
University of California

Los Angeles

Register Allocation by Puzzle Solving

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Fernando Magno Quintão Pereira

2008

c© Copyright by

Fernando Magno Quintão Pereira

2008

The dissertation of Fernando Magno Quintão Pereira is approved.

Vivek Sarkar

Todd Millstein

Sheila Greibach

Bruce Rothschild

Jens Palsberg, Committee Chair

University of California, Los Angeles

2008

ii

to the Brazilian People

iii

Table of Contents

1 Introduction . 1

2 Background . 5

2.1 Introduction . 5

2.1.1 Irregular Architectures . 8

2.1.2 Pre-coloring . 8

2.1.3 Aliasing . 9

2.1.4 Some Register Allocation Jargon 10

2.2 Different Register Allocation Approaches 12

2.2.1 Register Allocation via Graph Coloring 12

2.2.2 Linear Scan Register Allocation 18

2.2.3 Register allocation via Integer Linear Programming 21

2.2.4 Register allocation via Partitioned Quadratic Programming 22

2.2.5 Register allocation via Multi-Flow of Commodities 24

2.3 SSA based register allocation . 25

2.3.1 The Advantages of SSA-Based Register Allocation 29

2.4 NP-Completeness Results . 33

3 Puzzle Solving . 37

3.1 Introduction . 37

3.2 Puzzles . 39

3.2.1 From Register File to Puzzle Board 40

iv

3.2.2 From Program Variables to Puzzle Pieces 42

3.2.3 Register Allocation and Puzzle Solving are Equivalent . . . 45

3.3 Solving Type-1 Puzzles . 46

3.3.1 A Visual Language of Puzzle Solving Programs 46

3.3.2 Our Puzzle Solving Program 50

3.4 Spilling and Coalescing . 53

3.5 Implementation Details . 57

3.6 Experimental Results . 59

3.7 Related Work . 68

3.8 Final Remarks . 70

4 Local Coalescing . 72

4.1 Introduction . 72

4.2 Solving Uncolored Puzzles . 73

4.3 Optimal Local Coalescing . 75

4.3.1 On The Number of Pieces Displaced 87

4.4 Final Remarks . 89

5 SSA Elimination after Register Allocation 90

5.1 Introduction . 91

5.2 Example . 94

5.3 Our SSA Elimination Framework 97

5.4 From windmills to cycles and paths 101

5.5 SSA elimination . 102

v

5.5.1 SSA Elimination and Critical Edges 104

5.6 Optimizations . 106

5.6.1 Store hoisting . 107

5.6.2 Load Lowering . 107

5.6.3 Memory coalescing . 109

5.7 Experimental results . 110

5.8 Final Remarks . 114

6 Conclusion . 115

6.1 Summary of Results . 115

6.2 Limitations of our approach . 118

6.3 Open Problems . 118

A Proofs . 119

A.1 Proof of Theorem 1 . 119

A.1.1 Definitions . 119

A.1.2 Structure of the Proof . 121

A.1.3 From register allocation to coloring 121

A.1.4 Elementary programs and graphs 122

A.1.5 An elementary graph is the interference graph of an ele-

mentary program . 132

A.1.6 From Aligned 1-2-coloring to Puzzle Solving 134

A.2 Proof of Theorem 2 . 138

A.3 Proof of Theorem 4 . 141

vi

A.4 Proof of Theorem 13 . 146

A.5 Proof of Theorem 14 . 147

References . 152

vii

List of Figures

2.1 Memory hierarchy in a typical computer architecture. 6

2.2 An example program. 7

2.3 General purpose registers from the x86 architecture. This Figure

was taken from [76]. 10

2.4 (a) Example program. (b) Live ranges represented as intervals.

(c) Program after live range of variable a is split. (d) New interval

representation. 11

2.5 Interference graph for the Program in Figure 2.2. 12

2.6 Chaitin et al.’s iterative graph coloring based register allocator.

This Figure was taken from [16]. 14

2.7 Chaitin et al.’s program to represent C4. This example was taken

from [74]. 15

2.8 Briggs et al. graph coloring based register allocator. 16

2.9 Iterated Register Coalescing. This Figure was taken from [4]. . . . 17

2.10 Linear Scan register allocation. 19

2.11 Some example cost matrices for the program in Figure 2.2. 24

2.12 (a) Traditional register allocation, (b) SSA-based register alloca-

tion. 26

2.13 (a) SSA-form program. (b) Register assignment. (c) colored-SSA-

form program. 27

2.14 The φ-matrix. 28

2.15 (a) A chordal graph. (b-c) Two non-chordal graphs. 28

viii

2.16 (a) SSA-form program taken from Pereira and Palsberg [73]. (b)

Program after the SSA elimination phase. (c) Interference graph

and sequence of register assignments. 30

2.17 (a) Dominator tree of the example program. (b) Interference graph

of the SSA-form program, and assignment sequence. (c) Final

program after SSA-based register allocation. 31

2.18 A graph coloring SSA-based register allocator. 33

3.1 Three types of puzzles. 39

3.2 Examples of register banks mapped into puzzle boards. 41

3.3 (a) Original program. (b) Elementary program. 44

3.4 Mapping program variables into puzzle pieces. 45

3.5 Padding: (a) puzzle board, (b) pieces before padding, (c) pieces

after padding. The new pieces are marked with stripes. 47

3.6 A visual language for programming puzzle solvers. 47

3.7 Our puzzle solving program . 50

3.8 (a) The puzzles produced for the program given in Figure 3.3 (b).

(b) An example solution. (c) The final program. 51

3.9 Register allocation with spilling and local coalescing 55

3.10 Benchmark characteristics. LoC: number of lines of C code. asm:

size of x86 assembly programs produced by LLVM with our al-

gorithm (bytes). btcode: program size in LLVM’s intermediate

representation (bytes). 61

3.11 The distribution of the 1,486,301 puzzles generated from SPEC

CPU2000. 62

ix

3.12 Number of calls to the puzzle solver per nonempty puzzle. #puz-

zles: number of nonempty puzzles. avg and max: average and

maximum number of times the puzzle solver was used per puzzle.

once: number of puzzles for which the puzzle solver was used only

once. 63

3.13 Number of copy and swap instructions inserted per puzzle. . . . 64

3.14 Static improvement due to First-Chance Coalescing. The bars are

normalized to register allocation without global coalescing. . . . 64

3.15 In both charts, the bars are relative to the puzzle solver; shorter

bars are better for the other algorithms. Stack size: Comparison

of the maximum amount of bytes reserved on the stack. Number

of memory accesses: Comparison of the total static number of

load and store instructions inserted by each register allocator. . . 65

3.16 Comparison of the running time of the code produced with our

algorithm and other allocators. The bars are relative to gcc -O3;

shorter bars are better. 66

3.17 (left) Example program. (center) Puzzle pieces. (right) Register

assignment. 67

3.18 Comparison between compilation time of the puzzle solver and

extended linear scan (LLVM’s default algorithm). The bars are

relative to the puzzle solver; shorter bars are better for extended

linear scan. 68

3.19 Interference graph of the program in Figure 3.3 (b). 69

3.20 Elementary graphs and other intersection graphs. RDV-graphs are

intersection graphs of directed lines on a tree [63]. 69

x

3.21 Algorithms and hardness results for graph coloring. TD = this

dissertation. 70

4.1 The different parts of the puzzle board. 73

4.2 Program Pu that solves puzzles containing no pre-coloring. . . . 74

4.3 The case r = 7 of Lemma 5. 75

4.4 The cases r = 2 (left) and r = 3 (right) of Lemma 5. 76

4.5 The cases r = 4 (left) and r = 5 (right) of Lemma 5. The case

r = 6 is similar to r = 5 and was omitted. 76

4.6 Configurations of preferences in a board without pre-coloring. . . 77

4.7 (a) The puzzle formed for the instruction E := c in Figure 3.17.

(b) Puzzle after one area has been filled. 78

4.8 Program Pc that maximizes local coalescing. 79

5.1 (a) Example program in high level language. (b) Control flow

of program converted to SSA-form. (c) Program after constant

propagation. 95

5.2 (a) A possible colored representation of the example program. (b)

SSA elimination seen as the implementation of parallel copies. (c)

SSA elimination with on-demand spilling. 96

5.3 SSA-based register allocation and spill-free SSA elimination. . . . 97

5.4 (a) Original, non-CSSA-form program. (b) Program converted

into CSSA via Sreedhar’s “Method I”. (c) Redundant copies re-

moved via Budimlic’s fast copy coalescing. 99

5.5 A φ-matrix and its representation as three location transfer graphs. 101

xi

5.6 The presence of critical edges leads to incorrect code. 105

5.7 (a) Example program. (b) Program in CSSA-form. (c) Program

after critical edge is eliminated. The interference graph of each

program is shown below its control flow graph. 106

5.8 (a) Example program (b) Program augmented with mock φ-functions.

(c) SSA elimination without load-lowering. (d) Load-lowering in

action. 108

5.9 #ltg: number of location transfer graphs (in thousands), %sp:

percentage of LTG’s that are potential spills, #edg: number of

edges in all the LTG’s (in thousands), %mt: percentage of the

edges that are memory transfers. 111

5.10 Execution time of different compilation passes. 112

5.11 Impact of Load Lowering (LL) and Redundant Memory Transfer

Elimination (RMTE) on the code produced after SSA-elimination.

