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ABSTRACT
Long analysis times are a key bottleneck for the widespread adop-

tion of whole-program static analysis tools. Fortunately, however,

a user is often only interested in finding errors in the application

code, which constitutes a small fraction of the whole program. Cur-

rent application-focused analysis tools overapproximate the effect

of the library and hence reduce the precision of the analysis results.

However, empirical studies have shown that users have high ex-

pectations on precision and will ignore tool results that don’t meet

these expectations.

In this paper, we introduce the first tool QueryMax that signifi-

cantly speeds up an application code analysis without dropping any

precision. QueryMax acts as a pre-processor to an existing analysis

tool to select a partial library that is most relevant to the analysis

queries in the application code. The selected partial library plus

the application is given as input to the existing static analysis tool,

with the remaining library pointers treated as the bottom element

in the abstract domain. This achieves a significant speedup over a

whole-program analysis, at the cost of a few lost errors, and with no

loss in precision. We instantiate and run experiments on QueryMax
for a cast-check analysis and a null-pointer analysis. For a particular

configuration, QueryMax enables these two analyses to achieve,

relative to a whole-program analysis, an average recall of 87%, a

precision of 100% and a geometric mean speedup of 10x.
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• Software and its engineering→ Automated static analysis.
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1 INTRODUCTION
Motivation. Long analysis times are a key bottleneck for the

widespread adoption of whole-program static analysis tools. Several

recent papers for both Java [3, 10, 15] and C/C++ [8, 22, 23] report

that a whole-program analysis on their largest benchmarks can

take several hours. Analyzing a large collection of benchmarks like
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an app-store takes even longer, with a total compute time of many

years for the largest app-stores. Hence, a speedup in analysis time

can save significant compute time and energy, and enable us to use

more precise and expensive algorithms.

Whole-program analyses may be slow, but a user is often only

interested in finding errors in the application code [34], which

constitutes a small fraction of the whole program. In the NJR-1

dataset [31], application code (excluding third-party libraries) con-

stitutes less than 1% of the whole program on average. Hence, an

application-focused analysis has the potential for a large speedup.

Ideally, an application-focused analysis should compute the same

set of errors for the application-code as a whole-program analysis.

However, this is hard to achieve because errors can both originate

in or propagate through the library. We use the singular library to

refer to the aggregate of the third-party libraries and the standard

library. The quality of an application-focused analysis tool’s results

can be quantified using precision and recall. Precision is the ratio of

true-positives in the tool’s results, with the whole-program analysis

results serving as the ground-truth. Recall is the ratio of whole-

program analysis errors caught by the tool. Thus, any application-

focused analysis tool can be judged by its performance on the three

metrics of precision, recall and speedup.

The current best tool for an application-focused analysis is Aver-

roes [1]. Averroes overapproximates the effect of the library with a

compact summary. The overapproximation ensures high recall and

the small size of the summary compared to the whole library gives

a large speedup. However, this summary is created by merging the

analysis information from all the library pointers into a single set,

resulting in significantly worse precision than the whole program

analysis. In our experiments, Averroes gets an average precision of

59% relative to the whole-program analysis. This precision drop is

problematic because empirical studies show that users have a very

high bar for precision.

For example, Christakis and Bird [6] find that, in practice, static

analysis users care much more about precision than recall. They

conclude that practical analysis tools must aim for a minimum of

80% user-perceived precision. Failing to meet this value results in

users ignoring the tool output entirely. Other empirical studies [4,

13] also arrive at similar conclusions. Whole-program analyses

themselves often get much less than 80% user-perceived precision
[3, 5, 18]. Hence, an application-focused analysis that gets less than

100% precision relative to a whole-program analysis will almost

certainly fail to meet the 80% user-perceived precision target. This

defines the goal of our paper.

Our goal in this paper is to capture the speedup potential of an
application-focused analysis, while maintaining 100% precision

relative to the whole-program analysis.
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Figure 1: Overview of the QueryMax workflow

Our technique. In this paper, we introduce a new application-

focused analysis tool called QueryMax, that achieves our goal of
100% precision and gets both good speedup and good recall. Fig-

ure 1 gives an overview of the workflow. QueryMax acts as a pre-

processor to an existing static analysis by selecting a small subset

of the library (i.e. partial library) which is relevant to the set of anal-

ysis queries in the application. To decide which part of the library

is most relevant, QueryMax uses a new static analysis called the

external source analysis. Once QueryMax picks the partial library,

the existing static analysis tool is run on the application code plus

the partial library, with all external library pointers treated as the

bottom element in the abstract domain.

The analysis queries used in Figure 1 are exactly like the queries

in a demand-driven analysis [28] and they represent all the in-

structions of interest in the application code. For example, in a

cast-check analysis, the analysis queries would be all the down-cast

instructions in the application code.

The complexity of QueryMax is O(a3 + p2) where a is the size

of the application-code and p is the size of the (application-code +

partial-library). This is much less than the complexity of a whole-

program analysis like 0CFA, which has complexity O(n3) where
n is the size of the whole program. Here we assume (n > p) and
(n >> a), both of which are true for our benchmarks.

Our experiments focus on Java bytecode programs from the NJR-

1 dataset [31], but our approach applies to other object-oriented

languages as well. We implemented QueryMax in Wala [33] and

ran experiments on it with an existing cast-check analysis and null

pointer analysis.

Our contributions.

• We introduce a new static analysis, the external source anal-
ysis, which computes the set of external library pointers

affecting each pointer in the application code.

• We describe the QueryMax tool which uses the external

source analysis and picks a partial library which is small yet

sufficient to yield a good recall.

• We show experimentally that QueryMax successfully speeds

up two different analyses. In a particular configuration,Query-
Max achieves a 97% recall (on average, relative to a whole-

program) and an 8.7x geometric-mean speedup for a cast-

check analysis, and a (79% recall, 11.2x speedup) for a null

pointer analysis. Both analyses get 100% precision.
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Figure 2: Schematic of a cast-check analysis on application-
code

Significance. The impact of this research contribution is that the

10x analysis speedup without any loss in precision will help us

meet user expectations on both speedup and precision. Further,

the speedup will enable us to use expensive and precise analysis

algorithms as well as analyze large programs or large collections of

programs (like an app-store) that previously couldn’t be analyzed

in a reasonable amount of time.

