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Why Points-to Analysis is Necessary?

int main() {
  int a = 0;
  int *p = &a;
  *p = 5;
  printf("%d",a);
}

int main() {
  printf("%d", 5);
}

gcc -O3

I *p and a must alias.

I The assignment *p = a is a strong update.
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Why Points-to Analysis is Necessary?

Many imperative programming languages use aliasing. Aliasing is used,

for instance, to avoid copying whole data structures when passing

arguments to functions. Although a powerful feature, aliasing

complicates the job of optimizing compilers. The objective of alias

analysis is to discover which names in a program refer to the same

location. The main motivation is to enable compiler optimizations, but it

also finds applications in security, data race detection, etc.



Different Types of Points-to Analysis: Flow

I Flow sensitive → the order in which statements are executed
matters [Cheng and Hwu(2000), Zhu(2005)].

I Flow insensitive → the order in which statements are executed
do not mat-
ter [Fahndrich et al.(1998)Fahndrich, Foster, Su, and Aiken,
Hardekopf and Lin(2007), Heintze and Tardieu(2001),
Pearce et al.(2003)Pearce, Kelly, and Hankin,
Pearce et al.(2004)Pearce, Kelly, and Hankin].

I Inclusion based (Aka: Andersen Style) → If a = b, then P(a)
⊆ P(b) [Andersen(1994)].

I Unification based (Aka: Steensgaard Style) → If a = b, then
P(a) ⊆ P(b) [Steensgaard(1996)].
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Different Types of Points-to Analysis: Flow

There are different types of pointer analysis with regard to flow and

context sensitiveness. Flow insensitive

algorithms [Fahndrich et al.(1998)Fahndrich, Foster, Su, and Aiken,

Hardekopf and Lin(2007), Heintze and Tardieu(2001)] ignore the order of

statements in a program, contrary to flow sensitive

analyses [Cheng and Hwu(2000), Zhu(2005)]. Flow and context

insensitive analyses are further divided between inclusion based and

unification based. The former variation, when facing an assignment such

as a = b, assumes that the locations pointed by b are a subset of the

locations pointed by a. The unification based analyses, in which the

Steensgard’s Algorithm [Steensgaard(1996)] is the most famous

representative, assume that the locations pointed by both variables are

the same; thus, trading precision by speed.



Different Types of Points-to Analysis: Context

I Context sensitive → the calling context of a function
matters [Whaley and Lam(2004)].

I Context insensitive → the calling context of a function does
not matter [Cheng and Hwu(2000),
Fahndrich et al.(1998)Fahndrich, Foster, Su, and Aiken,
Hardekopf and Lin(2007), Heintze and Tardieu(2001),
Pearce et al.(2003)Pearce, Kelly, and Hankin,
Pearce et al.(2004)Pearce, Kelly, and Hankin, Zhu(2005)].
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Different Types of Points-to Analysis: Context

Context sensitive analyses distinguish the different calling contexts of a

function [Whaley and Lam(2004)].



Inclusion Based Points-to Analysis

Statement Name Constraint Meaning

a = &b Base a ⊇ {b} b ∈ P(a)

a = b Simple a ⊇ b P(a) ⊇ P(b)

a = *b Complex 1 a ⊇ ∗b ∀v ∈ P(b), P(a) ⊇ P(v)

*a = b Complex 2 ∗a ⊇ b ∀v ∈ P(a), P(b) ⊇ P(v)

int main() {
  int a = 0;
  int *p = &a;
  *p = 5;
  printf("%d",a);
}

p ⊇ {a}int *p;
p = &a;

Example:
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Inclusion Based Points-to Analysis

Constraints are derived from statements involving variable assignment or

parameter passing in the program that is being analyzed. There are

basically four types of constraints: base, simple, complex 1 and complex

2. We can convert the statements in a program into these basic

constraints via trivial transformations.



The Constraint Graph

B = &A

A = &C

D = A

*D = B

A = *D

An edge from v to u signifies that P(v) ⊆ P(u)

A
{A, C}

B
{A}

D
{A, C}

C
{A}
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The Constraint Graph

Solving the points-to problem amounts to computing the transitive

closure of the constraint graph. This graph has one vertex for each

variable in the constraint set, and it has one edge connecting variable v

to variable u if the points-to set of v is a subset of the points to set of u.