(Up) Code size. (Down) Run-time. 113

A.1 Example of a composition graph (taken from [42]). 120

A.2 Some special graphs. 123

A.3 (a) Directed tree T . (b) Paths on T . (c) Corresponding RDV graph.125

A.4 The grammar of elementary programs. 130

A.5 An elementary program representing a clique substitution of P3. . 134

A.6 Example of padding. Square nodes represent vertices of weight

two, and the other nodes represent vertices of weight one. 135

A.7 A chordal graph represented as a program. 145

A.8 The parallel copy lφ : (v1, v2, . . . , vn) := (vi1, vi2, . . . , vin). 148

xii

Acknowledgments

There are a number of people whose help was essential for the success of this

work. First, I must mention that four years of my stay in the United States were

funded by CAPES, the Brazilian Agency of Education. Without their financial

support, this research would be impossible. Equally important was the guidance

of Jens Palsberg, my advisor and friend. He is one of the greatest examples

of enthusiasm and competence in Computer Science that I have ever seen, and

it was a great honor to work with him. I must thank also Jonathan Lee and

Krishna Nandivada, with whom I could collaborate in different projects. I had

the privilege to interact with amazing professors in UCLA. I must thank specially

professor Todd Millstein for reviewing many drafts of my papers, and guiding me

across the scary adventure of being a teaching assistant. While researching about

register allocation I met with Fabrice Rastello, Florent Bouchez, Philip Brisk and

Sebastian Hack. Our discussions helped me to better understand the benefits and

trade-offs of SSA-based register allocation. I also met Lang Hames and Bernhard

Scholz, who generously provided the implementation of PBQP and IRC used in

my experiments. I would like to thank Daniel Berlin for hosting me at Google

and teaching me a lot about compilers and their practical importance. I am also

glad to have enjoyed the company of great friends in the UCLA Compiler’s Lab.

Our heated, but always civil, RISK matches are among the dearest memories

that I bring from the doctorate. Finally, there exist some people in this world

who have nothing to do with Computer Science, but have everything to do with

me. They know who they are, and they know that they are much more important

to me than any degree or research will ever be. Without them, everything that

I do would be completely meaningless, and I thank them from the bottom of my

heart for being part of my life.

xiii

Vita

1980 Born, Nova Era, Minas Gerais, Brazil.

1998–2001 B.S., Federal University of Minas Gerais, Brazil.

1999 Teaching Assistant, Computer Science Department, UFMG.

Taught two semesters of Linear Algebra under direction of Pro-

fessor Hamilton Prado Bueno.

2000–2001 Research Assistant, Computer Science Department, UFMG.

Did research on partial evaluation and distributed systems un-

der direction of Professor Roberto da Silva Bigonha.

2002–2003 M.S., Federal University of Minas Gerais, Brazil. Designed a

major software system for Coordinating Communication Mid-

dleware. This system is still in use.

2004–present Ph.D program, Computer Science Department, UCLA. Did re-

search on Compilers with emphasis on Register Allocation, un-

der direction of Professor Jens Palsberg.

Fall 2007 Teaching Assistant, Computer Science Department, UCLA.

taugh one section of CS131, Introduction to Programming Lan-

guages, under direction of Professor Todd Millstein.

Summer 2008 Summer Internship, Google, Washington DC. Did research on

pointer analysis under direction of software developer Daniel

Berlin.

xiv

Publications

Fernando Magno Quintão Pereira and Jens Palsberg. Register allocation by

puzzle solving. PLDI - SIGPLAN Conference on Programming Language Design

and Implementation. 216-226. 2008

Venkata K. Nandivada,Fernando Magno Quintão Pereira andJens Palsberg.

A Framework for End-to-End Verification and Evaluation of Register Allocators.

SAS - 14th International Static Analysis Symposium. 153 - 169. 2007

Jonathan K. Lee, Jens Palsberg and Fernando Magno Quintão Pereira. Alias

Register Allocation for Straight-line Programs is NP-complete. ICALP - 34th

International Colloquium on Automata, Languages and Programming. 680-691.

2007

Fernando Magno Quintão Pereira, Marco Túlio de Oliveira Valente, Roberto

da Silva Bigonha and Mariza Andrade da Silva Bigonha. Arcademis: a Frame-

work for Object Oriented Communication Middleware Development. Software:

Practice and Experience. 36(5) 495 - 512. 2006.

Fernando Magno Quintão Pereira and Jens Palsberg. Register Allocation After

Classical SSA Elimination is NP-Complete. FOSSACS - Foundations of Software

Science and Computation Structures. 79 - 93. 2006.

Fernando Magno Quintão Pereira and Jens Palsberg. Register Allocation via

xv

Coloring of Chordal Graphs. APLAS - 3rd Asian Symposium on Programming

Languages and Systems. 315 - 329. 2005.

Fernando Magno Quintão Pereira, Wagner Salazar Pires, Marco Túlio de

Oliveira Valente, Roberto da Silva Bigonha and Mariza Andrade da Silva Bigonha.

Tactics for Remote Method Invocation. SBLP - 8th Brazilian Symposium on Pro-

gramming Languages. 102 - 115. 2004.

Fernando Magno Quintão Pereira, Marco Túlio de Oliveira Valente, Roberto

da Silva Bigonha and Mariza Andrade da Silva Bigonha. Arcademis: a Java

Based Framework for Middleware Development. SBRC - 22nd Brazilian Sympo-

sium on Computer Networks. 539 - 552. 2004.

Fernando Magno Quintão Pereira, Marco Túlio de Oliveira Valente, Roberto

da Silva Bigonha and Mariza Andrade da Silva Bigonha. Chamada Remota de

Métodos na Plataforma J2ME/CLDC. Revista do Instituto Nacional de Teleco-

municaćões. Inatel. 7(1) 21 - 31. 2004.

Fernando Magno Quintão Pereira, Marco Túlio de Oliveira Valente, Roberto

da Silva Bigonha and Mariza Andrade da Silva Bigonha. Tactics for Remote

Method Invocation. Journal of Universal Computer Science (J.UCS). 10(7) 824 -

842. 2004.

Fernando Magno Quintão Pereira, Marco Túlio de Oliveira Valente, Roberto

da Silva Bigonha and Mariza Andrade da Silva Bigonha. Chamada Remota de

Métodos na Plataforma J2ME/CLDC. WCSF - 5th Brazilian Workshop on Wire-

xvi

less Communication and Mobile Computation. 157 - 168. 2003.

Fernando Magno Quintão Pereira, Leonardo Trivelato Rolla, Cristiano Gato

de Rezende and Rodrigo Lima Carceroni. The Language LinF for Fractal Spec-

ification. SIBGRAPI - 16th Brazilian Symposium on Computer Graphics. 67 -

74. 2003.

Marco Túlio de Oliveira Valente, Fernando Magno Quintão Pereira, Roberto

da Silva Bigonha and Mariza Andrade da Silva Bigonha. A Coordination Model

for Ad Hoc Mobile Systems. EURO-PAR - 9th International Conference on Dis-

tributed Computing. 1075 - 1081. 2003.

Fernando Magno Quintão Pereira, Marco Túlio de Oliveira Valente, Roberto

da Silva Bigonha and Mariza Andrade da Silva Bigonha. A Java-based Simulator

for Ad Hoc Mobile Distributed Systems. FIDJI - International Workshop on

Scientific Engineering of Distributed java Applications. Springer. 2002.

Marco Túlio de Oliveira Valente, Roberto da Silva Bigonha, Mariza Andrade

da Silva Bigonha and Fernando Magno Quintão Pereira. A Coordination Model

for Ad Hoc Mobile Systems and its Formal Semantics. WCSF - 4th Brazilian

Workshop on Wireless Communication and Mobile Computation. 58 - 67. 2002.

Fernando Magno Quintão Pereira, Marco Túlio de Oliveira Valente, Roberto

da Silva Bigonha and Mariza Andrade da Silva Bigonha. Uma Linguagem para

Coordenação de Aplicações em Redes Móveis Ad-hoc. SBLP - 6th Brazilian Sym-

posium on Programming Languages. 152 - 165. 2002.

xvii

Fernando Magno Quintão Pereira, Roberto da Silva Bigonha, Mariza Andrade

da Silva Bigonha and Vladimir Oliveira de Iorio. Aplicações de Avaliação Parcial

de Programas. 55th Reunião Nacional da Sociedade Brasileira pelo Progresso da

Ciência. 2002.

Fernando Magno Quintão Pereira, Roberto da Silva Bigonha, Mariza Andrade

da Silva Bigonha and Vladimir Oliveira de Iorio. Avaliação Parcial de Programas

usando CMIX/II. SBLP - 5th Brazilian Symposium on Programming Languages.

32 - 47. 2001.

xviii

Abstract of the Dissertation

Register Allocation by Puzzle Solving

by

Fernando Magno Quintão Pereira

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2008

Professor Jens Palsberg, Chair

Register allocation is the problem that compilers face when assigning storage lo-

cations to the values used in a program. Even though this is an old problem,

compilers still use heuristics to solve register allocation, or use exact algorithms

that have exponential complexity. We present an optimal, polynomial time, reg-

ister assignment algorithm. Our key insight is to show that register assignment

is analogous to solving a collection of puzzles. We model the register file as a

puzzle board and the program variables as puzzle pieces; pre-coloring and register

aliasing fit in naturally. Our puzzles are solvable in linear time for a vast number

of architectures, including x86, PowerPC and StrongARM. We have augmented

our optimal register assignment algorithm with simple, yet powerful, heuristics

for spilling and coalescing. Our implementation is as fast as the extended version

of linear scan used by LLVM, the JIT compiler used in the openGL stack of Mac

OS 10.5. Our implementation produces x86 code of similar quality to the code

produced by the slower, state-of-the-art iterated register coalescing algorithm of

George and Appel with extensions proposed by Smith, Ramsey, and Holloway.

Relying on extensive experiments and theoretical insights, we show that register

allocation by puzzle solving is feasible and useful in practice.

xix

CHAPTER 1

Introduction

Programs in a high level language are written under the assumption that an

unbounded number of variables can be created to store values. Once these pro-

grams are translated into machine code, some of these variables will be stored in

registers, while others will have to be stored in memory. It is advantageous to

maximize the number of variables stored in registers, because reading or writing

registers is faster than accessing memory. However, computer architectures only

provide a small number of registers, and normally different variables cannot be

simultaneously stored in registers. If the number of registers is not large enough

to accommodate all the variables, some of them must be sent to memory. These

are called spilled values. The proposed dissertation is mostly concerned with the

so-called Spill Free Register Allocation Problem, which can be defined as follows:

Spill-free Register Allocation Problem

Instance: a program P and a number K of available registers.