2 EXAMPLE
In this section, we show an example of how QueryMax picks a par-

tial library to analyze, and compare this with Averroes’ approach.

We also discuss two other baselines which can be adapted to pro-

vide a speedup over a whole-program analysis: a demand-driven

analysis [24, 28] and an application-only analysis.

Figure 2 shows the schematic of a program we wish to analyze

for cast-errors. The application code, represented by the circle, is

the part in which we wish to catch the cast errors, and everything

outside is the library. The grey boxes (labeled A,B,C) on the edge

of the circle show library methods with pointers that influence the

value of cast instructions in the application code. The accompanying

number in the grey box tells us how many cast instructions are

affected by that method. The application code has a total of 10 cast

instructions and each cast instruction is considered an analysis

query. We say that an application-focused analysis covers a cast-
query if it overapproximates the result of that query. In other words,

a query covered by a tool is guaranteed to mark it as a cast-error if

the whole-program analysis does.

The first baseline technique is to run a demand-driven analy-

sis for every analysis query in the application. The demand-driven

analysis exhaustively traces the backward slice of all 10 cast instruc-

tions. Casts numbered 7-10 at the bottom of the application circle

get their value from inside the application, and hence are answered

quickly. The casts affected by B andC (casts numbered 3-6) are also

answered quickly because the backward slices have only 2 and 0

caller-methods respectively. However, the demand-driven analysis

faces a significant slowdown when answering the two cast queries

influenced by A (Cast1 and Cast2). Their backward trace involves

the 10 callers of A, each of which could result in a long trail, making
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this approach expensive because of these two queries. In total, the

demand-driven analysis analyzes all the 15 library methods in the

figure. It gets 100% precision and covers all 10 cast instructions

since its output is identical to the whole-program analysis. Note

that the demand-driven analysis is the only one which requires a

new demand-driven design of an existing inter-procedural analysis;

the others use the existing interprocedural analysis as is.

The second baseline is an application-only analysis. Such an

analysis analyzes the code inside the application circle in isolation

and assumes the bottom element of the abstract domain for all

library pointers outside. Hence it analyzes zero library methods

and only covers the 4 casts that get their values from inside the

application (that is, the casts numbered 7-10). The application-only

analysis gets 100% precision because its errors are the subset of the

whole-program errors that do not involve the library.

Averroes [1] improves upon the application-only analysis by

modeling the whole library with a small summary. In Figure 2,

everything outside the application circle is represented using this

summary. The summary primarily consists of a single summary-

pointer to represent all library pointers, and a single summary-node

to perform all the object initializations and application call-backs. A

usual inter-procedural cast-analysis is performed on the application-

code plus this summary. Averroes’s summary is sound for some

analyses, the cast check being one them. Hence, it covers all 10

cast instructions while only analyzing the summary. However, the

analysis information merged in the common summary-pointer

and summary-node drops precision relative to the whole-program

analysis.

QueryMax’s approach differs from Averroes primarily in that

it selects a small part of the library to fully analyze instead of

modeling the library using a summary. QueryMax keeps expanding

the partial library to be used until it reaches some stopping criterion.

Let us assume that we use QueryMax with a stopping criterion of

80% query coverage. This means that we will have to pick a fragment
consisting of the application-code plus a partial library, such that at

least 8 of the 10 queries (i.e. casts) are covered within this fragment.

QueryMax starts out by performing an external source analysis
on the application code to find out which library pointers affect

the 10 cast instructions. This information is marked by the arrows

inside the application circle. QueryMax then assigns priorities to

each external library method based on the number of casts it affects.

In Figure 2, this is denoted by the numbers in the grey boxes. Next,

QueryMax expands on themethodwith the highest priority (method

B) to look at its callers, callees and field-reads. Method B has 2

callers, D and E. We estimate that each of D and E affects half as

many casts as B, and hence each of them get half its priority (i.e.

1.5 each). Now, the method with the highest priority is A, which
on expansion leads to 10 different caller methods, and we assign

a priority of (2 / 10) to each of them. The next methods with the

highest priority are D and E, followed by method C . Each of these

methods are expanded in turn.

At this point, our fragment consists of the application code plus

a partial library consisting of methods (A,B,C,D, E). Performing

another external source analysis on this fragment shows that now 8

of the casts (casts numbered 3-10) are covered within this fragment.

Recall that we started QueryMax with a stopping criterion of 80%

query coverage, or in other words, we would like to terminate when

Analysis Tool Casts
covered

Lib Methods
analyzed

Precision

Application-only 4 0 100%

QueryMax 8 5 100%

Demand-driven 10 15 100%

Averroes 10 Summary Low

Figure 3: Number of casts covered, librarymethods analyzed,
and Precision (relative to the whole program analysis) for
each of the competing tools

8 of the 10 casts (i.e. queries) are covered. Hence, QueryMax stops

expanding at this point, and an existing inter-procedural cast-check

analysis is now performed on this fragment. By terminating the ex-

pansion early,QueryMax avoided exploring the 10 callers of method

A, and their subsequent callers which could potentially expand large
sections of the program, while only answering the queries forCast1
and Cast2. In total, by using QueryMax, we analyzed only 5 library

methods and covered 8 casts. QueryMax, just like an application-

only analysis, reports a subset of the whole-program errors, thereby

getting 100% precision.

Figure 3 summarizes the number of library methods analyzed

(less is better), the cast-instructions covered (more is better), and

precision (more is better) for each of the four techniques.QueryMax,
the demand-driven analysis and the application-only analysis each

get 100% precision. For the other two metrics, QueryMax obtains

a useful trade-off point in between the application-only analysis

and the demand-driven analysis. Note that the differences in li-

brary methods analyzed is rather small for this example, but the

differences are much larger in real programs. Averroes covers all

casts and analyzes just the small summary, but gets low precision,

thereby falling short of our 100% precision goal.

This example illustrates the core insight underlying QueryMax’s
speedup: few queries in the application code require large sections

of the library for their analysis (like Cast1 and Cast2), whereas
the remaining queries need a much smaller subset of the library.