In the figure below we show a simple program, and its constraint graph,

augmented with a solution to the points-to problem.



Cycle Identificiation
I The identification of cycles in the constraint graph is an

essential requirement for scaling points-to analy-
sis [Fahndrich et al.(1998)Fahndrich, Foster, Su, and Aiken].

I All the nodes in a cycle share the same points-to set, thus,
they can be collapsed into a single representative!
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F
{X,Y,Z}
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{X,Y,Z}≡
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Cycle Identificiation

The constraints are normally solved iteratively: complex constraints cause

new edges to be added to the constraint graph, forcing points to be

propagated across nodes. The process is repeated until no more changes

are detected. By the end of the nineties, it was clear that the

identification of cycles was an essential requirement for scaling points-to

analysis. All the nodes in a cycle are guaranteed to have the same

points-to set, and thus they can be collapsed together.



Some State-of-the-Art Algorithms

1998 On-line cycle detection
by [Fahndrich et al.(1998)Fahndrich, Foster, Su, and Aiken].

2001 Fast cycle detection by [Heintze and Tardieu(2001)].

2003 Difference propagation
by [Pearce et al.(2003)Pearce, Kelly, and Hankin].

2004 Field sensitiveness
by [Pearce et al.(2004)Pearce, Kelly, and Hankin].

2007 Lazy Cycle Detection by [Hardekopf and Lin(2007)].
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Some State-of-the-Art Algorithms

Fahndrich et al. proposed one of the first algorithms to detect cycles

on-line, that is, while complex constraints are being processed. Since

then, many new algorithms have been proposed. Heintze and Tardieu

describe an algorithm that can analyze C programs with over one million

lines of code in a few seconds. Pearce et al. have also introduced

important contributions to this field. The algorithms designed by Pearce

et al. constitute the core of GCC’s points-to solver. Finally, in 2007

Hardekopf and Lin presented two techniques that considerably improve

the state-of-the-art solvers: Lazy Cycle Detection and Hybrid Cycle

Detection. The points-to solver used in LLVM was implemented after this

last algorithm.



Example: Heintze-Tardieu processing *N = V

N
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1) Find the points-to set of N
and collapse cycles. 2) Add the new edges to the graph

V
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V
{...}

CE
{Z}
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Example: Heintze-Tardieu processing *N = V

Heintze-Tardieu compute points-to sets on demand. In order to process a
constraint such as *N = V, the algorithm first computes the points-to set
of node N. To do this, it traverses the constraint graph backwards,
copying the points-to set of any node reachable from N into the points-to
set of N. During this traversal, the algorithm collapses cycles, if any is
found. After it has computed the points-to set of N, it uses adds a new
edge from V to each element of the new set.

Heintze-Tardieu was an improvement on previous algorithms, but it still

computes redundant work every time it reprocesses a constraint such as

*N = V, because points-to set are repropagated from the transitive

closure of the predecessors of N into N itself.



Example: Lazy Cycle Detection processing *N = V

N
{X}

V
{A,B}

X
{A,B}

Y
{A,B,D}

Z
{A,B,C}

A new edge connecting two
nodes with identical points-to
sets may suggest a cycle.

We search for cycles, and if
any is found, we collapse it.

N
{X}

VXYZ
{A,B,C,D}
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Example: Lazy Cycle Detection processing *N = V

All the nodes in a cycle share the same points-to set. The lazy cycle

detection approach searches for cycles every time an edge is added to the

constraint graph connecting two vertices that have the same points-to

set. Cycles are not always found. Indeed, only a small fraction of

searches results in hits. Nevertheless, the effort pays off if the constraint

graph is too big, or if the average size of the points-to sets is too large.



Shortcomings

The state-of-the-art algorithms have some shortcomings:

I In the Heintze-Tardieu approach, the same points-to set might
be propagated many times across the same edge.

I In Lazy Cycle Detection the majority of searches find no
cycles.

I The impact is bigger for benchmarks where points-to sets are
small.