Problem: can each of the variables of P be mapped to one of the

K registers such that variables simultaneously alive are assigned to

different registers?

A Bit of Recent History. The research that constitutes this dissertation

started in the Winter of 2005, with the observation that the interference graph

of many real world programs are chordal. Register allocation has a very intimate

1

relation with graph coloring, and chordal graphs can be colored in time linear on

the number of edges. This observation motivated our first paper on this field:

Register Allocation via Coloring of Chordal Graphs, published in the Third Asian

Symposium on Programming Languages and Systems (APLAS’05). This paper

has been received relatively well by the research community: it is cited in at

least 20 other publications, and it has been used in the Introductory Compiler

Course taught in Carnegie Mellon by Frank Pfenning. One year after this first

publication we released our second paper on this subject: Register Allocation

After Classical SSA Elimination is NP-Complete, which we presented in the 2006

edition of the Conference on Foundations of Software Science and Computation

Structures. In that work we proved that, although chordal graphs can be colored

in polynomial time, the translation of programs into assembly code was still

using algorithms that are NP-complete. This somehow negative result was later

mitigated by the design of new algorithms that translate a program into assembly

code without demanding NP-complete transformations. Finally, on the Spring

of 2008 we released our most important result: Register Allocation by Puzzle

Solving, published in The Conference on Programming Language Design and

Implementation. The algorithms introduced in this last work have also been

presented in talks at Intel, Google, Apple and many universities, and they are

the basis of this dissertation.

In addition of these three papers, the research on this dissertation has pro-

duced direct contributions on two other publications. While implementing our

register allocators, we have developed a technique to perform the translation val-

idation of register allocation outputs. This technique is the core of the paper

A Framework for End-to-End Verification and Evaluation of Register Allocators,

presented in the 14th International Static Analysis Symposium in 2007. Our

debugging method was paramount in the implementation of our register allo-

2

cators, and it has found users among members of the open software compiler

community. In the paper Aliased Register Allocation for Straight-Line Programs

Is NP-Complete, published in the 34-th International Colloquium on Automata,

Languages and Programming, we helped Jonathan Lee and Jens Palsberg to prove

that aliasing, a common trait of architectures such as x86 and Ultra Sparc, causes

register assignment to be NP-complete. This result is surprising, given how easy

it is to perform register assignment in architectures without aliasing. Register

allocation with aliasing is similar to the Shipbuilding Problem [42]. Larry Stock-

meyer had proved that the latter problem is NP-complete, while he was working

at IBM on the Seventies; however, the late Stockmeyer had never published his

proof. Jonathan Lee has been able to reduce the Shipbuilding Problem to the

Alias Register Allocation problem; thus, we believe that our reduction, to appear

in Theoretical Computer Science, will be the first public proof of Stockmeyer’s

theorem.

The Thesis Statement. The objective of this research is to develop optimal,

polynomial time, register assignment algorithms that can be effectively used in

computer architectures such as x86, ARM, SPARC and PowerPC. In order to

achieve this objective we will create a new model for register allocation, which

we will call the puzzle-based paradigm. Thus, my thesis can be stated as follows:

Register allocation by puzzle solving is feasible and effective for

most computer architectures currently in use.

The Structure of this Dissertation. This dissertation contains the following

contributions:

• we introduce the concept of register allocation by puzzle solving. The ab-

3

straction of puzzles simplifies register allocation because it naturally sub-

sumes constraints of computer architectures such as aliasing and pre-colored

registers. We show that register allocation puzzles have polynomial time

solution. Furthermore, we can easily augment our puzzle solving technique

with heuristics for spilling and coalescing (Chapter 3);

• we describe a new class of graphs: the elementary graphs. Many problems

that are NP-complete for general graphs, such as graph coloring and maxi-

mal clique identification, have polynomial time solution when restricted to

the family of elementary graphs (Chapter 3);

• we give optimal algorithms for the local coalescing problem. This prob-

lem consists in maximizing the number of variables assigned to the same

registers across successive program instructions (Chapter 4);

• we introduce a new SSA-elimination algorithm. SSA-elimination is the

process of converting a program from an intermediate representation called

Static Single Assignment (SSA-form) into assembly code (Chapter 5). SSA-

form is the intermediate representation used in many among the most popu-

lar compilers, such as Gcc 4.0 [44], Sun’s HotSpot JVM [85], IBM’s Jikes [86]

and LLVM [58];

The remaining of this dissertation is organized as follows: Chapter 2 contains

a short review on register allocation. The main concepts related to register allo-

cation by puzzle solving are given in Chapter 3. Chapter 4 discuss optimal local

coalescing. Chapter 5 presents our SSA-elimination algorithm and Chapter 6

summarizes our contributions and concludes this work.

4

CHAPTER 2

Background

2.1 Introduction

Computer architectures rely on a memory hierarchy to store the data that is

manipulated by programs. Figure 2.1 shows the storage pyramid that is typically

observed on a ordinary computer. At the very top of the pyramid we have

registers, which provide to the CPU the fastest access to data. Operations of

reading and writing to registers in a modern computer take no more than one

cycle of the CPU clock. All this velocity comes with a cost: the register file is

very small. For instance, the 32-bit x86 chip contains only eight general purpose

registers, the 16-bit x86 chip contains 16 and the ARM and the PowerPC chips

contain only 32 integer registers. In comparison, its is fairly common to find 200G

hard disks in current computers - a difference of almost 33 orders of magnitude!

Because registers are so fast and so few, one of the greatest challenges of com-

piler writers is to design algorithms that keep the most used program variables in

registers, while relegating the least used variables to memory if necessary. Reg-

ister allocation is thus the problem of mapping variables to registers or memory.

We will be using the program in Figure 2.2 to illustrate the main concepts related

to register allocation.

A program can be described by its control flow graph. The control flow graph

is formed by basic blocks. Each basic block has a unique label, and a list of

5

Size of available storage space

Increasing cost and
decreasing access speed

Hard Disk

Main memory

L2 Cache

L1 Cache

Registers

Figure 2.1: Memory hierarchy in a typical computer architecture.

instructions. Instructions are the primary constituents of programs. Each in-

struction may apply an operation on some variables, which are called the used

variables. An instruction may define one or more variables; these are called de-

fined variables. Different computer architectures, e.g x86, PowerPC, ARM, etc,

provide different sets of instructions, but all these sets are Turing Complete.

The program in Figure 2.2 contains four basic blocks and 14 instructions. For

simplicity we will be dealing with only four types of instructions: assignments,

branches, jumps and joins. The first instruction of basic block L2 is an assign-

ment that uses the variable a and defines the variable c. We use assignments to

abstract instructions that use or define variables. The actual operation that the

instruction applies on its operands is not important for our purposes, and if the

instruction has no operand on either the left or right side, we will represent this

with a • symbol. The other kinds of instructions model the shape of the control

6

 a = •
p1:
 B = •
p2:
 branch L2, L3

 c = a
p4:
 d = B
p5:
 E = c
p6:
 • = d
p7:
 jump L4

 AL = B
p10:
 f = a
p11:
 E = AL
p12:
 a = f
p13:
 jump L4

 join L2, L3
p15:
 • = a, E
p16:
 jump Lend

p3:

p14:p8:

p9:

L1

L2 L3

L4

Figure 2.2: An example program.

flow graph. Branches finish basic blocks with multiple successors. Jumps finish

basic blocks with a single successor and joins start basic blocks with multiple

predecessors. The only operands of these instructions are basic block labels.

We call a program point the point between two consecutive instructions. The

program in Figure 2.2 contains 16 program points named p1 to p16. We say that a

variable v is alive at a program point p if there is a path from p to an instruction

that uses v where v is not re-defined by any instruction. The collection of program

points where a variable is alive is called its live range. For instance, the live range

7

of variable B is {p2, p3, p4, p9}, whereas the live range of variable a includes all

the program points but p11, p12 and p16. Notice that a is not alive at program

points p11 and p12 because this variable is redefined by the instruction a = f , and

its old value is not necessary after the instruction f = a. A simple algorithm to

compute liveness information is given by Appel and Palsberg [4, p.206].

We say that two variables interfere if the intersection between their live ranges

is non-empty. In this case, we also say that their live ranges overlap. For instance,

variables c and d interfere, because their live ranges overlap at program point p5;

however, variables c and E do not intefere. This concept is very important for

register allocation, because two variables that do not interfere can be stored in

the same register.

2.1.1 Irregular Architectures

Modern computer architectures present irregular register banks. The two most

common sources of irregularities are pre-colored registers and aliasing [57, 82, 83].

2.1.2 Pre-coloring

Pre-coloring is a very common phenomenon that forces some variables to be

assigned to particular machine registers. A typical example is parameter passing

in function calls. Architectures such as PowerPC and StrongARM use registers

to pass arguments to functions. For instance, a two argument function call in

PowerPC is written in assembly in a way similar to the code strip below:

r0 = arg0 ; the first argument must be passed in r0

r1 = arg1 ; the second argument must be passed in r1

bl foo ; branch and link, e.g, calls the function foo

The variables arg0 and arg1 can be stored in any register, but the variables

8

r0 and r1 cannot: they are already allocated to registers r0 and r1. Many

other common examples of pre-coloring are found in x86. For instance, in that

architecture, the results of a division operation must be placed in the registers

edx and eax. As a convention, we name a pre-colored variable with the name of

its pre-coloring register. For instance, the variable AL in block L3 of Figure 2.2

is pre-colored with register AL.