By identifying these expensive queries and assigning them a low

priority, QueryMax can pick a small partial library that is sufficient

to cover all the remaining queries. The downstream client can now

use this partial library in its analysis, which is a fraction of the size

of the whole library. The trade-off is that the few expensive queries

(like Cast1 and Cast2 in the example) are not fully covered by the

partial library, resulting in a few missed errors.

3 APPROACH
In this section, we describe in detail how QueryMax works to pick

the partial library to analyze.

3.1 Overview
QueryMax picks its partial library by finding the library classes

mostly likely relevant to the queries in the application code. Query-
Max accomplishes this by using a new static analysis called an

external source analysis. QueryMax expands its partial library in

a greedy fashion to maximize the number of queries answered in

the application code until some stopping criterion is reached. We
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No Stmt Condition Constraint
1 x = y x is not an array ext(y) ⊆ ext(x)

2 x = y x is an array ext(y) ⊆ ext(x) and

ext(x) ⊆ ext(y)

3 x = y.f field f is internal ext(f) ⊆ ext(x)

4 y.f = x field f is internal ext(x) ⊆ ext(f)

5 x = foo(z) target foo(p){.. ret q}

is internal

ext(q) ⊆ ext(x) and

ext(z) ⊆ set(p)

6 x = y.f field f is external {f} ⊆ ext(x)

7 y.f = x field f is external (No constraint)

8 x = foo(z) target foo(p){.. ret q}

is external

{q} ⊆ ext(x)

9 N/A foo(x) has an external

caller y.foo(z)

{z} ⊆ ext(x)

Figure 4: Constraints for the External Source Analysis

discuss two stopping criteria: a class-budget if the user wants to set

a limit on the number of classes analyzed (proxy for analysis time),

and a query-coverage if the user wants to set a goal for the number

of queries covered (proxy for recall).

3.2 External Source Analysis (ESA)
The external source analysis, or ESA for short, takes a program and

a subset of its classes called the fragment, and computes, for every

pointer in the fragment, the set of external pointers that pass values

to it. For example, defining the application code as the fragment
would make the library pointers the external pointers, and an ESA

would tell us which library pointers directly pass values to each

pointer in the application code. An example of applying the ESA

was illustrated in the example in Figure 2, where we computed the

library methods affecting cast-instructions in the application code.

The ESA is designed to be context-, flow- and field-insensitive

because it’s primary application is partial-program analysis, which

is time-sensitive. Any overhead of performing an ESA during partial

program analysis eats into the speedup that we may get over a

whole-program analysis.

Figure 4 outlines the core constraints used for ESA. The second

column lists a statement, the third column lists an accompanying

condition, and the fourth column gives the corresponding con-

straint. The third column in the figure uses the words internal and
external. A pointer is considered internal if it is within the fragment,

and external otherwise. The abstract domain for the ESA consists of

all possible subsets of external pointers. Hence, the notation ext(y)
in the fourth column represents the set of external pointers passing

values to the fragment pointer y. This is different from the notation

{z} which is a singleton set consisting of the external pointer z.
Rows 1-5 in Figure 4 are identical to a standard context, flow and

field-insensitive pointer analysis such as [29], and we assume that

the reader understands them well. Rows 6-9 deal with the different

types of external pointers: external fields, external return values,

and external function-arguments. The constraints for these rows

are similar to what one would expect for a new statement in a

pointer analysis. Row 6 says that for the read of an external field f ,
the external field f should be added to the ext set of the assigned
variable x . Row 7 says that writes to external fields produce no

constraint. Row 8 says that for every external target of a method

call, the return pointer of the target should be added to the ext set of
the assigned variable x . There are no constraints for the arguments

in this case. Row 9 says that if a method in the fragment has a caller

outside the fragment, then the external caller’s argument should

be added to the ext set of the method’s parameter.

The generated constraints can be solved using standard static-

analysis constraint solving techniques. The complexity of solving

the ESA constraints on a fragment of sizep isO(p3). The complexity

calculations are very similar to that of a context-insensitive pointer

analysis.

In addition to the ESA, we define a faster version of it called the

fast-ESA, with the primary change being to the abstract domain.

Instead ofmaintaining the set of external sources for every fragment

pointer, fast-ESA only maintains whether or not the set is non-

empty. Hence there are only two elements in the fast-ESA abstract-

domain: the top element is used when the fragment pointer may be

passed a value by an external source, and the bottom element is used

when the pointer is guaranteed to not get any values from external

sources. The constraints are the same as in Figure 4, except for Rows

6-9 using the Top element instead of the external pointer names.

Due to the smaller size of the abstract domain, the complexity of

fast-ESA on a fragment of size p is O(p2), which is lesser than the

cubic complexity of ESA. Hence, fast-ESA allows us to compute

whether a fragment pointer is affected by external sources much

quicker than an ESA.

3.3 QueryMax Algorithm
The QueryMax algorithm is used to pick a fragment to analyze,

consisting of the application and the partial library, with a best

effort to catch as many of the whole-program errors as possible. The

example in Section 2 showed howQueryMax runs for one particular
case. Here, we describe the algorithm (given in Figure. 5) in detail.

The figure has three main procedures: the main algorithm, the

class-budget stopping criterion and the query-coverage stopping

criterion.

The main algorithm (line 1) takes as input the application classes,

set of all classes, and the queries to be answered. For internal book-

keeping, QueryMax uses the set f raдment to mark the classes

that are to be analyzed finally, a visited set for the methods, and a

priority-queue pQueue to keep track of the priorities of the external
(library) methods to be explored. The intuition behind the priority

values is that they represent the estimated number of queries an-

swered by that method, and QueryMax will explore methods with

a higher priority earlier.

The main algorithm starts off by performing an ESA (line 5),

with the application classes as the f raдment . The ESA computes

the set of external library pointers affecting each pointer in the

application classes. Using the ESA result, we compute its inverse

information: the number of queries affected by each of the external

library pointers (line 6). Now, the method of each of the external

library pointers is added to pQueue with a priority equal to the

number of queries it affects. For external field pointers, we add the

methods which write to that field. Each of the external library point-

ers’ methods are added to the visited set. After this initialization

phase, we move into the main algorithm loop.