We would like to have algorithms that are faster than HT, and
more stable than LCD.
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Shortcomings

LCD is like the heavy-artillery of points-to analysis. For large benchmarks,

less than 1% of the searches will find actual cycles. This work pays off

when the average size of points-to sets is large, because finding cycles

avoids having to propagate these big chunks of data. However, we rarely

compile very large programs, e.g, how many times have you compiled the

linux kernel today? For smaller benchmarks, the extra searches for cycles

eclipses the saved effort of propagating points-to sets.
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Wave Propagation and Deep Propagation

We present two new algorithms for pointer analysis. We will call them

wave propagation and deep propagation. They have the same common

starting point: Nuutila’s [Nuutila and Soisalon-Soininen(1994)] algorithm

for finding strongly connected components. But the similarities between

these two algorithms stop there. Wave propagation is to deep

propagation as breadth first search is to depth first search. In the wave

propagation method information is propagated in waves, in the same

order in which nodes are visited by the breadth first search. In deep

propagation the information is propagated as a flow, similar to depth first

search.



Nuutila’s Algorithm

The starting point of our two algorithms is Nuutila’s algorithm for
finding strongly connected components in directed
graphs [Nuutila and Soisalon-Soininen(1994)].

I Published in 1994 by Nuutila and Soisalon-Soininen.

I Traverses the graph once, in contrast to Tarjan’s more popular
algorithm that traverse the graph twice.

I Used by Pearce-Kelly-Hankin in their inclusion based pointer
analysis solver.

I Produces the topological ordering of the target graph as a
side effect.
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Nuutila’s Algorithm



Example of Nuutila’s Algorithm

A
{E} B E

{G}
F
{A}

H
{C,G} C D G

A
{E} B/C E

{G}
F
{A}

H
{C,G} D G

H = &C
H = &G
A = &E
D = *H
E = &G
H = A
F = D
*E = F
B = C
C = B
B = A
F = &A

Constraints
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Example of Nuutila’s Algorithm

This example shows finding and removal of strongly connected

components. A strongly connected component of a directed graph is a

set of nodes that are reachable from each other. In the left we have a set

of 12 constraints, and in the upper we have the constraint graph that

would be produced for these constraints. Nuutila’s algorithm discovers

that nodes B and C are part of the same connected component. We can

collapse these nodes into a single node, because they will have always the

same points-to set. The collapsed graph is shown in the lower part of the

figure.
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Wave Propagation: A Three-Phases Algorithm

repeat until the constraint graph stops
changing

1. Collapse strongly connected
components using Nuutila’s
algorithm.

2. Perform wave propagation.

3. Add new edges to the constraint
graph.

Wave propagation is the middle step of
a three-phases algorithm.
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Wave Propagation

Wave Propagation: A Three-Phases Algorithm

Calling the whole algorithm wave propagation is indeed an abuse of

language. Wave propagation is the name of the middle step of a

three-phases, iterative algorithm that solves inclusion based pointer

analysis.



What is Wave Propagation?

Wave propagation is the propagation of points-to set in an acyclic
constraint graph in topological order, starting from the predecessor
of all the nodes.

After wave propagation, if u is reachable from v , then
PTS(v) ⊆ PTS(u).

Optimization: cache the points-to information already propagated
from a node. Call it the PTSold . Only propagate the difference
current - old.

Invariant: if (u, v) ∈ G , then PTSold(u) ⊆ PTS(v).



Example of Wave Propagation
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Example of Wave Propagation
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Wave Propagation

Example of Wave Propagation

The first example shows how wave propagation would take place in the

constraint graph seen in our running program. In this case, only the

points-to set of node A would be propagated to its successors. The

second example illustrates how the topological ordering plus the acyclicity

of the constraint graph helps us to save work. Each edge is visited only

once, and after the propagation we guarantee that if a node u is

reachable from a node v , then the points-to set of v us a subset of the

points-to set of v .



The Insertion of New Edges

Complex constraints cause the insertion of new edges in the
constraint graph.

I l = ∗r : add edge (u, l) for each node u ∈ PTS(r)

I ∗l = r : add edge (r , u) for each node u ∈ PTS(l)

After inserting a new edge (x , y) we copy the old points-to set of x
into the current points-to set of y to preserve the invariant that
PTSold(x) ⊆ PTS(y) for any edge (x , y).



The Insertion of New Edges

Complex constraints cause the insertion of new edges in the
constraint graph.