2.1.3 Aliasing

We say that an architecture contains aliasing when an assignment to one register

name can affect the value of another [83]. For example, Figure 2.3 shows the set

of general purpose registers used in the x86 architecture. The x86 architecture

has four general purpose 16-bit registers that can also be used as eight 8-bit

registers. Each 8-bit register is called a low address or a high address. The

initial bits of a 16-bit register must be aligned with the initial bits of a low-

address 8-bit register. The x86 architecture allows the combination of two 8-bit

registers into one 16 bit register. Another example of aliased registers is the

combination of two aligned single precision floating-point registers to form one

double-precision register. Examples of architectures with such aliased registers

include early versions of HP PA-RISC, the Sun SPARC, and the ARM processors.

For a different kind of architecture, Scholz and Eckstein [82] describe experiments

with the Carmel 20xxDSP Core, which has six 40 bit accumulators that can

also be used as six 32-bit registers or as twelve 16-bit aligned registers. As a

convention, along this dissertation we will use lower case names to denote values

that fit in one single register, and upper case names to denote values that must

fit in one register pair. Thus, in Figure 2.2 variables a, c and d fit in one register,

whereas variables B and E fit in a register pair.

9

32 bits

16 bits

8 bits

EAX

AX

AH AL

EBX

BX

BH BL

ECX

CX

CH CL

EDX

DX

DH DL

EBP

BP

EDI

DI

ESI

SI

Figure 2.3: General purpose registers from the x86 architecture. This Figure was

taken from [76].

2.1.4 Some Register Allocation Jargon

Spilling Because computers have limited number of registers, they may not

be enough to store all the variables in the source program. If that is the case,

then some variables must be mapped to memory. The act of storing a variable

into memory is called spilling. Spill is normally undesirable because it forces

the register allocator to insert special instructions, that we will call spill code,

in the target program to access values stored in memory. An instruction that

copies a value from a register to a memory address is called a store. The opposite

instruction, which copies a value from memory into a register, is called a load.

These instructions tend to be slow compared to operations that do not access

memory; thus, one of the objectives of a register allocator is to avoid inserting

such instructions in the code that it produces.

Coalescing If two variables v1 and v2 do not interfere, and they are related by

a copy instruction, that is, the source program contains an instruction such as

v1 = v2, then it is desirable that these variables be allocated into the same register

r. In this case, we will have the copy instruction r = r, which is redundant and

can safely be removed from the target program. Coalescing is the act of mapping

two non-interfering variables that are related by a copy instruction to the same

register. For instance, in the program in Figure 2.2, the instructions f = a and

10

a = f can be eliminated from the program if variables a and f are assigned to

the same register. Therefore, a good register allocator should not only assign

different registers to interfering variables, but also try to assign the same register

to variables related by copies.

Live Range Splitting This concept is the inverse of coalescing. Whereas

coalescing join the live ranges of variables by removing copies from the source

program, live range splitting divides the live range of variables by adding copies

to the program and renaming variables. The splitting of live ranges tends to

reduce the interferences between variables; thus, it might minimize the number

of registers required by programs. Figure 2.4 shows an example of live range

splitting.

b = •

a

(a) (b)

a = •

• = a

c = •

• = c

• = b

b

c

b = •

a = •

• = ax

c = •

• = c

• = b

ax = a

a
b

c

(c) (d)

ax

Figure 2.4: (a) Example program. (b) Live ranges represented as intervals. (c)

Program after live range of variable a is split. (d) New interval representation.

11

a

B

c

E

d

f

AL

B => AX
a => BL
c => BH
E => AX
d => CL
f => BL

Figure 2.5: Interference graph for the Program in Figure 2.2.

2.2 Different Register Allocation Approaches

Register allocation is possibly the compilation problem with the greatest number

of different algorithms already described in the literature. In the remainder of

this section we will be describing several approaches to register allocation, using

the program in Figure 2.2 as a running example.

2.2.1 Register Allocation via Graph Coloring

Graph coloring is the most used approach to solve register allocation. The In-

terference Graph of a program is the intersection graph of the live ranges of the

variables in the program. That is, given a program P , its interference graph

G = (V, E) contains a vertex for each variable v of P . An edge (u, v) is in E if

the intersection of the live ranges of variables v and u is non-empty. Figure 2.5

shows the interference graph for the Program in Figure 2.2, as well as a valid

register assignment using three x86 registers: AX, BX and CX.

The problem of assigning registers to variables can thus be approximated by

12

coloring the interference graph of the source program. Each color corresponds

to a register, and interfering variables will be given different colors, given that

they are adjacent on the interference graph. One of the first and most celebrated

graph coloring based register allocators was described by Chaitin et al. [23, 24].

The algorithm described in [23] laid the foundations of practically all the graph

coloring based register allocators that were introduced later. The core of Chaitin’s

algorithm is Kempe’s coloring scheme [54]. Basically, a node v in the interference

graph G can be colored if it has less than K neighbors, where K is the number

of colors available. In this case, the node v can be safely removed from G, and

placed on a stack of nodes that are guaranteed to be colorable. This process,

called simplification, iterates until there is no more nodes to remove from G.

Two aspects of the register allocation problem complicate this technique:

spilling and coalescing. Spilling is the act of mapping a variable to memory

because there is no more registers available to hold its value. Coalescing is the

act of mapping two non-interfering variables that are related by a copy instruction

to the same register. For instance, in the program in Figure 2.2, the instructions

f = a and a = f can be eliminated from the program if variables a and f are

assigned to the same register. Therefore, a good graph coloring based register

allocator should not only assign different colors to interfering variables, but also

try to assign the same color to variables related by copies. Due to spilling and co-

alescing, Chaitin et al. proposed an iterative algorithm, illustrated in Figure 2.6.

This algorithm has the following phases:

1. Renumber: discover live range information in the source program.

2. Build: build the interference graph.

3. Coalesce: merge the live ranges of non-interfering variables related by copy

13

build coalesce

select

renumber spill cost

simplifyspill code

Figure 2.6: Chaitin et al.’s iterative graph coloring based register allocator. This

Figure was taken from [16].

instructions.

4. Spill cost: compute the spill cost of each variable. That is a measure of the

impact of mapping a variable to memory on the speed of the final program.

5. Simplify: Kempe’s coloring method.

6. Spill Code: insert spill instructions, i.e loads and stores to commute values

between registers and memory.

7. Select: assign a register to each variable.

One of the early achievements of Chaitin et al. [24] was to show that spill free

register allocation is a NP-complete problem. Basically, Chaitin et al. proved

that any graph is the interference graph of some program. For instance, to

represent C4, the cycle with four nodes, the NP-completeness proof would pro-

duce the program in Figure 2.7. The minimal coloring of such graph can be

trivially mapped to a minimal coloring of C4, by simply deleting node x. The

NP-completeness result comes from the fact that finding a minimal coloring to a

graph is NP-complete, as shown by Richard Karp in its seminal work [53].

Chaitin’s algorithm had a few deficiencies that were improved by later works.

One of the problems of that allocator was the aggressive coalescing policy. Merg-

14

a = 1
b = 2
x = a + b

b = 1
c = 2
x = b + c

c = 1
d = 2
x = c + d

a = 1
d = 2
x = a + d

switch()

return a+xreturn b+x return c+x return d+x

a

b c

d

x

Figure 2.7: Chaitin et al.’s program to represent C4. This example was taken

from [74].

ing live ranges of variables has the undesirable effect of increasing the degree of

vertices in the interference graph, and thus it might cause spilling. In order to

solve this omission, Briggs et al. [16] introduced the concept of conservative coa-

lescing. This is an extra criterion to decide when two live ranges can be merged.

Thus, in addition of the non-interfering requirement, two variables can only be

coalesced if their merging will not cause further spilling in the interference graph.

Another improvement brought up by Briggs et al. was biased coloring: the select

phase tries to assign the same color to variables that are copy related. Briggs

et al. point that the combination of conservative coalescing and biased coloring

could remove most of the copy instructions in the original program before register

allocation. Finally, Briggs et al. introduced the concept of optimistic coloring:

instead of spilling away variables that could not be simplified using Kempe’s

technique, Briggs et al. defer this decision to the simplification phase. Many

15

build coalesce
(conservative)

select
(optimistic)

renumber spill
cost

simplify
(biased coloring)

spill code

Figure 2.8: Briggs et al. graph coloring based register allocator.

times two or more of the neighbors of a vertex v will be assigned the same color,

and v will be colorable even if it has a number of neighbors that is larger than

the number of available colors. The modified version of Chaitin’s algorithm, as

described by Briggs et al. [16], is illustrated in Figure 2.8.

A criticism of Briggs allocator is that it is too conservative with regard to

the coalescing policy, and thus it misses some copy instructions that could be

removed. The coalescing criterion used by Briggs et al. [16] is described as follows:

nodes a and b can be coalesced if the node that results from their merging has

less than K neighbors of significant degree, where a node has significant degree

if it has K or more neighbors. Subsequently, George and Appel [40] showed

that this criterion could be relaxed to allow more aggressive coalescing without

introducing extra spilling. They proposed Iterated Register Coalescing, a graph

coloring based register allocator [40] that remains today, almost 15 years after

its first release, the base algorithm taught in many compiler courses [4] and used

as baseline in many research projects. Figure 2.9 illustrates the several phases of

this algorithm.

An important addition of Iterated Register Coalescing over the previous allo-

cators was a Freeze phase. If neither simplify nor coalesce could remove any node

from the interference graph, the freeze step would mark a copy related node, so

16

build simplify coalesce freeze potential
spill select actual

spill

Figure 2.9: Iterated Register Coalescing. This Figure was taken from [4].

that it would no longer be considered for coalescing.

2.2.1.1 A Taxonomy of Coalescing Approaches

One quarter century after Chaitin’s seminal paper, coalescing has been one of the

main forces pushing new variations in graph coloring register allocation. Bouchez

et al. [12] summarizes some of the best known approaches for performing register

coalescing:

• Aggressive Coalescing [24, 23]: merge move-related vertices, regardless of

the colorability of the interference graph after the merging.