Fast and Precise Application Code Analysis using a Partial Library ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1: procedure QueryMax(appClasses, allClasses, queries)

2: fragment← appClasses

3: visited← new Set()

4: pQueue← new PriorityQueue()

5: esa← ESA(allClasses, appClasses)

6: extLibPtrs← computeAffectedQueries(esa, queries)

7: for ExternalLibraryPointer e in extLibPtrs do
8: pQueue.setPriority(e.method, e.affectedQueries)

9: visited.add(e.method)

10: end for
11: while not (pQueue.empty() ∨ Criterion) do
12: Method m← pQueue.poll()

13: analysisFragment.add(m.declaringClass)

14: methodSlice← getmethodSlice(m)

15: newPriority← m.priority / methodSlice.size

16: for Method n in methodSlice do
17: if visited.contains(n) then
18: pQueue.addToOldPriority(n, newPriority)

19: else
20: pQueue.setPriority(n, newPriority)

21: visited.add(e)

22: end if
23: end for
24: end while
25: return fragment

26: end procedure
27:

28: procedure BudgetCriterion(fragment)

29: percentAnalyzed← (fragment.size / allClasses.size)

30: return (percentAnalyzed ≥ budget)

31: end procedure
32:

33: procedure CoverageCriterion(fragment, queries)

34: coveredQueries← fastESA(allClasses, fragment, queries)

35: coverageRatio← coveredQueries / fragment.totalQueries

36: return (coverageRatio ≥ goal)

37: end procedure

Figure 5: QueryMax algorithm

The main algorithm loop starts at line 11. It keeps looping until

either pQueue is empty or we satisfy the stopping criterion (de-

scribed below). Inside the loop, we remove the methodm with the

maximum priority in pQueue , and add its class to the f raдment .
This step is a greedy move to expand the class that is expected to

affect the largest number of queries. The next step is to find the

method-slice ofm (line 14). This is similar to computing one step in

the backward slice of a pointer, but is performed at the granularity

of methods instead of pointers to reduce the overhead. Themethod-
slice consists of callers and callees ofm, as well as methods which

write to fields that are read inm. Each method in the method-slice

gets a new priority which is the priority ofm divided by the size

of its method-slice. The intuition behind this priority assignment

is that if m affects k queries and has t callers/callees, then each

caller/callee is expected to affect k/t queries. If a method from the

method-slice is already in pQueue we add the new priority to its old

priority, else we add the method topQueue with the new priority. Fi-

nally, once the loop has terminated, the f raдment , which has the set
of classes to be analyzed, is returned. An existing inter-procedural

static analysis is performed on the set of classes returned, with all

external pointers assumed to be the bottom element.

QueryMax uses a stopping criterion to know when to stop ex-

panding the fragment and return, and we experiment with two

such criteria: class-budget and query-coverage goal.

Class budget. The class budget stopping criterion (line 28) is

used when the user wants a handle on the analysis time. The class

budget is a proxy for a time budget, and we prefer to use the number

of classes instead of analysis time because it can be accurately

computed in advance without running the actual analysis. This

criterion simply checks if the percentage of classes used in the

fragment is greater than a certain budget. The budget is assumed to

be specified as a global variable for readability. For this paper, we

experiment with a 3%, 10% and 30% class-budget. A budget of under

2% will have no space for library methods in some programs, and a

budget of over 40% will analyze a large partial library, resulting in

only a small speedup.

Query-coverage goal. The query-coverage criterion (line 33) is

used when the user wants a handle on the recall. Query-coverage is

a proxy for recall, because the number of errors found is expected

to be proportional to the number of queries covered. The query-

coverage criterion uses a fast-ESA (line 34) to find the number of

queries covered by the fragment classes, and computes a coverage-
Ratio which is the percentage of queries covered. Finally, if the

coverage-Ratio exceeds the query-coverage goal, then we return

true. The goal is assumed to be specified as a global variable for

readability. The coverage criterion is not used at every iteration

of the main loop because the fast-ESA adds significant overhead.

Instead, we only evaluate this criterion at some set checkpoints. For

this paper, we experiment with 70% and 90% query-coverage goals.

A goal of less than 60% gives recall close to that of a application-

only analysis, and a goal of greater than 95% requires too many

classes to be added to the partial library, thereby resulting in too

small a speedup.

The overall complexity for QueryMax isO(a3+p2)where a is the
size of the application-code and p is the size of the (application-code

+ partial-library). The O(a3) term comes from the ESA performed

on the application-code on line 5, and the O(p2) term comes from

the fast-ESA performed for the coverage-criterion on line 34.

3.4 Applicability of QueryMax to Client Static
Analyses

Now that we understand how QueryMax works as a preprocessor to
select a partial library, we can discuss what kind of client analyses

QueryMax can be applied to.

Firstly, since QueryMax trades off recall for analysis speedup,

its client analysis should be able to afford to lose some recall. For

example, compiler optimization clients that prefer the static anal-

ysis be sound (or soundy [16]), will not use QueryMax. Secondly,
QueryMax is restricted to client analyses that only care about errors
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Client Analysis Analysis Queries
Cast-check analysis [29] Cast instructions

Null-pointer analysis [12] Method calls and field accesses

Taint Analysis [17] Taint sink instructions

Type-state analysis [9] State-change instructions

Pointer analysis [14] Client analysis queries

Figure 6: Analaysis Queries for different Client Analyses

manifesting in the application code. It cannot speed up a client anal-

ysis that aims to catch errors manifesting in both the application

code and the library.

On the plus side, QueryMax makes no assumptions about the

flow-, context- and field-sensitivity of the client analysis that it is

preprocessing for. Hence it can be applied regardless of the client

analysis’ sensitivities. Further, unlike [1], it makes no assumptions

about the demarkation between application and library code. Hence,

the user can choose any subset of classes as the application code

to focus on and get everything outside the subset treated as the

library.

