements url based

switching.

• Pointer-intensive benchmark: This benchmark suite is a collection of pointer-

intensive benchmarks [ABS94]. Yacr2 is an implementation of a channel

router and Ft is an implementation of a minimum spanning tree algo-

rithm [FT87].

• The last two benchmarks are taken from the comp.benchmarks FAQ at

http://www.cs.wisc.edu/~thomas/comp.benchmarks.FAQ.html. The c4 bench-

mark is an implementation of the connect-4 [All88] game and mm is an

implementation of nine different matrix multiplication algorithms.

The static characteristics and compile time statistics of these benchmarks are

presented in Figure 3.2. The static characteristics we present here include the

number of lines of C code, the number of instructions seen by the ILP solver

(which depends on the number of RTL instructions in the intermediate represen-

tation of the program), and the number of functions. Due to space constraints,

we limit ourselves to presenting compile time statistics for three different register

allocators: gcc’s default register allocator followed by SLA, our ILP-based RA

followed by SLA, and SARA (with the liveness information extended to three

instructions, see section 3.4). For each of these combinations we present an esti-

mate of the number of memory accesses; the number of loads and stores (mem),

the number of load-pair/store-pair instructions (pr) inserted, and the number of

callee save registers (csr) used.

48

bench loc #rtl nfn

sieve 39 134 3

matmul 56 254 6

perm 34 112 3

queen 58 144 4

route 2246 4672 23

url 790 1264 12

yacr2 3979 10838 58

ft 2155 3218 35

c4 885 3388 21

mm 647 2884 14

gcc+SLA RA+SLA SARA

mem pr csr mem pr csr mem pr csr

0 0 9 0 0 9 0 0 9

9 2 22 9 0 20 7 6 19

5 0 14 5 0 12 4 2 12

11 0 14 12 1 11 8 5 11

519 4 110 506 6 116 546 19 107

115 8 62 120 5 56 120 8 58

1060 8 123 1003 6 123 1109 24 142

219 5 92 225 9 87 230 14 106

189 3 289 190 7 305 184 18 320

386 9 130 375 4 116 380 23 92

Figure 3.2: Benchmark characteristics and compile time statistics

All these benchmarks have the common characteristic that they are non-

floating point benchmarks. (We had to edit few of them to remove some code

that uses floating point operations; we did so only after ensuring that the code

with floating point operations is not critical to the behavior of the program.)

Studying the compile time characteristics gives a good insight into the way

SARA works. We can see that in the compile time statistics, SARA outperforms

both gcc+SLA and RA+SLA by a big margin in terms of the number of pairs

generated. Notice, though, that SARA sometimes uses more callee save registers.

because of the added register pressure that comes from pairing up loads and

stores. Another point that can be easily noticed is that in some cases, such as c4,

SARA and RA+SLA are generating more memory instructions than gcc. This

is because the constraints use the frequency of the instruction as a parameter

to compute the cost of the objective function. And in such cases, generating

49

Benchmark Exec Time (seconds)

gcc-O2 RA gcc+SLA RA+SLA SARAs SARA

sieve 9.26 9.26 9.26 9.26 9.26 9.26

matmul 71.59 68.19 67.49 67.02 66.45 66.28

perm 154.45 151.26 146.90 143.24 140.10 140.10

queen 27.33 24.39 26.80 23.39 22.90 22.24

route 20.9 18.91 18.82 18.10 17.8 17.18

url 10.85 10.36 10.55 10.36 9.86 9.86

yacr2 4.40 4.21 4.30 4.11 3.99 3.95

ft 46.25 45.26 46.15 45.26 45.26 43.21

c4 42.3 41.1 42.19 40.53 40.23 39.65

mm 330.02 326.2 326.5 324.21 322.60 311.32

Figure 3.3: Execution time numbers

loads/stores outside the loop is a better option. One final point to note here is

that, for benchmarks route, yacr2, ft and mm, SARA generates more loads/stores

than our ILP-based register allocator. The reason is that by generating more

loads and stores in non-loop code and generating load-pairs in the loops SARA

is able to reduce the overall cost.

We do not give detailed compilation times; our solver sometimes took more

than 30 minutes and we had to terminate CPLEX and work with a perhaps

suboptimal solution. The total compilation time for all the benchmarks is in the

order of hours.

We now present the execution time numbers for the benchmarks. In Figure 3.3

we present the time each benchmark took to run when compiled with different

compilers. Each of these is compiled at the -O2 level of optimization.

50

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

si
ev

e

m
at

m
ul

pe
rm

qu
ee

n

ro
ut

e

ur
l

ya
cr

2

ft c4 m
m gcc

RA
gcc+SLA
RA+SLA

SARAs
SARA

Figure 3.4: Normalized execution times

.

To get an overall comparison of the different register allocators, we present

the normalized execution time numbers in Figure 3.4.

Our experience can be represented in a lattice as shown in Figure 3.5. We use

the notation A ≤ B to denote that time taken to execute code when compiled

with A less than or equal to the time taken to execute the same when compiled

with B.

Let us now analyze the results in more detail. Sieve is one benchmark where

no spill code was needed and gcc’s register allocator and our register allocator

both perform in the same way. For benchmarks matmul and route, gcc+SLA

performs better than RA, indicating that SLA in itself is fairly powerful. For

other benchmarks RA is doing better than gcc+SLA, showing that our ILP-

51

RA+SLA

RA gcc+SLA

gcc−O2

SARA

SARAs

≤ ≤

≤

≤

≤≤

≤ ≤

Figure 3.5: A comparison of different register allocator schemes

based register allocation is giving better results than gcc’s default module run

followed by SLA. For ft, RA + SLA does not give any improvement over RA.

That is because SLA could not introduce many pairs in the frequently executed

code. Also SARAs is not giving much improvement either. That’s because the

ILP solver could not generate many pairs with the strict liveness constraints.

However SARA does show an improvement which is due to the relaxed bounds.

Theoretically one can imagine cases where RA+SLA could be doing better than

SARAs or even SARA, but we did not find any such cases in our benchmarks.

Further experimentation may reveal such cases.