• Conservative Coalescing [16]: merge moves if, and only if, it does not com-

promise the colorability of the interference graph.

• Optimistic Coalescing [68, 69]: coalesce moves aggressively, and if it com-

promises the colorability of the graph, then give up as few moves as possible.

• Incremental Conservative Coalescing [40]: remove one particular move in-

struction, while keeping the colorability of the graph.

Bouchez et al. [10, 12] have shown, by means of an ingenious sequence of reduc-

tions, that all these different realizations of the register coalescing problem are

NP-complete for general interference graphs.

17

2.2.2 Linear Scan Register Allocation

Graph coloring is the most popular approach for register allocation, but it is not

the only one, and it has been losing ground to a different, simpler approach called

Linear Scan. Variations of this technique are adopted in many modern compilers,

including LLVM [34] and the Java HotSpot client compiler [90]. In this section

we describe Linear Scan and some of its more important variations.

Linear scan is a greedy algorithm introduced by Poletto and Sarkar on the

late nineties [77]. It simplifies register allocation by reducing it to the problem of

assigning colors to an ordered sequence of intervals. It is well know that ordered

intervals can be colored optimally by a simple greedy algorithm [37]. However,

linear scan is not optimal: it uses the optimal algorithm as an approximation

to solve the register allocation problem. The algorithm starts by linearizing the

basic blocks of the source program, that is, arranging these blocks in a linear

sequence; the exact ordering chosen is not important and will not compromise

the correctness of the results. Given this linearization, linear scan replaces the

live range of each variable with a contiguous interval, called the variable lifeline,

and then proceeds to color these intervals. Figure 2.10 illustrates this algorithm

being applied on the program in Figure 2.2. In this case, register allocation

amounts to coloring the seven intervals defined by variables a, B, c, d, E, f and

AL.

The main appeal of linear scan is the allocation speed. This fact makes linear

scan an attractive option to Just in Time (JIT) compilers, like Java HotSpot and

LLVM. Timing comparisons between graph coloring and linear scan span a wide

spectrum [76]. The original linear scan paper [77] suggests that graph coloring is

about twice as slow as linear scan. These numbers are corroborated by Sagonas

and Stenman [80]. Traub et al. [87] gives an slowdown of up to 3.5x for large

18

 a = •
 B = •
 branch L2, L3

 c = a
 d = B
 E = c
 • = d
 jump L4

 AL = B
 f = a
 E = AL
 a = f
 jump L4

 join L2, L3
 • = a, E
 jump Lend

L1

L2

L3

L4

a B c d E f AL

a => AH
B => BX

c => AL
d => CL
E => DX

f => BL
AL => AL

Figure 2.10: Linear Scan register allocation.

programs, and Sarkar and Barik [81] suggest a 20x slowdown. On the other hand,

this speed pays a price in terms of quality of the code produced. Going back to

our example in Figure 2.10, the original linear scan algorithm [77] would not

be able to allocate variables B and E into the same register, even though these

variables do not interfere, because their lifelines overlap. This omission is due to

the original algorithm not handling holes in the live ranges of variables.

Later improvements on linear scan are able to handle holes in the live ranges of

variables. An important extension is due to Traub et al. [87]. Traub’s algorithm

introduces the binpacking model: the machine registers are viewed as bins into

which variable lifetimes can be packed. Thus, linear scan can assign two non-

overlapping lifetimes to the same bin, or it can assign two lifetimes into the same

bin if the live range that constitutes one of the lifetimes is completely contained

19

in holes in the live range that constitutes the other lifetime. This model was

later used by Mössenböck and Pfeiffer [64] in an algorithm that performs register

allocation in programs in Static Single Assignment form.

Wimmer and Mössenböck have introduced several optimizations to linear

scan [90]. Their algorithm handles holes in live ranges, but their most innovative

extensions are optimal split positions, register hints and spill store elimination.

Optimal split position is a technique to minimize the effects of spill code in the

final program produced after register allocation. This optimization allows to

move loads outside loops, for instance. Register hint is a simplified coalescing ap-

proach for linear scan. It is similar to biased coloring [16] in the sense that, when

choosing a color to an interval i1, if i1 is connected to another interval i2 via a

move instruction, then the allocator attempts to assign to i1 the color previously

assigned to i2. Spill store elimination is an optimization used to remove from

the target program some store instructions that can be proved statically to be

useless. A common example is multiple stores of a variable that is only defined

once. In this case, all the store instructions can be replaced with a single store

after the definition point of the variable.

The most recent addition to the family of linear scan algorithms is Sarkar

and Barik [81] new method, called Extended Linear Scan. By inserting copy

and swap instructions along the source program, this version of linear scan guar-

antees to use the minimal number of registers necessary to compile the source

program. Sarkar’s algorithm diverges from previous implementations because it

has a preference towards inserting extra move instructions to avoid inserting spill

code.

20

2.2.3 Register allocation via Integer Linear Programming

Quoting Dasgupta et al. [28], linear programming, together with dynamic pro-

gramming, are the two sledgehammers of the algorithm craft. The linear pro-

gramming framework fits a vast number of different optimization problems, and

a subclass of this model, the 0-1 integer programming, has been used to solve

register allocation. The basic idea of this approach is to model the interactions

between registers and variables as constraints in a system of integer linear equa-

tions. For instance, given a register AX we define the following variables:

• AXr(v, p) is one if variable v reaches and leaves program point p allocated

to register AX and is zero otherwise.

• AXl(v, p) is one if variable v reaches program point p in memory, but leaves

it allocated to register AX. It is zero otherwise. The letter l indicates a

load.

• AXs(v, p) is one if variable v reaches program point p allocated to register

AX, but leaves it in memory. It is zero otherwise. The letter s indicates a

store.

The constraints must guarantee that only one variable will be allocated into

register AX at any time; thus, we add to the linear system the constraint:

∀(v, p),
∑

(AXr(v, p) + AXs(v, p) + AXl(v, p)) ≤ 1

Goodwin and Wilken [43] gave the first formulation of register allocation as a 0-1-

integer programming problem. Their constraint set could handle several facets of

register allocation, such as coalescing, spilling, rematerialization [15] and aliasing.

Goodwin’s register allocator produces code of very good quality; however, as inte-

21

ger linear programming is NP-complete [53], it presents a worst case exponential

running time, and can take hours to find an optimal solution.

Two years after Goodwin’s work, Kong and Wilken described a constraint

set broad enough to encompass all the irregularities of the x86 architecture [57].

Posteriorly, Appel and George [3] introduced a different approach for IP-based

register allocation: the separation of phases between spilling and register assign-

ment. The constraint solver is responsible for defining which variables stay in

registers and which variables are spilled. The non-spilled variables are mapped

to registers in the next phase. This approach is faster than the previous IP-

based algorithms; however, it may produce an undesirably large number of move

instructions transferring values between registers. Appel and George use a vari-

ation of the optimistic coalescing of Park and Moon [69], which is not optimal,

to remove redundant copies.

Finally, Fu and Wilken [36] presented a new IP formulation that keeps the

optimal guarantees of the initial algorithm, e.g [43], but is 150 times faster. It is

important to point that this “fast” algorithm is still much slower than traditional

allocators such as linear scan, and even graph coloring. Therefore, IP-based regis-

ter allocation has not yet seen use in industrial strength compilers. Nevertheless,

it has been successfully used in research in embedded systems [65, 67], and in

bit-width aware register allocation [5].

2.2.4 Register allocation via Partitioned Quadratic Programming

The Partitioned Boolean Quadratic Problem (PBQP) is a kind of Quadratic

Assignment Problem (QAP) [22]. PBQP is NP-complete; however, a subclass of

these problems can be solved in polynomial time. Quoting Hames and Scholtz [49],

the input for PBQP is a set of discrete variables X = {x1, . . . , xn} and their fi-

22

nite domains {D1, . . . , Dn}, where mi = |Di|. A solution of PBQP is a function

h : X → D, where D = D1 ∪ D2 ∪ . . . ∪ Dn. For each variable xi, h finds an

element di ∈ Di. The challenge of PBQP is to find a function h of minimal cost,

where the cost c is controlled by two sets of terms:

• the cost of assigning variable xi to di. This cost is measured by a local cost

function l(xi, di);

• the cost given by the interactions between two variables. This is the cost

of assigning variable xi to di and assigning variable xj to dj. This cost is

measured by a related cost function r(xi, xj, di, dj).

Thus, the total cost of an assignment is:

c =
∑

1≤i≤n

l(xi, h(xi)) +
∑

1≤i<j≤n

r(xi, xj, h(xi), h(xj))

Although PBQP is NP-complete in general, there is a class of assignments

that can be solved in polynomial time. The algorithm introduced in [82] is able

to identify these problems, and solve them in O(nm3), where n is the number of

variables and m is the maximum size of any domain.

PBQP has seen use in two different compiler related problems: instruction

selection [30, 32, 31] and register allocation [49, 50, 82]. For register allocation,

the solver introduced by Scholz et al. [82] associates a cost matrix C to each

edge of the interference graph of the source program. Each cost matrix Cuv

describes the tradeoffs of assigning different registers to variables u and v. As

an example, lets build the cost matrix for variables a and B in the program of

Figure 2.2, assuming a bank of registers with two registers only, AX and BX.

We assume that each of these two registers have two disjoint aliases, in the same

23

20 10 10
10 ∞ 10
10 ∞ 10
10 0 ∞
10 0 ∞

sp AX BX

sp
AH
AL
BH
BL

Cost of assigning B to one of these registers

Cost of assignign A to one of these registers

Figure 2.11: Some example cost matrices for the program in Figure 2.2.

configuration found in x86, that is, AX alias AH and AL, and BX alias BH and

BL. Figure 2.11 shows the cost matrix.

The complexity of PBQP for register allocation is O(|V |K3), where |V | is the

number of variables in the source program, and K is the number of registers in

the target architecture. Experiments performed by Hames et al. [49] showed that

their implementation of a PBQP solver could find the optimal register allocation

in 97.4% of the functions in SPEC CPU 2000. For the cases that no solution

could be proved to be optimal, a branch-and-bound heuristics was used to find a

satisfactory register mapping.