Figure 6 lists some analysis clients that QueryMax could be

applied to and shows the corresponding analysis queries for such a

client analysis. This is not an exhaustive list of client analyses, and

its main purpose is to give examples of what the analysis queries

would be for different kinds of client analyses. Typically, an analysis

query would be any instruction in the application code where a

particular kind of error could potentially manifest. For example,

for a cast-check analysis the queries are cast instructions. For a

null-pointer analysis they are all dereference instructions, including

method calls and field accesses. For a taint-analysis which is defined

in terms of vulnerable source-sink pairs, the analysis queries would

be all the sinks. For a type-state analysis, like one that checks for

the correctness of file-operations, all the state-change operations

(like file-open, file-close, etc.) will be the analysis queries. A pointer

analysis itself does not have any statements or variables of interest,

and hence cannot define analysis queries for itself. However, if the

pointer analysis is used by a particular client (like cast-check or

taint analysis), we can define its analysis queries as the queries of

that client.

4 IMPLEMENTATION
The WALA [33] framework for Java bytecode analysis is used to

implement QueryMax and the ESA analysis. The actual analysis is

performed on the WALA IR, which is in SSA form and hence auto-

matically grants partial flow-sensitivity. We use the CHA-callgraph

for all the analyses, since computing a whole-program 0-CFA call-

graph would defeat the purpose of doing a partial library analysis.

We ignore call-graph edges involving a single call-site with more

than 10 targets, since the likely root cause of this is severe impreci-

sion, and it results in mostly false-positives. We also exclude the

java/util package since it is well known for introducing too many

false-positives unless one uses high context-sensitivity [30].

Client Analyses. QueryMax accepts any inter-procedural anal-

ysis to run with as long as the analysis can be run on a subset of

the classes in the program. We experiment with two such analyses:

a cast-check analysis and a null-pointer analysis. The cast-check

analysis is based on the VTA algorithm [29] for pointer analysis.

The null-pointer analysis (based on [12]), focuses on catching null-

pointer exceptions resulting from uninitialized instance fields. The

two analyses vary significantly in their constraints, abstract do-

mains, design decisions, number of analysis queries, and number

of errors per program. Hence, the two analyses offer considerable

diversity for experimentation. We leave to future work to experi-

ment with other client analysis, including other implementations

of cast-check and null-pointer analysis, such as NullAway [2].

For the analysis sensitivities, we choose to be context-, flow-

and field-insensitive as far as possible. The cast-check analysis is

insensitive on all three axes. The null-pointer analysis is context-

and field-insensitive but flow-sensitive because a flow-insensitive

version of the analysis trivially marks all fields as null. Our choice

of sensitivities are different from other papers such as [24–26], be-

cause their task is to improve precision, whereas ours is to improve

analysis speed. For the task of improving precision, a flow-, context-

and field-sensitive analysis is the hardest baseline because it is the

most precise. In contrast, for our task of improving analysis speed, a

context-, field- and flow-insensitive analysis is the hardest baseline

because it is the fastest.

Demand-driven analysis. We choose to write our own demand-

driven cast-check instead of using an existing tool like [24] or [28].

This ensures that the whole-program analysis and demand-driven

analysis are identical in their various sensitivities, analysis design

decisions, constraint solvers and errors generated. This normaliza-

tion helps to make a fair timing comparison between the demand-

driven analysis, and other techniques like QueryMax, Averroes and
the application-only analysis. For the demand-driven cast check,

we implement caching across queries to reuse computations done

for a previous query.

Most prior research on demand-driven analysis deals with pointer

analysis which can be used to implement the cast-check. However,

a design of the demand-driven version of the null-pointer analy-

sis [12] is not publicly available and is non-trivial to design from

scratch. Hence, for the demand-driven analysis, we only report

experiments for the cast-check analysis.

Averroes. Averroes takes as input the original Jar file and the

set of application classes, and produces modified Jar files consist-

ing of the application classes and the library summary. We do not

count the time taken to produce the modified Jar files since it is

a one-time cost which is amortized across all client analyses. The

Averroes library summary also has the java/util package excluded
from it. Finally, the same null-pointer and cast-check analyses de-

scribed above are run on the modified Jar files, thereby making a

fair comparison between Averroes and the other techniques.

Reflection. We do not use WALA’s inbuilt reflection support for

the client analyses because this would worsen the analysis time of

the baseline, thereby making QueryMax look better. Further, we

also do not use reflection support for the ESA. While reflection

support may help the ESA find external sources reachable through

reflection, its overhead is too high and this reduces the effective

speedup provided by QueryMax.
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Statistic Mean Std-dev
Lines of application code 9911 12689

Number of application classes 97 91

Number of 3rd party library classes 2608 5220

Percentage of application classes 0.33% 0.33%

Figure 7: Statistics about the benchmark programs

Statistic Cast-check Null-pointer
Total number of programs 221 221

Mean Errors per program 4.4 37

Std-dev Errors per program 27 56

Programs with non-zero errors 58 177

Mean Analysis time 27 sec 293 sec

Std-dev Analysis time 41 sec 142 sec

Figure 8: Statistics about the whole-program cast-check and
null-pointer analysis on the benchmark set

Precision, Recall and Speedup. To measure the quality of an analy-

sis using QueryMax or any of the baseline techniques like Averroes,

demand-driven analysis, etc., we evaluate it on the three axes of

speedup, precision, and recall. Here are the standard formulae for

computing these metrics:

Speedup =
Whole-program analysis time

Application-focused analysis time

Precision =
|A ∩W |

|A|
Recall =

|A ∩W |

|W |

where A is the set of errors given by QueryMax andW is the set of

errors given by the whole-program analysis (which we consider as

the ground-truth).

5 DATASET DESCRIPTION
We use the NJR-1 dataset (available here [31]), as our benchmark-

set. We chose NJR-1 because its 293 Java bytecode programs run

successfully with WALA, and each program explicitly lists its set of

application and third-party library classes. Out of the 293 programs

we remove 68 programs that crash the Averroes tool. The crash

reports have been filed with the developers. Another 4 programs

which run out of memory for the whole-program null-pointer anal-

ysis are removed, leaving us with a total of 221 programs.

Figure 7 lists some statistics about the benchmark programs.