A general point to note about the numbers is that there is a appreciable

amount of tension between the number of callee save registers used, the number

of normal loads and stores, and the pairs inserted. As a result, SARA shows a

significant but not earthshaking improvement over the other register allocators.

Overall, we see that SARA yields improvements up to 16% compared to the gcc

compiler’s own register allocator extended with SLA, and up to 8% compared to

our own ILP-based register allocator followed by SLA. On average (excluding the

numbers for sieve), the improvements are 7.4% and 4.1% respectively.

52

3.6 Conclusion and Future work

We have presented an ILP-based approach to combining register allocation and

stack location allocation. We have shown that doing these optimizations together

gives better results than doing them separately in sequence.

In future work, one might implement SARA using fast heuristics and compare

the results to the results of solving the ILPs using CPLEX. One might also add

register coalescing, register rematerialization, etc. to SARA and study the effect

on code quality and compilation time.

53

CHAPTER 4

RALF: A register allocation framework

Implementing a given register allocation technique to obtain executable code is a

non-trivial task. This task becomes harder when the implementation testbed is an

industrial strength compiler. A quick look at some of the recent publications on

register allocators show that few actually generate executable code. The majority

of researchers address this issue by presenting static compile time numbers such

as number of registers used and number of spill instructions inserted. But such

statistics have the disadvantage that they do not reflect the real state of affairs

vis-a-vis the real impact of the given algorithm in the compiler. They do not

take into account (a) how much impact the new phase will have in the presence

of other optimizations, and (b) dynamic behavior of the program in the presence

of user inputs, loops and function calls.

We present here a gcc based framework (RALF) over which different register

allocators can be easily specified and end-to-end results obtained to evaluate

the efficiency. We show the versatility of our framework by implementing seven

different register allocators and comparing their effect. This framework can be

used to implement many register allocators without actually dealing with the

details of the underlying compiler.

54

4.1 Introduction

The register allocation problem has gotten a lot of attention due to it’s pivotal

role in compilation of high level programs to machine code. It is probably the

most important step required while translating code to machine code as this is

the only step in which variables (temporaries or pseudos) are actually mapped

to real machine registers. Also compared to any other phase, register allocation

is known to have the largest impact on the generate code in terms execution

time [HP02]. And as one can easily guess, this phase forms a big part of the

compiler code (for example in lcc [FH95], the register allocator forms 10% of the

code and in gcc-2.95.2 it forms around 12% of the code). Correspondingly, it’s

interaction with the rest of the phases is also significant and for any non-trivial

compiler it is complicated. These complications have proved as a big obstacle for

the researchers interested in pursuing research in this area.

A quick look at the recent publications on register allocators show that few

actually implement the register allocator in a production compiler and test the

executable code to check for performance improvement. Majority of researchers

present static compile time numbers such as number of registers used and number

of spill instructions inserted. Even though, these numbers do give an estimate of

the direct impact of the register allocator, it still does not tell the real impact

of the register allocator on the compiler. They do not take into account (a) how

much impact the new phases will have in the presence of other optimizations, (b)

dynamic behavior of the program in the presence of user inputs, loops and func-

tion calls. The missing link in this chain of action is a framework that can provide

just the relevant input to the register allocator and take the output of the register

allocator and generate executable code. We present in this thesis a framework

that can be used for many different register allocators. The framework specifies

55

In
pu

t
 I

nt
er

fa
ce

C Source Prog a.out

Register Allocator 1

Register Allocator 2

Register Allocator n

Front End Back End

O
ut

pu
t

 I
nt

er
fa

ce

Figure 4.1: Framework block diagram.

an input and output interface for the register allocator which is quite simple. The

register allocator can be plugged into the framework as an independent module.

The framework is general enough to handle coalescing, stack location allocation,

and pairing of loads and stores along with standard register allocation directions

specified by the register allocator. The only restriction on the allocator is that it

has to adhere to the input/output specification.

In this thesis we show that this framework is quite general and easy to use, by

implementing seven different register allocators in this framework and comparing

their behavior. This provides a good way of comparing different register allocators

as the framework treats all of them with similar input and output requirements.

In the following sections we describe the framework in detail, and then present

our experience with a set of seven register allocators. Finally we present some of

our observations and limitation of our framework.

4.2 Framework description

We present in Fig 4.1 block diagram for our register allocation framework. It

has a front end that parses a given source program and after doing different

optimizations it calls the specified register allocator. Once the register allocator

has finished with allocating, the register allocator passes the control back to the

56

framework with the decisions it made about the pseudos. The framework uses

this output of register allocator to do the actual register assignment, spill code

assignment and stack location allocation and then generates executable code.

One important requirement of a register allocation framework is that it should

be able to hide most of the compiler specific details from the programmer. How-

ever it must also include all the information that is required by a register al-

locator, for example, the use-def information, liveness information, pre-colored

pseudos (pseudos that already have hard registers assigned), known loads and

stores, move instructions etc. Similarly, the framework should be flexible enough

to understand different outputs of different register allocators, e.g. pseudo to reg-

ister mapping, spill loads and stores, coalescing, stack location allocation, pairing

of loads and stores etc. Also along with these the framework should be able to

do mundane tasks like loading and storing of callee save registers at the entrance

and exit of each function, and filling up the holes in the allocated stacks etc. In

the following subsections we will present the interfaces our framework presents

to the register allocators and argue about the ease of it’s use in the following

sections by implementing a variety of register allocators.

4.2.1 Input Interface

The input to the register allocator is a model of the given input program, pre-

sented in terms of sets and parameters. A set is a symbolic enumeration and

a parameter can be a scalar value or a collection of values indexed by set(s).

The language we choose is similar to the language used for the data input in

AMPL [FGK93].

The inputer interface has two basic components: Program specific informa-

tion, and target architecture specific information.

57

Program specific information

The sets of instructions, pseudos, and locations for the pseudos are given by Insts,

Pseudos and Regs respectively.

Insts ⊆ {1..nInsts}

Pseudos ⊆ {1..nPseudos}

Loc ⊆ {1..nPseudos}

where nInsts is the maximum number of instructions, nPseudos is the maximum

number pseudos present in the program. Each instruction is considered to have

a (possibly empty) set of required pseudos and can set a pseudo or a register.