I l = ∗r : add edge (u, l) for each node u ∈ PTS(r)

I ∗l = r : add edge (r , u) for each node u ∈ PTS(l)

After inserting a new edge (x , y) we copy the old points-to set of x
into the current points-to set of y to preserve the invariant that
PTSold(x) ⊆ PTS(y) for any edge (x , y).

2
0
0
9
-0

2
-1

5

Wave Propagation and Deep Propagation for Pointer Analysis

Our new algorithms

Wave Propagation

The Insertion of New Edges



Example of Edge Insertion
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Example of Edge Insertion
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Wave Propagation

Example of Edge Insertion

Our running example has two complex constraints: D = ∗H and ∗E = F .
These constraints force the insertion of new edges in the constraint
graph. First, let’s consider D = ∗H. Node H contains three names in its
points-to set: {C , E , G}; thus, we must insert three new edges into the
constraint graph: (C , D), (E , D) and (G , D).
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Deep Propagation

Wave propagation is memory hungry.

I It keeps an extra points-to set
(PTSold) for each node in the
constraint graph.

Deep propagation computes the points-
to set that must be propagated on the
fly.

I Fast for benchmarks with small
points-to sets or more precise
analyses.
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Deep Propagation

Deep Propagation

The deep propagation method uses far less memory than wave

propagation. It is also fast for settings where the average size of the

points-to sets is small. It is the fastest algorithm that we know for

benchmarks such as vim, SPEC perl and SPEC gcc, e.g, applications with

less than 100K lines of code.



An Important Invariant

Deep propagation maintains the invari-
ant that if v is reachable from u, than
PTS(u) ⊆ PTS(v).

This invariant is true after Nuutila’s cycle
elimination followed by a round of wave
propagation.

I But is no longer true after the edge
insertion phase of the wave
propagation method presented
previously.

{X}

{X,Y}
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{X,Y,Z}{X,Y}

{X,Y,Z}

{W,X,Y,Z}
{X,Y,Z}
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Deep Propagation

An Important Invariant

The figure in the left illustrates our invariant in an acyclic graph. Put in

another words, the invariant means that nodes that have many

predecessors tend to have fatter points-to sets. In this figure, the node in

the bottom has the largest points-to set, which includes the points-to set

of every other node.



Deep Propagation: the Algorithm

1. Collapse strongly connected components using Nuutila’s
algorithm.

2. Perform wave propagation.

3. Repeat until the constraint graph stops changing

3.1 For each complex constraint:
– Insert new edges.
– Perform deep propagation.
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Deep Propagation: the Algorithm

Notice that steps 1 and 2 are the same as in the wave propagation

method; however, they are only executed once, in contrast to the

previous algorithm.



What is Deep Propagation?

The deep propagation means that, given a starting node v , and a
points-to set Pdif , we will add Pdif to the points-to set of v , and
also to the points-to set of every node reachable from v in the
constraint graph. Due to our invariant, we only have to propagate
set differences.
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What is Deep Propagation?

Let’s recall the invariant of the deep propagation algorithm: if v is

reachable from u, than PTS(u) ⊆ PTS(v). Because of this invariant,

when propagating points-to set across the constraint graph, we do not

have to propagate the whole set, but only those points that are not

present in the node that is been visited. This also means that we can

finish the propagation much before visiting every reachable node in the

constraint graph. The propagation will finish when the different to be

propagated becomes the empty set.



Handling l = ∗r

(Edge Insertion) For each u ∈ PTS(r) do

I insert a new edge (u, l) into the constraint graph.

(Deep Propagation) Let Pdif = ∪PTS(u)− PTS(l)

1. Deep propagate Pdif starting from node l .



Handling l = ∗r

(Edge Insertion) For each u ∈ PTS(r) do

I insert a new edge (u, l) into the constraint graph.

(Deep Propagation) Let Pdif = ∪PTS(u)− PTS(l)

1. Deep propagate Pdif starting from node l .

2
0
0
9
-0

2
-1

5

Wave Propagation and Deep Propagation for Pointer Analysis

Our new algorithms

Deep Propagation

Handling l = ∗r

The nodes in the points-to set of node r contribute to the new points-to

set of node l . Because of our invariant, we do not need to keep a cache

of the last points-to set propagated. This will be the different between

the current points-to set of node l and the new points-to set that will be

added to l .