On average, each benchmark program has almost 10k lines of Java

source code in the application, with an average of almost 100 classes

each. The third-party library classes are much larger, with an av-

erage of 2608 classes per benchmark, and these correspond to an

estimated 250,000 lines of Java source code. The application classes

constitute just 0.33% of the program, with the remaining being

the Java standard library and third party library classes. The large

standard deviation for all these metrics implies that they vary sig-

nificantly across benchmarks. Among the 221 benchmarks, 63 use

reflection in the application code and 130 use reflection in the third-

party libraries.

Figure 8 lists some statistics about the benchmarks when an-

alyzed with a whole-program null-pointer analysis and the cast-

check analysis. The cast check analysis gets 4.4 errors per program

on average, whereas the null pointer analysis gets 37. This large

difference is expected, since down-casting is rare, whereas method

calls and field accesses are common.

The table also shows that only 58 of the 221 programs have non-

zero cast errors and only 177 of them have non-zero null-pointer

errors. The programswith zero errors in thewhole program analysis

are a problem for the evaluation because their recall is undefined for

all of the techniques. Hence, the experimental results are reported

in two parts: those with zero errors and those with non-zero errors.

We report the recall and speedup for the non-zero error cases and

only speedup for the zero error cases.

The analysis times for the two analyses also vary widely, with

the cast-check taking 27 seconds per program and the null-pointer

analysis taking 293 seconds per program. The standard deviation

for analysis times is large, especially for the cast-check analysis,

implying that a few outliers have large analysis times.

6 EXPERIMENTAL RESULTS
In this section, we discuss our experimental results which validate

the following claims.

(1) C1: QueryMax gets a significant speedup, full precision and

reasonable recall as compared to thewhole-program analysis,

with trade-off points that none of the existing techniques

can achieve.

(2) C2: The distribution of speedups and recall-scores are uni-

form across the benchmarks.

The experiments were carried out on a machine with 24 Intel(R)

Xeon(R) Silver 4116 CPU cores at 2.10GHz and 188 GB RAM. For

the JVM, the default heap size of 32GB, and default stack size of

1MB, was used. The artifact for the paper is available here [32].

The first two sub-sections validate the claims made, and these

experiments focus on the programs with non-zero errors. The third

subsection evaluates the programs with zero errors, the fourth

examines the QueryMax analysis time split-up, the fifth compares

the correlation between class-budget and analysis time, and the

sixth subsection outlines the threats to validity.

6.1 C1: Main Result
Figures 9 and 10 show the various recall and speedup trade-off

points for the cast-check analysis and null-pointer analysis respec-

tively. The X-axis gives the recall plotted on a linear scale and the

Y-axis gives the speedup plotted on a logarithmic scale. There is

actually a third axis for precision, but we do not show it because all

the techniques except for Averroes, get a 100% precision. We mark

Averroes’ precision directly in the figure.

Whole-program analysis. The whole-program analysis (marked

by the black circle) is considered as the ground-truth and the refer-

ence for all speedup calculations. Hence it trivially gets 100% recall

and 1x speedup.

Demand-driven analysis. The demand-driven analysis (marked

by the green triangle) computes the same result as a whole-program

analysis and hence gets 100% recall, but it manages a 5.1x geometric
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Figure 9: Recall and Speedup for the various techniques for
the cast-check analysis
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Figure 10: Recall and Speedup for the various techniques
for the null-pointer analysis

mean speedup for the cast-check analysis because it avoids analyz-

ing the whole program. This mean speedup is not representative of

the average benchmark. One portion of the benchmarks get a large

speedup because they analyze a small part of the program, while

others experience a slowdown because they analyze a large section

of the program and the demand-driven analysis adds some overhead.

The reason for this difference in speedups is that some programs

either have expensive queries like the example in Section 2, or a

larger number of queries, and others don’t. This observation is in

line with previous experiments on demand-driven analyses [11]. A

demand-driven version of the null-pointer analysis does not exist

(see why in Section 4), but we expect it to perform worse than in

the cast-check analysis because there are significantly more queries

in the null-pointer analysis and the demand-driven analysis works

on a per-query basis.

Application-only analysis. At the other end of the spectrum is the

application-only analysis (marked by a grey star), which is orders

of magnitude faster, but gets a significantly lower recall. For the

cast-check analysis it gets a 254x speedup and a 56% recall, whereas

for the null-pointer analysis it gets 1222x speedup and 58% recall.

The large speed-up is attributed to the fact that the application

constitutes only 0.33% of the whole program on average (Figure 7 ).

An application-only analysis is a good option for use-cases where

analysis speed is significantly more important than recall, but when

both are important, it doesn’t strike as good of a balance between

the two.

Averroes. The point closest to this is Averroes (marked by a red

plus), which gets a (179x speedup, 60% recall, 71% precision) for the

cast check analysis, and a (913x speedup, 53% recall, 47% precision)

for the null-pointer analysis. This is the only tool for which we

report the precision because the other tools get 100% precision.

The massive speedup of Averroes is attributed to the fact that its

summary is tiny compared to the size of the library. However, the

tiny size is also what causes analysis information to be merged and

precision to drop. The 47% and 71% precision values are significantly

lower than our target of 100% precision.

Averroes should theoretically get 100% recall for the cast-check,

but not for the null-pointer analysis because its library summary

includes information about object-initialization but not about field-

initialization. The observed recall is lower than expected because

of a bug in its dealing of inner-classes which causes any error

propagating through a Java inner-class to be dropped. The bug has

been reported to the developers.

QueryMax. Finally, QueryMax gives some points in between

these two extremes. The points marked with crosses are for the

class-budgets and the points marked with with squares are for the

query-coverage goals.

For the cast-check analysis (Figure 9) QueryMax performs very

well. The 3% budget (purple cross) gets a 24x speedup and 92% recall,

and this strikes a really useful balance between the two metrics.

The 10% budget (blue cross) gets an 8.7x speedup and a 97% recall,

thereby favoring the recall a little more than the speedup, but still

a great trade-off between the two metrics. The 30% budget (pink

cross) gets 3.9x speedup and a 99.6% recall.