At each instruction the liveness information is given for each pseudo. Problem

parameter Live(i, p) is set to 1 if pseudo p is live at instruction i.

Live ⊆ Insts × Pseudos → {0, 1}

Problem parameter Req(i, p) is set to 1 if instruction i requires pseudo p and

hence need to be present in a register. And Def(i, p) is set to 1 if instruction i

sets pseudo p.

Req ⊆ Insts × Pseudos → {0, 1}

Def ⊆ Insts × Pseudos → {0, 1}

The control flow of the program is given by three maps:

prevInst ⊆ Insts → Insts

joinInst ⊆ Insts × Insts → Insts

callInst ⊆ Insts → {0, 1}

Parameter prevInst(i) is a singleton set containing the previous instruction of i if

it has only one previous instruction, null otherwise. Parameter joinInst(i) is the

58

set of previous instructions of i if instruction i is a join point with multiple previ-

ous instructions, null otherwise. Parameter callInst(i) has value 1 if instruction

i is a call instruction, 0 otherwise.

A subset of instructions are declared as move instructions. These instructions

can be pseudo-pseudo or pseudo-register move instructions. The source and des-

tination of the move instruction can be found from the Req and Def parameters.

This information can be used by register allocators doing coalescing.

moveInst ⊆ Insts → {0, 1}

For each instruction i, parameter freq(i) returns the frequency of execution

of that instruction. We use static estimations for obtaining the frequencies of

each instruction. Studying the possible improvements by using profile based

approaches is beyond the scope of this thesis and we leave it as a future work.

Architecture specific information

Architecture specific information chiefly deals with information about different

registers and costs of different operations.

Regs ⊆ {1..nRegs}

where nRegs is total number of registers available to the register allocators. Pa-

rameters loadCost and StoreCost give the cost of one single load and one single

store respectively. Similarly loadPairCost and StorePairCost give the cost of a

load-pair and store-pair instruction respectively. Also a subset of hard regis-

ters are designated as caller save registers and are represented by callerSaveRegs

These are the registers whose contents are not saved across calls.

callerSaveRegs ⊆ Regs → {0, 1}

59

p1 = 1;

p1 = p1 + 2;

p2 = p1 + 3;

Figure 4.2: Sample input program, using two pseudos.

Each function must save and restore any register that is not a caller save register

(i.e. callee save register).

Input interface requirements

We impose a set of requirements on the framework generated input to the plugged

in register allocator. These requirements serve as a set of guarrantees regarding

the input to the register allocator. These requirements have been put in place

to ensure a simpler and convenient program model for the plugged in register

allocator.

• Three address codes: The model of the program presented to the register

allocator is similar to three address codes; each instruction has at most two

uses and an optional definition.

• Liveness: The liveness informtion output is conservative. That is, if a

pseudo is live in the program then the liveness information given in the

Live section will reflect that.

4.2.1.1 Example input interface

We show in Fig. 4.3 a sample of the generated interface for the program shown

in Fig. 4.2.

60

It shows that it has three instructions, two pseudos and the machine has three

registers. Parameters are specified by indexing over these sets and hold integer

values. We only output here parameters and value pairs for non zero values.

As shown the register r0 is a caller save register, each instruction has a (static)

execution frequency of 1, and pseudos p1 is live in all the instructions and pseudos

p2 is live only in the last instruction. Parameters def and req give the def and

use information: pseudo p1 is defined in instruction i1 and i2 and pseudo p2 is

defined in i3. Similarly, instruction i2 uses pseudo p1, and instruction i3 uses

pseudos p1 and p2. In the end, the framework outputs a set of scalar parameters;

number of registers, total number of instructions, number of pseudos, cost of

single load, cost of a load-pair, cost of inversion for a load-pair, store cost, cost

of a store-pair, and the cost inversion for a store-pair.

In this thesis, we omit some more parameters that give information about

jump instructions, pre-colored registers, jump targets, known-loads (load instruc-

tions that are already present), and known-stores (store instructions that are

already present). A complete guide to our framework can be found at:

http://compilers.cs.ucla.edu/ralf

4.2.2 Output Interface

The register allocator that is plugged into the framework must assign registers

to pseudos, output any spill and reload instruction, and assign stack locations

to spilled pseudos. All this information is fed back to the framework which then

uses this information to generate executable code. The output has ten different

sections corresponding to different types of information that a register allocator

might want to convey. Each section consists of a set of tuples as described below.

61

set insts := i1 i2 i3 ;

set pseudos := p1 p2 ;

set regs := r0 r1 r2 ;

set loc := p1 p2;

param: callerSave:=

r0 1 ;

param: freq:=

i1 1

i2 1

i3 1 ;

param: Live:=

i1 p1 1

i2 p1 1

i3 p1 1

i3 p2 1 ;

param: prevInst:=

i1 i2 1

i2 i3 1 ;

param: joinInst:=;

param: def:=

i1 p1 1

i2 p1 1

i3 p2 1 ;

param: req:=

i2 p1 1

i3 p1 1

i3 p2 1 ;

param: moveInst:= ;

param: callInst:= ;

param nRegs := 3;

param nInsts := 3 ;

param nPseudos := 3;

param loadCost := 41;

param loadPairCost := 42;

param invLoadCost := 3;

param storeCost := 51;

param storePairCost := 52;

param invStoreCost := 6;

Figure 4.3: Sample input interface data.

62

To minimize the file I/O the framework requires that the register allocator output

just the non zero entries for each tuple in each of the sections, wherever applica-

ble. This information can be classified into three categories, register assignment

information, generated spill code, and any possible new instructions:

Register assignment information:

• At each instruction mapping of each pseudo to register is given by the

section PsR. This section consists of tuples of the form (i, p, r), signifying

pseudo p is present in register r at instruction i.

• For each pseudo set in an instruction the target register is given in the

xDef section. This section consists of tuples of the form (i, p, r), signifying

pseudo p is set in register r at instruction i.

Spill information:

• For each pseudo section f gives the assigned stack location number or -1

otherwise. Each tuple is of the form (p, l), signifying pseudo p gets location

l.