2.2.5 Register allocation via Multi-Flow of Commodities

An interesting way to see register allocation is as a Multi-Flow of Commodities

(MFC) problem. This idea was introduced by Koes and Goldstein [55] in order

to perform local register allocation. Local allocation is the version of register

allocation that is restricted to basic blocks only, in contrast to global register

allocation, that is concerned about the whole program. The same authors later

extended their previous work to incorporate global allocation into the initial

model [56]. Multi-flow of commodities has a close relation with register allocation.

24

For instance, it was the starting point of Lee et al.’s proof that aliasing register

allocation is NP-complete [59]. MCF is a NP-complete problem, as shown by

Even et al. [33], but it is possible to find solutions that, although non-optimal, are

satisfactory enough, via heuristics. Koes and Goldstein have refined the heuristic

approach with a progressive algorithm: their allocator uses a simple heuristics

to find an initial allocation, and, if it is given extra time, it can improve this

solution until reaching the optimal.

In the MCF approach, a program is seem as a collection of K pipes, thru

which the allocator must pass a number of indivisible commodities. Each pipe

corresponds to a physical location, either register or memory, and each commodity

corresponds to a variable. Thus, a flow of a commodity represents the detailed

allocation of the variable that the commodity encodes. The multi-commodite

network flow naturally models several aspected of register allocation, including

live-range splitting, rematerialization [15] and pre-colored registers, although it

is unclear how this technique would model register banks with aliasing. Koes

and Goldstein have optimized their progressive allocator to reduce the size of the

target programs, and they have shown that this method is consistently able to

produce code of smaller size than a graph coloring based allocator [56].

2.3 SSA based register allocation

An important breakthrough in register allocation happened in 2005, when three

different research groups [10, 19, 48] proved independently that the interference

graphs of programs in Static Single Assignment (SSA) form are chordal. This

result is important because chordal graphs can be colored in polynomial time [37].

In this section we describe the main developments in the area of SSA-based

register allocation.

25

SSA form. The Static Single Assignment (SSA) form is an intermediate repre-

sentation in which each variable is defined at most once in the program code [27,

79]. Many industrial compilers use the SSA form as an intermediate repre-

sentation: Gcc 4.0 [44], Sun’s HotSpot JVM [85], IBM’s Java Jikes RVM [86]

and LLVM [58]. However, these compilers perform register allocation in Post-

SSA programs, that is, programs in which φ-functions have been replaced with

copy instructions, as shown in Figure 2.12(a). In SSA-based register alloca-

tors [10, 18, 46, 76] we observe an inversion of phases: φ-functions are replaced

after registers have been assigned to variables, as illustrated in Figure 2.12(b). We

will use colored-SSA-form to denote the variation of SSA-form in which each vari-

able is associated with a physical location, which can be a register or a memory

address. Figure 2.13 shows an SSA-form program and a corresponding colored-

SSA-form program.

(a) Source
Program

SSA-form
Program

post-SSA
Program

Executable
Program

SSA
Convertion

SSA
elimination

Register
Allocation

(b) Source
Program

SSA-form
Program

colored
SSA-form
program

Executable
Program

SSA
Convertion

SSA
elimination

Register
Allocation

Figure 2.12: (a) Traditional register allocation, (b) SSA-based register allocation.

φ-functions SSA form uses φ-functions to join the live ranges of different names

that represent the same value. We will describe the syntax and semantics of φ-

functions using the matrix notation introduced by Hack et al. [46]. Figure 2.13 (a)

outlines a φ-matrix. An equation such as V = φM , where V is a n-dimensional

vector, and M is a n ×m matrix, contains n φ-functions and m parallel copies,

as outlined in Figure 2.14. Columns in the matrix correspond to control flow

paths. The φ symbol works as a multiplexer. It will assign to each element

vi of V an element vij of M , where j is determined by the actual path taken

26

(a) (b)

v1

v2

v11 v12

v21 v22

=ϕ

v11 = •

v21 = •

v12 = •

v22 = •

• = v1

• = v2

v11 → l1
v21 → l2
v12 → l2
v22 → l1
v1 → l1
v2 → l2

(v1, l1)

(v2, l2)
=ϕ

(v11, l1) = •

(v21, l2) = •

(v12, l2) = •

(v22, l1) = •

• = (v1, l1)

• = (v2, l2)

(v11, l1) (v12, l2)

(v21, l2) (v22, l1)

(c)

Figure 2.13: (a) SSA-form program. (b) Register assignment. (c) colored-SSA–

form program.

during the program’s execution. The semantics of φ-functions have been nicely

described in [2]. The parameters of a φ-function are evaluated simultaneously,

at the beginning of the basic block where the φ-function is defined. Thus, a

φ-equation V = φM , where M has n columns encodes n parallel copies. If the

path leading to column j is taken during program execution, all the elements in

that column are copied to V in parallel.

Chordal Graphs A graph is chordal if every cycle with four or more edges

has a chord, that is, an edge which is not part of the cycle but which connects

two vertices on the cycle. (Chordal graphs are also known as ‘triangulated’,

‘rigid-circuit’, ‘monotone transitive’, and ‘perfect elimination’ graphs.) The graph

in Figure 2.15(a) is chordal because the edge ac is a chord in the cycle abcda.

The graph in Figure 2.15(b) is non-chordal because the cycle abcda is chordless.

Finally, the graph in Figure 2.15(c) is non-chordal because the cycle abcda is

chordless, just like in Figure 2.15(b).

27

v1

v2

vn

…

v11 v12 … v1m

v21 v22 … v2m

vn1 vn2 … vnm

… … … …

Φ-function v1 =Φ (v11, v12, …, v1m)

parallel copy (v1, v2, …, vm) :=(v11, v12, …, v1m)

=Φ

Figure 2.14: The φ-matrix.

a b

cd

a b

cd

a b

cd

e

(a) (b) (c)

Figure 2.15: (a) A chordal graph. (b-c) Two non-chordal graphs.

Chordal graphs have several useful properties. Problems such as minimum

coloring, maximum clique, maximum independent set and minimum covering by

cliques, which are NP-complete in general, can be solved in polynomial time for

chordal graphs [37]. In particular, optimal coloring of a chordal graph G = (V, E)

can be done in O(|E|+ |V |) time.

The Dominator Tree A basic block Li dominates another basic block Lj if

very path from the start of the program to Lj goes through Li [4, p.379]. A

basic block Ld is the immediate dominator of another block L if Ld dominates

L, and for all other basic blocks Li in the program, if Li dominates L, then Li

28

also dominates Ld. Every basic block in a program, except its entry point, has

an immediate dominator, and this immediate dominator is unique. Thus, this

relation of immediate dominance allows us to build a tree T = (V, E) whose

vertices are the basic blocks of a program, and an edge (Ls, Lt) is in E if basic

block Ls is the immediate dominator of basic block Lt. This tree is called the

Dominator Tree of the program.

The key insight to understand why SSA-form programs have chordal interfer-

ence graphs lays on a well known characterization of chordal graphs: these are

the intersection graphs of subtrees on a tree, as shown by Gavril in 1974 [38]. The

live ranges of a SSA-form program are subtrees of the dominator tree of the pro-

gram. By applying Gavril’s result to the dominator trees of programs, Bouchez

et al. [10], Brisk et al. [19] and Hack et al. [48] proved that the interference graph

of a SSA-form program is chordal. The opposite direction is also true: a chordal

graph is the interference graph of some SSA-form program [76].

2.3.1 The Advantages of SSA-Based Register Allocation

We illustrate the simplicity and elegance of SSA-based register allocation with

an example. The program in Figure 2.16 was taken from [73]. Figure 2.16 (b) is

the same program in post-SSA form, that is, after φ-functions have been replaced

using the algorithm described by Appel and Palsberg [4]. Figure 2.16 (c) shows

the sequence of assignments that would be performed by a linear scan algorithm

that handles holes in live ranges of variables [90]. This algorithm would traverse

blocks 1, 2, 4(where it executes no action), and finally block 3. When allocating

registers in block 3, the allocator has to deal with temporaries C and E that have

already been assigned machine registers. The graph in Figure 2.16 (c) cannot be

colored with two colors. Its chromatic number is 3.

29

A :=
D :=

E1 :=
C1 := D

B :=
C2 := A
E2 := B

D

C1,E1

A

E E1,E2
C C1,C2
 := E,C

:= ϕ

C2,E2

1

2
3

4

A :=
D :=

E1 :=
C1 := D
E := E1
C := C1

B :=
C2 := A
E2 := B
E := E2
C := C2

D

C,E

A

 := E,C

C,E

1

2
3

4

A

D

E1

C1 E

C
C2

BE2

A(R0)
D(R1)

E1(R0)
C1(R1)
E(R0)
C(R1)

B(R1)
*C2(R2)
E2(R1)
E(R0)
C(R1)

block 1

bl
oc

k
2

block 3

(a) (b) (c)

Figure 2.16: (a) SSA-form program taken from Pereira and Palsberg [73]. (b)

Program after the SSA elimination phase. (c) Interference graph and sequence

of register assignments.

Figure 2.17 (a) outlines the dominator tree of our example program. Fig-

ure 2.17 (b) shows the allocation produced by the same algorithm used in Fig-

ure 2.16. The basic blocks are visited in a pre-order traversal of the dominator

tree. This way to assign registers to variables is called tree-scan, to distinguish it

from the linear-scan strategy. The interference graph of the SSA-form program

can be compiled with two registers: one register less than the minimum necessary

in the post-SSA-form program. Figure 2.17 (c) shows the final program, after

one swap sequence has been inserted in order to copy the values of C1 and E1 into

C and E. The ability to swap registers is necessary in order to keep the register

pressure low, as described by Bouchez et al. [11]. In this example, swaps are

implemented using three xor operations.