The query-coverage stopping criterion (represented by the squares)

for the cast-check analysis gets similarly good results. The 70% goal

(brown square) gets (12x speedup, 94% recall) and the 90% goal

(yellow square) gets (6.7x speedup, 97% recall). The speedups for

the coverage goals are slightly lower than the class budgets. For

example, the yellow square in Figure 9 is directly below the blue

cross. This happens because calculating the query-coverage in-

volves the overhead of at least one fast-ESA, which the class-budget

version avoids. However, the coverage-goal gives a guarantee on
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the number of queries covered, which could be more valuable than

a guarantee on the number of classes analyzed.

For the null-pointer analysis (Figure 10), we see a similar speedup

vs recall trade-off for QueryMax. The 3% class-budget, marked by

the purple cross gets (34x speedup, 69% recall), the 10% class budget

marked by the blue cross gets (11x speedup, 77% recall), and the

30% class-budget, marked by the pink cross gets (5.2x speedup,

91% recall). The query-coverage points (marked by squares) lie in

between these three points. Unlike the cast-check analysis, the

coverage-goal variants are not much worse than the class-budget

variants for the null pointer analysis. We discuss the reason for this

observation in Section 6.4

Comparing figures 9 and 10 shows that QueryMax gets much

better recall for the cast-check than the null-pointer analysis. The

main reason for this is that some dereference instructions get a

high-priority from QueryMax, but are often never null-pointer

exceptions. For example, in any given program, the println() call
occurs many times, and in all cases gets its value from the field

java/lang/System.out. Since this field affects several dereference

instructions, it ends up getting a high-priority and that part of

the library gets added to our partial library first, even though the

println() calls never cause null-pointer exceptions. A similar case

happens to some other common dereference instructions.

To sum up, QueryMax with either stopping criterion provides a

useful analysis design point in-between the application-only analy-

sis and the demand-driven analysis, just like in the example from

Section 2. Further, unlike Averroes, it achieves this speedup without

sacrificing precision, and thus continues to meet the high-precision

expectation of its users.

6.2 C2: Distribution of Recall and Speedup
We now understand the recall and speedup trade-off points for

QueryMax, but we would also like to know their distribution across

the benchmark programs. Figures 11 and 12 use a histogram to show

the distribution of the recall and speedup for QueryMax with a 70%

query coverage. The X-axis gives the speedup or recall, with the

values split into bins, and the Y-axis gives the number of programs

in each bin. Just like figures 9 and 10, we use a logarithmic scaling

for speedup here. The recall is still plotted on a linear scale.

The recall for QueryMax with the cast-check analysis (Figure 11)

is close to 100% for most of the programs, with only a couple of

programs getting lower scores. Two programs get a 0 recall. These

programs had just 1 and 2 errors each and missing those errors

meant a recall of 0. The null-pointer analysis (Figure 12) has a

similar story for recall, but it has a larger number of programs with

0 recall. In most of these cases, the null-errors are very few and

highly related, and hence missing one library method could cause

all the null-errors to be missed.

The speedups for both analyses are consistent, with most pro-

grams getting close to the mean speedup value. The cast-check has

2 programs that get less than a 1x speedup. This happens because

if QueryMax cannot guarantee that 70% coverage has been reached

by the time its chosen fragment expands to 30% of the program, it

simply falls back to picking the whole program, thereby resulting

in no speedup.

6.3 Zero-Error Benchmarks
The results so far focused on the programswith non-zero errors. Fig-

ure 13 lists the speedup for programs with zero errors in the whole-

program analysis. The speedups forQueryMax are on average twice
as much as the non-zero error benchmarks. The demand-driven

cast-check however, gets a 42x speedup here as compared to the

5.1x speedup on the non-zero error benchmarks. This high speedup

for the demand-driven analysis on these benchmarks stems from

the fact that these programs have much fewer down-cast instruc-

tions than the non-zero error benchmarks. Thus, when there are

very few analysis queries, a demand-driven analysis gets a higher

speedup.

6.4 Split-up of Analysis Time
Recall the workflow of QueryMax from Figure 1. We first run Query-
Max with either a query-coverage goal or a class-budget. For query-

coverage, QueryMax includes the additional overhead of the fast-
ESA. Finally, we run the existing analysis. Figure 14 gives a split-up

of the time between QueryMax (minus the fast-ESA), the fast-ESA,
and the existing static analysis, for the query coverage goal.

For the cast-check, the fast-ESA takes 51% of the time, whereas

the other QueryMax part takes just 4%. This explains why the

query-coverage criterion from Figure. 9 is slower than the class-

budget one; computing the query-coverage needs the fast-ESA, but
computing the class-budget does not.

For the null-pointer analysis, both the fast-ESA and the other

part ofQueryMax take up a small percentage of the time (8% totally).

The contribution of QueryMax and fast-ESA to the total analysis

time is larger for the cast-check than the null-pointer analysis. The

reason for this is that existing null-pointer analysis has a longer

absolute analysis time than the cast-check, but the absolute fast-ESA
time is similar in both cases.

6.5 Analysis-time vs Number of Classes
As a minor result, we show the relationship between the class-

budget and the analysis time, to justify our use of the former as

a proxy for the latter. Figure 15 compares the number of classes

analyzed on the X-axis with the analysis time on the Y-axis for

both analyses. Each point represents one analysis of QueryMax
with a class-budget. For both analyses, the analysis time is almost

linear, but the cast check has more outliers, which explains the

high-standard deviation for its analysis time (see Figure 8). The

figure also plots a regression line, and the equation of this line can

be used to convert time-budgets into class-budgets.

6.6 Threats to Validity
There are two main threats to validity. The first is that out of the

application, third party libraries and standard library, the standard

library forms the largest part. Even though different programs

interact with different parts of the standard library, it still means that

the benchmarks are not perfectly independent for a static analysis.

However, this issue occurs with any static-analysis benchmark-set

where the programs access the standard library.