• Pseudo reload information is given by the SpLoad section. This section

consists of tuples of the form (i, p, r), signifying pseudo p is loaded in register

r before instruction i. If two loads can be replaced by a load-pair instruction

then that is given in the LoadPair section. Each tuple in this section is of

the form (i, p1, p2), signifying pseudo p1 and p2 are loaded before instruction

i and can be combined to make a load-pair instruction. For each tuple in

the LoadPair section, the information about the requirement of inversion

is given in InverseLoad section. Each entry in this section is 1, if the

63

corresponding entry in the LoadPair section requires an inversion, and 0

otherwise.

• Pseudo spill information is given by the SpStore section. This section

consists of tuples of the form (i, p, r), signifying pseudo p is stored from

register r after instruction i. If two stores can be replaced by a stores-pair

instruction then that is given in the StorePair section. Each tuple in this

section is of the form (i, p1, p2), signifying pseudo p1 and p2 are stored after

instruction i and can be combined to make a store-pair instruction. For each

tuple in the StorePair section, the information about the requirement of

inversion is given in InverseStore section. Each entry in this section is 1

if the corresponding entry in the StorePair section requires an inversion,

and 0 otherwise.

New instructions:

• If the register allocator wants to insert any move instruction (because of

coalescing or any other pass), it can instruct the framework to do so by

the moveInst section. Each tuple in this section is of the form (i, r1, r2),

signifying that r2 is moved to r1 before instruction i.

• Capabilities to insert bitwise operations is one more popular requirement

for some of the register allocators. Such a feature is helpful in bitwidth

aware register allocation schemes (for example [TG03]). (We do not show

these operations in the examples that follow for brevity.)

64

PsR :=

i2 p1 r0

i3 p1 r0 ;

xdef :=

i1 p1 r0

i2 p1 r0

i3 p2 r0 ;

spLoad:= ;

spStore:= ;

f:=

p1 -1

p2 -1 ;

loadPair:=;

storePair:=;

inverseLoad:=;

inverseStore:=;

moveInst:=;

Figure 4.4: Sample output interface data.

Sample output interface

Fig 4.4 presents a sample output from a register allocator for the sample code

shown in Fig 4.2. As it is obvious, one register is enough to do the register

allocation in this program. It can be seen that the register used is the caller save

register r0, and hence the allocator need not save / restore callee save registers.

And since both the pseudos have been placed in registers, they do not need a

place in the stack (and hence negative values in the f section).

4.2.3 Correctness issues

The framework we present here, has a number of checks built into it to ensure

that the plugged in register allocator does preserve the syntax of compilation and

semantics of register allocation.

65

Syntactic constraints

Syntactic constraints are simple checks to ensure that every entry output by the

register allocator is valid.

• Every instruction, pseudo, register and location specified by the register

allocator in its output must be from the set of Insts, Pseudos, Regs, and

Loc respectively.

Semantic constraints

Semantic constraints are checks to enforce the underlying semantics of register

allocation.

• Every set instruction (declared using the Def map) must have a target

register.

• Each used temporary must have a register assigned to it. If an instruction

uses a pseudo then it must be available in a register. Also, if an instruction

sets a pseudo, then the pseudo must be assigned the target register.

• Every spill-store / reload requires the pseudo to be live at that point.

• Every spill-store requires that the pseudo be available in the source register

of the spill store before the location of that spill-store.

• Every reload requires that the pseudo be available in the in the destination

register of the reload instruction after the location of that reload.

• Every pseudo that is loaded or stored must have a stack location.

• A double-load instruction before any instruction i requires that there are

two load instructions before i.

66

• A double-store instruction after any instruction i requires that there are

two after instructions before i.

• If two pseudos p1 and p2 are loaded (or stored) using a load-pair (or store-

pair) instruction then they must be assigned neighboring locations.

4.3 Versatility: Test by implementation

We show the versatility of our framework by implementing a variety of register

allocators. Each of the register allocator has a different input requirements and

hence poses different type of challenge to the framework. We chose different

register allocators to cover a spectrum of typical requirements of different register

allocators. The details of the register allocators we use are presented in the

following subsections.

4.3.1 Naive Register Allocator

The most naive register allocator would load each pseudo before each use and

store it back after each definition. The pseudo code for such an allocator is

presented in Fig. 4.3.1. Becaue of the input interface requirements presented in

section 4.2.1 the algorithm assumes that there will be at most two pseudos used

and at most one pseudo defined in any instruction. Thus, there will be at most

two loads before any instruction and after each instruction there will be at most

one store instruction. The naive allocator requires that there will be at least two

free registers, which is the minimum number of registers required to do register

allocation for code in three address form. This register allocator though is only of

academic interest, can still be used as a first level test case for a register allocation

framework.

67

function NaiveRegAlloc()

for each instruction i do

for p1 and p2 used in i

load p1 before i into register r4

load p2 before i into register r5

for p3 defined in i

set r4 as the target register for i

store p3 after i from register r4

Figure 4.5: Pseudo code for naive register allocator.

For the code snippet shown in Fig. 4.2, the output generated by the naive

register allocator is shown in in Fig. 4.6 and the assembly code generated is

shown in Fig. 4.7. Owing to the simplicity of the allocation scheme the code

generated is obviously inefficient. The framework places pseudos p1 and p2

at the memory locations pointed by sp-4 and sp-8 respectively, where sp is

the stack pointer. The loads and stores before and after every mov and add

instructions are in accordance with the directives, given by the register allocator,

shown in 4.6.