Handling ∗l = r

For each u ∈ PTS(l) do

1. insert a new edge (r , u) into the constraint graph.

2. PTSdif (u) = PTS(l)− PTS(u)

3. deep propagate PTSdif (u) starting from node u.
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Handling ∗l = r

Complex 2 constraints are handled in a different way than complex 1

constraints. In the case of complex 1 constraints, only one deep

propagation will happen. In the case of complex two constraints such as

∗l = r , one deep propagation will be triggered for each node in the

points-to set of node l . Again, our invariant avoids unnecessary

propagations. Even though many deep propagations might be fired, we

only need to add new information to the points-to set of each visited

node once. The paper describes with more detail this optimization.



Cycle Detection

Cycles are detected during deep propagation.

For constraints l = ∗r the deep propagation starts from node l. A
cycle is found if l is ever reached by the deep propagation twice.

For constraints ∗l = r the deep propagation starts from each node
u ∈ PTS(l). A cycle is found if node r is ever reached by the deep
propagation.
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Cycle Detection

The deep propagation method is not guaranteed to eliminate all the

cycles in the target constraint graph. Omissions happen because a node

only invokes the deep propagation routine on its successors if there are

points to propagate.



Deep Propagation: Running Example
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The cycle D, F, G discovered in the last DP will be collapsed.
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Deep Propagation: Running Example

This slide shows how the deep propagation algorithm performs on our

running example. In this case, deep propagation is triggered twice. The

first call handles the constraint D = ∗H. The algorithm inserts edges

connecting the nodes in the points-to set of H to D. After that, the new

points-to set of node D is computed, and it is then propagated to nodes

reachable from D; in this case, only node F . The second call handles the

constraint ∗E = F . We insert an edge connecting F to G , the only node

present in the points-to set of E . The deep propagation that follows the

edge insertion finds a cycle containing nodes F , D and G . The cycle will

be collapsed into F after the propagation of points-to sets.
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Asymptotic Behavior: HT, PKH and LCD
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Top-Left: Heintze-Tardieu.
Top-Right: Pearce-Kelly-Hankin.
Bottom: Lazy Cycle Detection.



Asymptotic Behavior: WP and DP
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Asymptotic Behavior: WP and DP

We observe that, for these constraint graphs, the Wave Propagation

approach is the most stable, with an average variance of 4.31 seconds per

constraint graph. The variance found for the other algorithms, in

increasing order, is 8.819 for Heintze-Tardieu, 12.33 for Deep

Propagation, 20.28 for Lazy Cycle Detection and 39.19 for the

Pearce-Kelly-Hankin algorithm.



Benchmarks

Benchmark Code #Variables #Constraints

4 others . . . . . . . . .

sendmail sm 11,408 11,828

254.gap gp 19,336 25,005

emacs em 14,386 27,122

253.perl pl 19,895 28,525

vim vm 31,630 36,997

nethack nh 32,968 38,469

176.gcc gc 39,560 56,791

ghostscript gs 76,717 101,442

insight in 58,763 99,245

gdb gd 84,499 105,087

gimp gm 81,915 125,203

wine wn 150,828 199,465

linux lx 145,293 231,290
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Benchmarks

In order to measure how the proposed algorithms perform in constraint

graphs extracted from actual programs, we have used the benchmarks

presented in, plus 12 benchmarks kindly provided to us by Ben

Hardekopf, which include the six biggest integer programs in SPEC 2000.

The constraints in these benchmarks are field-insensitive, that is, different

variables in the same struct are treated as the same name. All the

algorithms used in our tests are tuned to perform well with

field-insensitive input constraints. The benchmarks have been

preprocessed with an off-line variable substitution analysis. The number

of constraints includes all the constraint types - base, simple and complex

- found in the programs after off-line variable substitution.



Running Time: Intel/Mac OS X
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Running Time: AMD/Linux
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Memory Consumption: AMD/Linux

DPWP PKH LCD

ex tw pr vt sm gp em pl vm nh gc gs in gd gm wn lx GeoM

1

0

2

3



Time Division of WP Phases
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