Any of the register allocation models described in Section 2.2 can be adapted

to run on SSA-form programs. The SSA-based register allocators described by

30

A :=
D :=

E1 :=
C1 := D

B :=
C2 := A
E2 := B

D A

E E1,E2
C C1,C2
 := E,C

:= ϕ

1

2
3

4

A

D

E1

C1
E

C
C2

BE2

A(R0)
D(R1)

E1(R0)
C1(R1)

B(R1)
C2(R0)
E2(R1)

block 1

block 2

block 3

E(R1)
C(R0)

block 4

A :=
D :=

E1 :=
C1 := D
E := E1⊕C1
C := E1⊕C1
E := E1⊕C1

B :=
C2 := A
E2 := B

D

C,E

A

 := E,C

C,E

1

2

3

4

(a) (b) (c)

Figure 2.17: (a) Dominator tree of the example program. (b) Interference graph

of the SSA-form program, and assignment sequence. (c) Final program after

SSA-based register allocation.

Pereira and Palsberg [73], and Hack et al. [47] follow the graph coloring model.

The SSA-based allocator described by Grund et al. [45] uses integer linear pro-

gramming, and the puzzle solving algorithm introduced by Pereira and Pals-

berg [76] is based on the tree-scan model. Register allocators can benefit from

the chordality of SSA-form programs in three main ways: (i) lower register pres-

sure; (ii) separation between spilling and register assignment. (iii) simpler register

assignment algorithms.

First, the SSA-form program never requires more registers than the original

program, and often it will require less, as we showed in the previous example.

The register pressure at any program point is the minimal number of registers

necessary to allocate all the variables alive at that program point. The total

number of registers necessary to allocate all the variables in a SSA-form program

P equals the maximum register pressure at any point of P [48]. This value is

31

equivalent to the size of the largest clique in the interference graph of P , and it can

be determined in time proportional to the number of edges of this graph [37]. This

relation is valid for register banks with no aliasing. The problem of determining

the maximal register pressure for an architecture with aliased registers is NP-

complete for SSA-form programs [59].

Another advantage of SSA-based register allocators is the potential separa-

tion of phases between spilling, register assignment and coalescing. The register

pressure at any point of a SSA-form program is known locally. This fact allows

the register allocator to remove live ranges from the program until the register

pressure equals the number of available registers. Thus, the allocator is able to

take spill decisions without having to actually assign registers to variables. In

a subsequent phase, registers are assigned to variables, and the SSA properties

guarantee that no further spilling will happen. Once registers are assigned to

variables, a third phase takes charge of improving the initial register assignment,

so that variables related by copies are given the same register. Figure 2.18 illus-

trates a typical SSA-based register allocator. This algorithm has five phases:

Build builds the interference graph using liveness analysis information.

Spill remove live ranges if the register pressure is greater than the number of

available registers.

MCS finds an ordering of the nodes of the graph that can be optimally colored

by a greedy algorithm using the Maximum Cardinality Search algorithm [7].

Color assign registers to variables using a trivial greedy coloring algorithm.

Coalesce exchange registers between variables in order to maximize the number

of variables related by copy instructions that are given the same register.

32

Build MCS

Spill

Color Coalesce

Figure 2.18: A graph coloring SSA-based register allocator.

Figure 2.18 sheds light on a third advantage of SSA-based register alloca-

tion: simplicity. The iterations between the spilling and the register assignment

phases complicate the design of register allocators in general. This problem is

particularly evident in graph coloring based allocators, as a comparison between

Figure 2.18 and Figures 2.6, 2.8, 2.9 would reveal. Because spill decisions are

taken independently of assignment decisions in a SSA-based allocator, the imple-

mentation of these algorithms tend to be simpler.

2.4 NP-Completeness Results

Spill Free Register Allocation has polynomial time solution for SSA-form pro-

grams [10, 19, 48], but it is NP-complete for programs in general [24]. One

point that must be emphasized is that these two problems are obviously non-

equivalent. Any program can be converted into SSA-form via a polynomial time

transformation [27]. However, a register assignment for a SSA-form program can-

not be converted back to an optimal register assignment of the original program

in polynomial time unless P=NP.

An illustrative analogy is between the coloring of interval graphs and the

coloring of circular-arc graphs. An interval graph is built on the following way:

given a number of intervals on a line, assign a vertex to each interval. If two

lines overlap, then connect their corresponding vertices. Circular-arc graphs are

33

defined in a similar way, but using a circle instead of a line, and arcs on the

circle instead of intervals. Finding the chromatic number of a circular-arc graph

is a NP-complete problem [60], whereas the same problem for interval graphs has

polynomial time solution [42]. To close our analogy, lets imagine that we can

“cut” the base circle and all the arcs of a given circular-arc graph Gc on a given

point. This cut effectively changes Gc into an interval graph Gi. We can find the

chromatic number of Gi in polynomial time, and this value will never be larger

than the chromatic number of Gc; however, finding the chromatic number of Gc is

a NP-complete problem. Transforming a circular-arc graph to an interval graph

in this way is analogous to converting a program into SSA-form.

Unfortunately, many register allocation related problems are still NP-complete

even for SSA-form programs. Because SSA-form programs are a subset of gen-

eral programs, these problems are, naturally, also NP-complete in general. We

describe a number of these problems in this section.

Spilling The first of our NP-complete problems is spill minimization. When

spills happen, loads and stores are inserted into the source program to trans-

fer values to and from memory. If we assume that each load and store has a

cost, then the problem of minimizing the total cost added by spill instructions is

NP-complete, even for basic blocks in SSA-form, as shown by Farach and Liber-

atore [35]. If the cost of loads and stores is not taken into consideration, then a

simplified version of the spilling problem is to determine the minimum number

of variables that must be removed from the source program so that the program

can be allocated with K registers. This problem is equivalent to determining if a

graph G has a K-colorable induced subgraph, which is NP-complete for chordal

graphs, but has polynomial time solution for interval graphs, as demonstrated by

Yannakakis and Gavril [91].

34

Coalescing Coalescing is another part of register allocation that remains NP-

complete even for SSA-form programs [29]. Ferriere et al. have proved that

aggressive coalescing is NP-complete for SSA-form programs when the size of the

φ-functions is unbounded [29]. Bouchez et al. [12] took Ferriere’s study to the

extreme, proving that all the best known variations of the coalescing problem,

which are described in Section 2.2.1.1, are NP-complete. The proofs used in [12]

have the extra appeal of relying on bounded structures such as φ-functions of size

at most three.

Live range splitting SSA-based register allocators rely on the ability to swap

the live ranges of variables without using extra registers to store temporary values.

For instance, the live ranges of variables E1 and C1 are swapped in the basic block

four of Figure 2.17 (c). Pereira and Palsberg [74] have proved that if swaps are

not used by the register allocator, then the problem of deciding if a SSA-form

program can be compiled with K registers is NP-complete, although the problem

of deciding if a program can be compiled with K − 1 registers has polynomial

time solution, as long as the K-th register is used as a temporary storage location.

The proof in [74] considers that live ranges of variables can be split only at the

end of basic blocks. Bouchez et al. [11] later refined this proof to show that the

problem remains NP-complete even if live ranges are allowed to be split at any

program point.

Aliasing Another factor that complicates register allocation is aliasing, de-

scribed in Section 2.1.1. The problem of finding an optimal register assignment

for a target architecture that allows registers to alias is NP-complete even for

basic blocks in SSA-form as proved by Lee et al.

35

Pre-coloring Register allocation with pre-coloring is equivalent to the pre-

coloring extension problem for graphs. In this problem we are given a graph

G, an integer K and a partial function ϕ that associates some vertices of G to

colors. The challenge is to extend ϕ to a total function ϕ′ such that (1) ϕ′ is

a valid coloring of G and (2) ϕ′ uses less than K colors. Biró et al. [8] have

shown that pre-coloring extension is NP-complete for interval graphs, and thus,

register assignment for basic blocks in SSA-form with pre-colored registers is also

NP-complete. Interestingly, pre-coloring extension is NP-complete even for unit

interval graphs [62], that is, interval graphs in which each interval has the same

size.

Aliasing and pre-coloring cause SSA-based register allocation to be NP-complete;

however, these problems have polynomial time solution if we use a program rep-

resentation more restrictive than SSA. This format is called Elementary Form,

and it is the subject of our next section.

36

CHAPTER 3

Puzzle Solving

In this chapter we show that register allocation can be viewed as solving a col-

lection of puzzles. We model the register file as a puzzle board and the program

variables as puzzle pieces; pre-coloring and register aliasing fit in naturally. For

architectures such as PowerPC, x86, and StrongARM, we can solve the puzzles

in polynomial time, and we have augmented the puzzle solver with a simple

heuristic for spilling. For SPEC CPU 2000, the compilation time of our imple-

mentation is as fast as that of the extended version of linear scan used by LLVM,

which is the JIT compiler in the openGL stack of Mac OS 10.5. Our implemen-

tation produces x86 code that is of similar quality to the code produced by the

slower, state-of-the-art iterated register coalescing of George and Appel with the

extensions proposed by Smith, Ramsey, and Holloway in 2004.

3.1 Introduction

This Chapter introduces a new abstraction for register allocation: the puzzle

solving paradigm. We model the register file as a puzzle board and the program

variables as puzzle pieces. The result is a collection of puzzles with one puzzle

per instruction in the intermediate representation of the source program. We will

show that puzzles are easy to use, that we can solve them efficiently, and that

they produce code that is competitive with the code produced by state-of-the-art

37

algorithms. Specifically, we will show how for architectures such as PowerPC,

x86, and StrongARM we can solve each puzzle in linear time in the number of

registers, how we can extend the puzzle solver with a simple heuristic for spilling,

and how pre-coloring and register aliasing fit in naturally.