4.3.2 Linear Scan Register allocator

Linear scan register allocation was proposed by Poletto and Sarkar [PS99] and

is popular for its speed. The allocator assumes a linear representation for the

input program. That is, the set of instructions are countably finite. (Note, any

program can be presented in an linear form by many ways: for example doing

a depth first search over the control flow graph is one such option, generated

68

PsR :=

i2 p1 r0

i3 p1 r0 ;

xdef :=

i1 p1 r0

i2 p1 r0

i3 p2 r0 ;

spStore:=

i1 p1 r0

i2 p1 r0

i3 p2 r0 ;

f:=

p1 p1

p2 p2 ;

spLoad:=

i2 p1 r0

i3 p1 r0 ;

loadPair:=;

storePair:=;

inverseLoad:=;

inverseStore:=;

moveInst:=;

Figure 4.6: Output of Naive register allocator for the code snippet in Fig. 4.2.

mov r0, 1

str [sp-4], r0

ldr r0, [sp-4]

add r0, r0, 2

str [sp-4], r0

ldr r0, [sp-4]

add r0, r0, 3

str [sp-8], r0

Figure 4.7: Assembly code generated from the register alloctor output in Fig. 4.6

69

is shown in Fig. 4.7. we use here.). This allocator depends on the live intervals

information which is computed easily from the variable liveness information. Two

intervals are considered to be interfering if they overlap. The goal of linear scan

algorithm is to allocate registers to as many intervals as possible from a given set

of registers such that no two overlapping intervals get the same register.

The basic idea of the algorithm is as follows: At the beginning of each new

interval, the allocator tries to see if the number of live intervals is less than

the available number of registers. If so, then it allocates one of the available

registers to the new live range. Else it spills one of the live ranges to make

a register available and then assigns this registers to the new live range. The

spilled intervals set is given by a set of pairs of pseudos and instructions (p, i),

which denotes that pseudo p is live at instruction i but has its interval spilled.

The candidate live range for spilling can be chosen by different heuristics and

accordingly the quality of the code will vary. For this thesis we chose a simple

heuristic; the end point of the interval, that is, the interval that whose end point

is farthest from the current point is spilled. For each pseudo and instruction pair

(p, i), corresponding to any spilled interval

• If p used in i (given in Req map), we reload the pseudos from the memory

using two available registers before i.

• If p is set in i (given by the Def map), we write to an available register and

generate spill code to store that register back to the location of the pseudo

after i.

70

Figure 4.8: Iterated register coalescing.

4.3.3 Iterative Register Coalescing

George and Appel proposed iterative register coalescing [GA96] to do aggres-

sive coalescing along with graph coloring based register allocation. The tech-

niques proposed have been found to be improvements over Chaitin [Cha82] and

Briggs [BCT94] methods in terms of elimination of move instructions and overall

execution time. The goal of the algorithm is to identify as many opportunities as

possible to coalesce, to attach the coalesced pseudos together with same register,

remove the move instruction and as a result reduce the register pressure.

The algorithm shown in Fig. 4.8 has five main phases over which it iterates

selectively.

1. Build: Builds interference graph and recognize operands participating in

move instructions. Mark every node corresponding to a pseudo participat-

ing in a move instruction move-related.

2. Simplify: Modify the interference graph, by removing a node (correspond-

ing to one or more pseudos) of low degree that is not part of any move

instruction.

3. Coalesce: Do conservative coalescing [BCT94]. Repeat steps 2 and 3 un-

til we get graph where each node has degree higher than the number of

available registers or each node is part of a move instruction.

4. Freeze + potential spill: If neither step 2 and step 3 can be applied

71

select a move-related node of low degree and reset the move-related mark.

Go back to step 2.

5. Select + actual spill: Assign colors to nodes in the graph. If some

pseudos are spilled then go back to step 1 and see if these spills have changed

the colorability of the rest of the graph.

Even though the this algorithm could iterate for a number of times (linear in the

number of pseudos), in practice this algorithm iterates very few times and has

been found to be fast for an aggressive algorithm.

4.3.4 Usage count based register allocator

Usage count based register allocation proposed by Freiburghouse [Fre74] again

assumes a linear representation for the input program like the linear scan algo-

rithm. The main idea in this work is to use the usage count information to decide

on which pseudo to spill. The idea is that a pseudo can be spilled if it’s usage

count is zero.

To do register allocation via usage counts, the model of the program that

the allocator must maintain is quite simple: the pseudo to register map at each

program point. For each pseudo, at the point of definition, the allocator assigns

the max usage count. As the allocator scans the instructions and updates the

mapping, it decrements the usage of a pseudo, each time it encounters a reference

to the pseudo. Once a pseudo has its usage count reduced to zero, the assigned

register is free and can be used by some other pseudo. And if for any particular

use of a pseudo, there are not enough free registers then we spill the pseudo with

least usage count. For all the instructions following this spill point, that spilled

pseudo is considered unavailable.

72

For each spilled pseudo p the spill code generated by the following rule:

• At each instruction i, if there is a use of pseudo p, and p is unavailable at

instruction i we reload it before i, into an available register.

• At each instruction i, if pseudo p is defined in i, and p is unavailable at

instruction i we use an available register as the target register and then

store it back to the location of p.

4.3.5 ILP based register allocator

We use the integer linear program (ILP) based register allocator (RAi) presented

in section 3.2 as an example of ILP based register allocator. The register alloca-

tor has its similarities with other ILP based register allocators of Goodwin and

Wilken [GW96] and of Appel and George [AG01].

This register allocator takes the benefits of liveness information to reduce the

state space and search space together. It also takes into consideration known

loads and known stores and tries to see if they can be moved around to get better

performance.

4.3.6 SARA

We present in chapter 3 a combine phase for register allocation and stack location

allocation. Such a register allocator can be very effective for processors like

StrongARM (which have load-multiple/store-multiple instructions to load and

store multiple words at a time) and memories like SDRAM (a 64 bit memory and

allows efficient access of 64 bits) when present together. We use SARA as one

more of our points of reference.

In SARA both register allocator as well as stack location allocation both

73

Figure 4.9: Chordal graph based register allocation.

are specified as a single integer-linear-program (ILP), with a single objective

function. This combined phase creates a synergy between register assignment,

spill code generation and stack location allocation. For a such a phase to be

effective, the framework must be able to inform the register allocator about the

known-loads/known-stores as well as it the register allocator should be able to

communicate back to the framework any load-pairs and store-pairs generated,

along with the inversions. Our framework RALF provides all of these, and more.

4.3.7 Register Allocation via Coloring of Chordal Graphs

The chordal graph based allocator [PP05] is an iterative algorithm that has four

phases: (1) spilling, (2) coloring, (3) reconstruction of live ranges, (4) coalescing.