The second is that analysis time measurements for all the pro-

grams were performed using a single run, even though execution

times can vary across runs. However, since the speedups are large
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Figure 11: Speedup and Recall histograms for QueryMax
(70% query coverage) on the cast-check analysis
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Figure 12: Speedup and Recall histograms for QueryMax
(70% query coverage) on the null-pointer analysis

Analysis Cast-check Null-pointer
Application-only 395x 2196x

Averroes 230x 1744x

QueryMax 3% class-budget 30x 84x

QueryMax 10% class-budget 13x 33x

QueryMax 30% class-budget 6.4x 18x

QueryMax 70% query coverage 16x 20x

QueryMax 90% query coverage 12x 10x

Demand-driven 42x N/A

Figure 13: Speedup for the various analysis techniques for
the Zero-error benchmarks

% of total time

Cast-Check

Null-Pointer
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QueryMax (minus Fast-ESA) Fast-ESA Existing Analysis

Figure 14: Split up of the time taken by each component for
an analysis using QueryMax with the query-coverage goal

(an order of magnitude) and the benchmarks are numerous, these

variations matter less. Further, since the total experiment-time is

already ten days, performing multiple runs is infeasible.
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Figure 15: Class-budget and analysis time relationship.

7 RELATEDWORK
The three research directions that focus on speeding up static anal-

ysis by avoiding the analysis of the entire program are library-

summary based analysis, demand-driven analysis, and the analysis

of program fragments. We discuss each of these in turn.

Library-summary based analysis. The main idea behind the re-

search in this area is to create an analysis summary for the library

and use this library summary instead of the actual library code to

analyze the application.
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Averroes [1] heavily compresses the library into a small sum-

mary. This summary consists of a single summary-pointer to rep-

resent all library pointers, stubs for methods called directly from

the application, and a single summary-method to perform all the

object initializations and application call-backs. Since this summary

is quite small compared to the library, using it in place of the li-

brary results in a massive speedup. However, the small size of the

summary has two downsides: precision drops because information

is merged in the single summary-pointer, and some kinds of in-

formation (like field initialization information for the null-pointer

analysis) get left out out of the summary. QueryMax, in contrast,

leaves out no information in the partial library that it chooses, and

more importantly, preserves the precision.

The component-level analysis by Rountev et. al [19, 21] differs

from Averroes in that its library summary contains all the informa-

tion necessary to get the same result as a whole program analysis.

The first time an analysis is run, the library is separately analyzed

and summarized, and the summary is integrated with the applica-

tion analysis. This saves no time in the initial run (the overhead

causes a slowdown). However, it saves time in subsequent runs

when the same library summary is reused across different pro-

grams or future versions of the program. QueryMax on the other

hand never uses the whole library and it speeds up the analysis of

each program independently. Further, unlike the component-level

analysis which needs a separate design for each type of analysis,

QueryMax can be used off-the-shelf with any analysis.

Demand-driven analysis. Demand-driven analyses [11, 24, 27, 28]

are well-accepted as the most efficient option for single analysis

queries, and work best for resource-constrained environments like

IDEs and JIT compilers. They also performwell when the number of

queries is small [28]. However, when analyzing entire applications

in which the number of queries is large, the demand-driven analysis

could end up analyzing large parts of the program and cause a slow-

down because of their overhead [11]. We also see this observation

in our benchmarks, where some programs get huge speedups over

a whole-program analysis, but some experience slowdowns.

Unlike the demand-driven approach,QueryMax avoids expensive
queries by assigning them a low priority, like in the example from

Section 2. It also avoids the demand-driven overhead since it still

runs a batch analysis, thereby performing better when there are

many queries to be answered. Further, since QueryMax is only

a preprocessor to an existing whole-program analysis, it can be

used with an existing analysis, without requiring a design of a

demand-driven version of it.

Analysis of Program Fragments. There has been past research

on analyzing program fragments in isolation. In our use-case, the

program fragment is the application-code. Cousot and Cousot [7]

describe four techniques for this general approach. The first is a

simplification-based separate analysis, which analyzes the various

fragments of a program separately and then combines their infor-

mation. This idea is similar to the library-summary based analysis

by [19], and has the drawbacks as discussed above. The second tech-

nique is a worst-case analysis, which means running an application-

only analysis, but using the top element of the abstract domain

for library pointers. This introduces additional false-positives. Our

experiments on this technique show that it gets a precision (aver-

aged over both analyses) of 22% which is far below our 100% target

precision. The third technique is to ask a user to provide stubs

for the library (i.e. information about the library interface) and

then perform an application-only analysis that incorporates these

stubs instead of the library. This can give high recall, precision and

speedup, but it requires a static-analysis expert to manually write

and update the stubs for each library. The fourth technique uses

a relational abstract domain and analyzes a program fragment by

giving symbolic names to external pointers and lazily evaluating

the values they pass. To the best of our knowledge, there are no

recent implementations or experimental results to compare the

effectiveness of this technique in practice.

Rountev et. al [20] introduce a technique to improve the perfor-

mance of a whole-program flow-sensitive analysis. They perform

a flow-sensitive analysis for the application code and then use a

whole-program flow-insensitive analysis to overapproximate the

effect of the library pointers. The two limitations of this technique

are that it drops precision as compared to the original flow-sensitive

analysis, and it cannot be used to speed up a flow-insensitive anal-

ysis. QueryMax on the other hand maintains the same precision

as the original analysis tool and works with any level of context-,

flow- or field-sensitivity.

8 CONCLUSION AND FUTUREWORK
In this paper, we introduce a new application-focused analysis tool

QueryMax, which achieves a large speedup over a whole-program

analysis, without losing any precision. QueryMax acts as a prepro-

cessor to an existing static analysis to select a partial library that is

small but sufficient to answer most of the analysis queries. Query-
Max provides the user with two stopping criteria: a class-budget

or a query-coverage goal, depending on whether the user wants a

handle on the analysis time or the recall. Our experiments on the

NJR-1 dataset show that QueryMax provides a significant speedup

at the cost of a small and controlled drop in recall, and with no loss

in precision.

A possible future research direction could be to evaluate Query-
Max and the other baseline techniques with other client analyses

such as taint analysis or type-state analysis. Additionally, one could

also extend the approach to the Android platform, with the help of

frameworks such as WALA that support Android analysis. Finally,

a third direction could be to study how the QueryMax approach

translates to benchmarks in other popular languages such as C/C++

and Javascript.
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