The algorithm is represented in Fig. 4.9 is an extension of [PP05]. In contrast

to the original algorithm which had a linear transition among these phases, here

the register allocator makes multiple passes over the phases to generate better

spill code. The algorithm works for both chordal and non-chordal interference

graphs; however, when the interference graph is chordal, it can find an optimal

allocation of registers if spilling does not occurs. They show that the majority of

programs under their consideration have chordal interference graphs and hence

result in good optimal coloring.

The chordal based approach searches for potential spills before the coloring

74

phase. If the chromatic number of the (chordal) graph is greater than the quan-

tity of available registers, spilling must be performed. In order to minimize the

number of spills, the algorithm attempts to remove nodes that are part of many

cliques. (A clique of a graph G is a complete subgraph of G.) If the spilling

phase is executed, it is necessary to reconstruct the control flow graph of the tar-

get program, and re-execute the spill analysis. The next phase is the coloring of

the interference graph. A chordal graph G = (V, E) can be optimally colored in

O(|V |+ |E|) time. It is possible to prove that after the spilling stage, no further

spills will happen in the coloring phase. The last stage of the algorithm is the

coalescing of move instructions. Coalescing is performed in a greedy fashion: for

each pair of move related registers, the algorithm attempts to assign them the

same color.

4.4 Experimental results

In this section we present our experience in using RALF with the register allo-

cation techniques described in section 4.3. We will be using the following abbre-

viations: (Naive - The naive register allocator, UC - Usage count based register

allocation, IRC - Iterated register coalescing, LS - Linear scan, CG - Register

allocation by coloring chordal graphs, RAi - ILP based register allocation, SARA

- Combined ILP based stack allocation and register allocation)

For each of the register allocator techniques in Fig. 4.4 presents some statistics

to demonstrate the ease of use of the framework. For each of the register allocation

scheme we present the number of lines for the register allocation code, number

of lines of code required to interface with the framework and a rough estimate

on the number of hours to code the interface. We annotate the numbers for the

lines of code column by (J) or (A), signifying Java code or AMPL [FGK93] code.

75

RA #LOC Hrs to Code

RA Interface

Naive 196 (J) 773 (J) < 10

IRC 3538 (J) 773 (J) < 10

CG 4134 (J) 773 (J) < 10

UC 402 (J)+ 1100 (J)+ < 5

LS 385 (J)+ 1100 (J)+ < 5

RAi 495 (A) 298 (A) 0

SARA 731 (A) 400 (A) 0

Figure 4.10: Experimental evaluation of RALF.

Figure 4.11: Comparison of different register allocators

As we discuss in section 4.5 the framework also provides a grammar for the input

interface in javacc format. For LCC and LS we use this grammar and the provided

library classes to read the input, generate intermediate data structures and write

the output. We annotate with a ’+’ symbol to designate the use of those library

classes. It can be seen the number of hours taken to write the interface code is

very minimal. We found in our experience that most of the time the interface

code once written could be reused. For example we could use the same interface

code for Naive, CG, and IRC. Also we could reuse the interface code written for

UC, for LS. For the two ILP based register allocators we present here, we did

not have to write any interface code as the language used for the input interface

specification is a subset of AMPL.

In Fig. ?? we present a comparative study of the register allocators described

in section 4.3. The graph is based on the execution time numbers normalized to

76

the execution time numbers of the same benchmark programs compiled with the

gcc compiler at -O2 optimization level.

As it can be easily guessed, the naive register allocator performs most poorly.

However, this is obvious because of the number of loads and stores inserted.

Because of the optimal nature of the solution provided by the ILP based register

allocator, it tends to outperform the heuristic based solutions. It can be seen that

the perrformance of CG (register allocation by coloring chordal graphs) and ICR

(Iterated register coalescing) are quite comparable to each other as well as gcc-

O2. The register allocator present in the gcc compiler, uses a two phase algorithm

for register allocation: (a) aggressive register allocation for local variables within

basic blocks, follwed by (b) conservative allocation for the whole function. It can

be seen that even without tuning CG and ICR too much, their perofmance can

be compared to that of gcc. What about linear scan and usage count based? tbd

4.5 Tools for the framework

Along with the framework, we also present the LL(1) grammar for the input

interface in javacc format which can be used along with jtb to help in coding.

This can be found at: http://compilers.cs.ucla.edu/ralf/input-format.html One

can build tools on top of this grammar which can work as library classes for

different register allocators. Currently we have implemented library classes to

read the input into three address codes, build live intervals, and build interference

graphs.

We also present a visualizer for the input data for the register allocator that

is output by the framework.

These tools can be found at the RALF homepage:

77

http://compilers.cs.ucla.edu/ralf

4.6 Observations and limitations

Our experience with RALF has shown that it is fairly general and easy to use.

It has options to handle different extensions to register allocation (coalescing,

stack location allocation with and without known-loads and known-stores etc).

However, if a certain register allocator chooses to handle some (or all) of these

extensions then it can do so. However, if a certain register allocator does not

want to handle some (or all) of these extensions then it can ignore these without

affecting the correctness of the output generated.

However, the framework does have it’s limitations.

• The framework currently handles only integer and sub-integer data types.

It does not handle temporaries that are of type float or double.

• The framework does not handle pair registers (and hence pair temporaries).

We feel this can be easily extended as it mostly requires changing of the

input interface for the register allocator with information regarding the

pairing of hardware registers.

• Due to inherent relations between register allocation and the target hard-

ware, our current framework is only set up for ARM targets only. We plan

to extend it multiple architectures in future.

• Currently, our framework does not do register coalescing, or SLA phase as

a post pass that can be done after register allocation is done to get better

code. We plan to add these phases as an optional post pass in future.

78

• One important future work that remains is to write a checker for the frame-

work that checks the correctness of the register assignment.

4.7 Conclusion

We present here a framework for testing register allocation techniques. We show

that the framework is easy to use and at the same time versatile enough that

different register allocation schemes can be implemented relatively easily to study

the end-to-end numbers.

79

CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we present an argument showing the importance of good stack

location allocation and merging of single loads and single stores into double-loads

and double-stores wherever possible. We show that stack location allocation,

when done along with register allocation can have a stronger impact. We show our

improvement over the publicly available gcc compiler at -O2 level of optimization.

We also present a framework over which new register allocators can be easily

implemented and end-to-end numbers obtained to compare against other register

allocators. By implementing a variety of register allocators in a very short period

of time we show that the framework is versatile and easy to use. Such a framework

has many advantages. For example, such a framework gives a good understanding

of the overall impact of the register allocator in the compilers in the presence of

other optimizations. Such a framework also gives an easy way to compare two

different register allocators, in terms of end-to-end numbers, by fixing the rest of

the parameters of the compiler.

80

5.2 Future Work

The work presented in this thesis has a lot of scope for further research. For

example the SLA phase as it stands does the space (stack) allocation only for

local variables. We believe that it can be extended to global variables. But that

would need global analysis. One approach we take in SARA is that, we allow the

merger of loads and stores into double-loads and double-stores provided they are

accessing neighboring locations.

Another idea is to extract a more precise program model using an interpro-

cedural analysis, rather than the intraprocedural analysis that we currently use.

The weight of each edge is currently calculated based on, rather rough, static

execution counts. Our approach might be more efficient if we instead profile the

program and use the dynamic execution counts.

One direction that needs attention is the possible merging other optimizations

that are related to register allocation. For example, researchers have successfully

shown that register coalescing and register rematerialization etc give good results

when done along with register allocation. It would be interesting to study the

behavior of SARA extended with these phases.

Another idea for future work is to use heuristics based solution for both SLA

(similar to [Bar92, LDK96]), as well as SARA (extending ideas for heuristic based

solutions for register allocation and SLA) is to to find out whether similar perfor-

mance gains can be obtained with approximate methods that possibly are faster.

Currently, RALF does not give any feedback regarding the correctness of

register allocation and stack location allocation done, except for some simple

checks. However, enforcing some semantic based checks would be a useful tool

for researchers in this area.

81

References

[ABS94] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. “Efficient
Detection of All Pointer and Array Access Errors.” In Proceedings of
the Conference on Programming Language Design and Implementation
(PLDI), December 1994. http:// www. cs. wisc. edu/ austin/ ptr-dist.
html.

[AG01] Andrew W. Appel and Lal George. “Optimal Spilling for CISC Ma-
chines with Few Registers.” In SIGPLAN’01 Conference on Program-
ming Language Design and Implementation, pp. 243–253, 2001.

[All88] Victor Allis. “A Knowledge-Based Approach of Connect-Four–The
Game Is Solved: White Wins.” Technical Report IR–163, Vrije Uni-
versiteit Amsterdam, 1988.

[AS99] Rao A and Pande S. “Storage Assignment Optimizations to Generate
Compact and Efficient Code on Embedded DSPs.” In Proceedings of
the ACM SIGPLAN’95 Conference on Programming Language Design
and Implementation, pp. 128–138, June 1999.

[Bar92] D. Bartley. “Optimizing Stack Frame Accesses for Processors with
Restricted Addressing Modes.” Software - Practice and Experience,
22(2):101–110, February 1992.

[BCT94] Preston Briggs, Keith D. Cooper, and Linda Torczon. “Improvements
to Graph Coloring Register Allocation.” ACM Transactions on Pro-
gramming Languages and Systems, 16(3):428–455, May 1994.

[BEH91] D. Bradlee, S. Eggers, and R. Henry. “Integrating register allocation
and instruction scheduling for RISCs.” In Proceedings of the Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 122–131, April 1991.

[c9999] “C9X standard.” 1999. http:// www. dkuug. dk/ JTC1/ SC22/ open/
n2620.

[CCH96] Ben-Chung Cheng, Daniel A. Connors, and Wen Mei W. Hwu.
“Compiler-directed early load-address generation.” In MICRO, pp.
138–147, 1996.

[Cha82] G. J. Chaitin. “Register allocation and spilling via graph coloring.”
SIGPLAN Notices, 17(6):98–105, June 1982.

82

[CK91] D. Callahan and B. Koblenz. “Register allocation via hierarchical
graph coloring.” In Proceedings of the ACM SIGPLAN ’91 Conference
on Programming Language Design and Implementation, volume 26, pp.
192–203, June 1991.

[CPL00] CPLEX mixed integer solver. 2000. http:// www. cplex. com.

[EA99] K.M. Elleithy and E.G. Abd-El-Fattah. “A Genetic Algorithm for
Register Allocation.” In Ninth Great Lakes Symposium on VLSI, pp.
226–, 1999.

[FGK93] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL A
modeling language for mathematical programming. Scientific Press,
1993. http:// www. ampl. com.

[FH95] Christopher Fraser and David Hanson. A Retargetable C Compiler:
Design and Implementation. Addison-Wesley, 1995.

[Fre74] R. A. Freiburghouse. “Register allocation via usage counts.” Com-
mun. ACM, 17(11):638–642, 1974.

[FT87] Michael L. Fredman and Robert Endre Tarjan. “Fibonacci heaps and
their uses in improved network optimization algorithms.” J. ACM,
34(3):596–615, 1987.

[FW02] Changqing Fu and Kent Wilken. “A faster optimal register allocator.”
In MICRO 35: Proceedings of the 35th annual ACM/IEEE interna-
tional symposium on Microarchitecture, pp. 245–256. IEEE Computer
Society Press, 2002.

[GA96] Lal George and Andrew W. Appel. “Iterated Register Coalesc-
ing.” ACM Transactions on Programming Languages and Systems,
18(3):300–324, May 1996.

[GB03] Lal George and Matthias Blume. “Taming the IXP network proces-
sor.” In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 confer-
ence on Programming language design and implementation, pp. 26–37.
ACM Press, 2003.

[GGJ78] M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth. “Com-
plexity Results for Bandwidth Minimization.” SIAM Journal on Ap-
plied Mathematics, 34(3):477–495, May 1978.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NPCompleteness. Freeman, 1979.

83

[GW96] David W. Goodwin and Kent D. Wilken. “Optimal and near-optimal
global register allocations using 0-1 integer programming.” Software–
Practice & Experience, 26(8):929–968, August 1996.

[HP02] John L. Hennessy and David Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, San Mateo, CA, third
edition, 2002.

[ixpa] “Intel(R) IXP1200 Network Processor.” http:// www. intel. com/
design/ network/ products/ npfamily/ ixp1200.htm.

[ixpb] “Intel(R) IXP2400 Network Processor.” http:// www. intel. com/
design/ network/ products/ npfamily/ ixp2400.htm.

[KW98] Timothy Kong and Kent D. Wilken. “Precise Register Allocation
For Irregular Architectures.” In Proceedings of the 31st annual
ACM/IEEE international symposium on Microarchitecture, pp. 297–
307. IEEE Computer Society Press, 1998.

[LD98] Rainer Leupers and Fabian David. “A uniform optimization technique
for offset assignment problem.” In ISSS, 1998.

[LDK96] Stan Liao, Srinivas Devadas, Kurt Keutzer, Steven Tjiang, and Albert
Wang. “Storage Assignment to Decrease Code Size.” ACM Transac-
tions on Programming Languages and Systems, 18(3):235–253, May
1996.

[LFK99] Vincenzo Liberatore, Martin Farach-Colton, and Ulrich Kremer.
“Evaluation of Algorithms for Local Register Allocation.” In Com-
piler Construction, 8th International Conference, CC’99, volume 1575
of Lecture Notes in Computer Science. Springer, 1999.

[LGC02] Sorin Lerner, David Grove, and Craig Chambers. “Composing
dataflow analyses and transformations.” In Symposium on Principles
of Programming Languages, pp. 270–282, 2002.

[LM96] Rainer Leupers and Peter Marwedel. “Algorithms for address assign-
ment in DSP code generation.” In Proceedings of IEEE International
Conference on Computer Aided Design, 1996.

[LPM97] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith.
“MediaBench: A Tool for Evaluating and Synthesizing Multimedia
and Communications Systems.” In IEEE/ACM International Sympo-
sium on Microarchitecture(MICRO), December 1997.

84

[LS96] Mikko H. Lipasti and John Paul Shen. “Exceeding the dataflow limit
via value prediction.” In International Symposium on Microarchitec-
ture, pp. 226–237, 1996.

[MBW01] G. Memik, B.Mangione-Smith, and W.Hu. “NetBench: A Benchmark-
ing suite for Network Processors.” IEEE International Conference
Computer-Aided Deisgn, November 2001.

[MPS95] Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, and Salem Reyen.
“Combining Register Allocation and Instruction Scheduling.” Techni-
cal Report CS-TN-95-22, 1995.

[NP04] Mayur Naik and Jens Palsberg. “Compiling with code-size con-
straints.” Trans. on Embedded Computing Sys., 3(1):163–181, 2004.

[np4] IBM PowerNP, http:// www-3. ibm. com/ chips/ techlib/ techlib. nsf/
products/ PowerNP NP4GS3.

[PDN97] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. “Mem-
ory data organization for improved cache performance in embedded
processor applications.” ACM Transactions on Design Automation of
Electronic Systems, 2(4):384–409, 1997.

[PLM01] Jinpyo Park, Je-Hyung Lee, and Soo-Mook Moon. “Register allocation
for banked register file.” In Proceedings of Workshop on Languages,
Compilers and Tools for Embedded Systems, pp. 39–47, 2001.

[PP05] Fernando M Q Pereira and Jens Palsberg. “Register Allocation via
Coloring of Chordal Graphs.” In The Third Asian Symposium on
Programming Languages and Systems, 2005.

[PS99] Massimiliano Poletto and Vivek Sarkar. “Linear scan register alloca-
tion.” ACM Transactions on Programming Languages and Systems,
21(5):895–913, 1999.

[RGL96] John C. Ruttenberg, Guang R. Gao, Woody Lichtenstein, and Artour
Stoutchinin. “Software Pipelining Showdown: Optimal vs. Heuristic
Methods in a Production Compiler.” In SIGPLAN’96 Conference on
Programming Language Design and Implementation, pp. 1–11, 1996.

[Sea] David Seal. Arm Architecture Reference Manual. ISBN 0 201 73791.

[Set73] Ravi Sethi. “Complete Register Allocation Problems.” In Proceedings
of the fifth annual ACM symposium on Theory of computing, pp. 182–
195, New York, NY, USA, 1973. ACM Press.

85

[SKP00] Tammo Spalink, Scott Karlin, and Larry Peterson. “Evaluating Net-
work Processors in IP Forwarding.” Technical Report TR–626–00,
Princeton University, November 2000.

[SLD97] Ashok Sudarsanam, Stan Liao, and Srinivas Devadas. “Analysis and
Evaluation of Address Arithmetic Capabilities in Custom DSP Archi-
tectures.” In Design Automation Conference, pp. 287–292, 1997.

[SP01] J. Sjödin and C. von Platen. “Storage allocation for embedded pro-
cessors.” In Proceedings of CASES, pp. 15–23, 2001.

[sta] “Low-Power, Small-Size, 400MHz, Linux Single Board Computer.”
http:// www. xbow. com/ Products/ XScale. htm.

[Sto97] Artour Stoutchinin. “An Integer Linear Programming Model of Soft-
ware Pipelining for the MIPS R8000 Processor.” In Parallel Comput-
ing Technologies, 4th International Conference, PaCT-97, Yaroslavl,
Russia, September 8-12, 1997, Proceedings, volume 1277 of Lecture
Notes in Computer Science. Springer, 1997.

[TA97] Gary S. Tyson and Todd M. Austin. “Improving the accuracy and
performance of memory communication through renaming.” In Inter-
national Symposium on Microarchitecture, pp. 218–227, 1997.

[TCC00] Marc Tremblay, Jeffrey Chan, Shailender Chaudhry, Andrew W.
Conigliaro, and Shing Sheung Tse. “The MAJC Architecture: A Syn-
thesis of Parallelism and Scalability.” IEEE Micro, 20(6):12–25, 2000.

[TG03] Sriraman Tallam and Rajiv Gupta. “Bitwidth aware global register
allocation.” In Proceedings of the 30th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pp. 85–96, 2003.

[WL01] Jens Wagner and Rainer Leupers. “C Compiler Design for an Indus-
trial Network Processor.” In LCTES/OM, pp. 155–164, 2001.

86