We have implemented a puzzle-based register allocator. Our register allocator

has four steps:

1. transform the program into an elementary program by augmenting it with

φ-functions [27], π-functions [9], and parallel copies (using the technique

described in Section 3.2.2);

2. transform the elementary program into a collection of puzzles (using the

technique described in Section 3.2.2);

3. do puzzle solving, spilling, and coalescing (using the techniques described

in Sections 3.3 and 3.4); and finally

4. transform the elementary program and the register allocation result into as-

sembly code (by implementing φ-functions, π-functions, and parallel copies

using the algorithm described in Chapter 5.

For SPEC CPU2000, our implementation is as fast as the extended version

of linear scan used by LLVM [58], which is the JIT compiler in the openGL

stack of Mac OS 10.5. We compare the x86 code produced by gcc, our puzzle

solver, the version of linear scan used by LLVM [34], the iterated register coalesc-

ing algorithm of George and Appel [40] with the extensions proposed by Smith,

Ramsey, and Holloway [83], and the partitioned Boolean quadratic optimization

algorithm [49]. The puzzle solver produces code that is, on average, faster than

the code produced by extended linear scan, and of similar quality to the code

produced by iterated register coalescing.

38

•••

0 K-1
Board Kinds of Pieces

•••

••• Y Y Y
X

Z

X

Z

X

Z
T

yp
e-

0
T

yp
e-

1
T

yp
e-

2

Y
X

Z
Y

X

Z

Y
X

Z

Figure 3.1: Three types of puzzles.

The key insight of the puzzles approach lies in the use of elementary programs,

which are described in Section 3.2.2. In an elementary program, all live ranges

are small and that enables us to define and solve one puzzle for each instruction

in the program.

In the next section we define our puzzles and in Section 3.3 we show how to

solve them. In Section 3.4 we present our approach to spilling and coalescing.

We show experimental results in Section 3.6, and we discuss related work in

Section 3.7.

3.2 Puzzles

A puzzle consists of a board and a set of pieces. Pieces cannot overlap on the

board, and a subset of the pieces are already placed on the board. The challenge

is to fit the remaining pieces on the board.

We will now explain how to map a register file to a puzzle board and how to

map program variables to puzzle pieces. Every resulting puzzle will be of one of

the three types illustrated in Figure 3.1 or a hybrid.

39

3.2.1 From Register File to Puzzle Board

The bank of registers in the target architecture determines the shape of the puzzle

board. Every puzzle board has a number of separate areas , where each area is

divided into two rows of squares. We will explain in Section 3.2.2 why an area has

exactly two rows. The register file may support aliasing, which determines the

number of columns in each area, the valid shapes of the pieces, and the rules for

placing the pieces on the board. We distinguish three types of puzzles: type-0,

type-1 and type-2, where each area of a type-n puzzle has 2n columns.

Type-0 puzzles. The bank of registers used in PowerPC and the bank of

integer registers used in ARM are simple cases because they do not support

register aliasing. Figure 3.2 (a) shows the puzzle board for PowerPC. Every area

has just one column that corresponds to one of the 32 registers. Both PowerPC

and ARM give a type-0 puzzle for which the pieces are of the three kinds shown

in Figure 3.1. We can place a X-piece on any square in the upper row, we can

place a Z-piece on any square in the lower row, and we can place a Y-piece on any

column. It is straightforward to see that we can solve a type-0 puzzle in linear

time in the number of areas by first placing all the Y-pieces on the board and

then placing all the X-pieces and Z-pieces on the board.

Type-1 puzzles. Figure 3.2 (b) shows the puzzle board for the floating

point registers used in the ARM architecture. This register bank has 32 single

precision registers that can be combined into 16 pairs of double precision registers.

Thus, every area of this puzzle board has two columns, which correspond to the

two registers that can be paired. For example, the 32-bit registers S0 and S1

are in the same area because they can be combined into the 64-bit register D0.

Similarly, because S1 and S2 cannot be combined into a double register, they

denote columns in different areas. ARM gives a type-1 puzzle for which the

40

ARM: 16 double precision floating point registers

PowerPC: 32 general purpose integer registers

x86: 8 integer registers, AX≡EAX, SI≡ESI, etc

SPARC V8: 8 quad-precision floating point registers

(a)

(b)

(c)

•••

D0 D1 D2 D3 D15

AX BX CX DX

•••

(d)

R0 R1 R2 R3 R31

S0 S1 S2 S3 S4 S5 S6 S7 S30 S31

AH AL BH BL CH CL DH DL BP SI DI SP

D0
Q0

D1
F0 F1 F2 F3

D2
Q1

D3
F4 F5 F6 F7

D14
Q7

D15
F28 F29 F30 F31

•••

Figure 3.2: Examples of register banks mapped into puzzle boards.

pieces are of the six kinds shown in Figure 3.1. We define the size of a piece

as the number of squares that it occupies on the board. We can place a size-1

X-piece on any square in the upper row, a size-2 X-piece on the two upper squares

of any area, a size-1 Z-piece on any square in the lower row, a size-2 Z-piece on

the two lower squares of any area, a size-2 Y-piece on any column, and a size-4

Y-piece on any area. Section 3.3 explains how to solve a type-1 puzzle in linear

time in the number of areas.

Type-2 puzzles. SPARC V8 [51, pp 33] supports two levels of register

aliasing: first, two 32-bit floating-point registers can be combined to hold a single

64-bit value; then, two of these 64-bit registers can be combined yet again to

hold a 128-bit value. Figure 3.2 (c) shows the puzzle board for the floating

41

point registers of SPARC V8. Every area has four columns corresponding to four

registers that can be combined. This architecture gives a type-2 puzzle for which

the pieces are of the nine kinds shown in Figure 3.1. The rules for placing the

pieces on the board are a straightforward extension of the rules for type-1 puzzles.

Importantly, we can place a size-2 X-piece on either the first two squares in the

upper row of an area, or on the last two squares in the upper row of an area. A

similar rule applies to size-2 Z-pieces.

Hybrid puzzles. The x86 gives a hybrid of type-0 and type-1 puzzles. Fig-

ure 3.2 (d) shows the puzzle board of x86. The registers AX, BX, CX, DX give a

type-1 puzzle, while the registers EBP, ESI, EDI, ESP give a type-0 puzzle. We

treat the EAX, EBX, ECX, EDX registers as special cases of the AX, BX, CX, DX regis-

ters; values in EAX, EBX, ECX, EDX take up to 32 bits rather than 16 bits. Notice

that x86 does not give a type-2 puzzle because even though we can fit four 8-bit

values into a 32-bit register, x86 does not provide register names for the upper

16-bit portion of that register. For a hybrid of type-1 and type-0 puzzles, we first

solve the type-0 puzzles and then the type-1 puzzles.

The floating point registers of SPARC V9 [88, pp 36-40] are a hybrid of a

type-2 and a type-1 puzzle because half the registers can be combined into quad

precision registers.

3.2.2 From Program Variables to Puzzle Pieces

We map program variables to puzzle pieces in a two-phase process: first we

convert a source program into an elementary program and then we map the

elementary program into puzzle pieces.

From a source program to an elementary program. We can convert an

ordinary program into an elementary program in three steps. First, we transform

42

the source program into static single assignment (SSA) form [27] by renaming

variables and adding φ-functions at the beginning of each basic block. Second,

we transform the SSA-form program into static single information (SSI) form [1].

Programs in SSI-form have the property that if a variable is alive in two basic

blocks, then one of these blocks dominates the other. In our flavor of SSI form,

every basic block ends with a π-function that renames the variables that are

live going out of the basic block. The π-functions are the dual of φ-functions.

Whereas a φ-function has the functionality of a variable multiplexer, a π-function

is analogous to a demultiplexer that performs a parallel assignment depending

on the execution path taken. For example, consider the assignment

[(v11, . . . , vn1) : L1, . . . (v1m, . . . , vnm) : Lm] = π(v1, . . . , vn)

which represents m π-nodes such as (vi1 : L1, . . . , vim : Lm) ← π(vi). This in-

struction has the effect of assigning to each variable vij : Lj the value in vi if

control flows into block Lj. (The name π-assignment was coined by Bodik et

al. [9]. It was originally called σ-function in [1], and switch operators in [52].)

Finally, we transform the SSI-form program into an elementary program by in-

serting a parallel copy between each pair of consecutive instructions in a basic

block, and renaming the variables alive at that point. Appel and George used

the idea of inserting parallel copies everywhere in their ILP-based approach to

register allocation with optimal spilling [3].

In summary, in an elementary program, every basic block begins with a φ-

function, has a parallel copy between each consecutive pair of instructions, and

ends with a π-function. Figure 3.3 (a) shows a program, and Figure 3.3 (b) gives

the corresponding elementary program. As an optimization, we have removed

useless φ-functions from the beginning of blocks with a single predecessor.

Cytron et al. [27] gave a polynomial time algorithm to convert a program

43

 A = •
p1:
 branch L2, L3

 c = •
p3:
 jump L4

 AL = •
p6:
 c = AL
p7:
 jump L4

 join L2, L3
p9:
 • = c, A
p10:
 jump Lend

p2:

p8:
p4:

p5:

L1

L2

L3

L4

p0:

p11:

(a)

 A01 = •
p1: (A1) = (A01)

p2,5: [(A2):L2, (A5):L3] = π (A1)

 c23 = •
p3: (A3,c3) = (A2,c23)

p4: [(A4,c4):L4] = π(A3,c3)

 AL56 = •
p6: (A6, AL6) = (A5, AL56)

 c67 = AL6
p7: (A7,c7) = (A6,c67)

p8: [(A8,c8):L4] = π(A7,c7)

p9: (A9, c9) = Φ[(A4, c4):L2, (A8, c8):L3]

 • = c9, A9
p10: () = ()
p11: [():Lend] = π()

L4

L1

L2 L3

p0: [():L1] = π()

(b)

Figure 3.3: (a) Original program. (b) Elementary program.

into SSA form, and Ananian [1] gave a polynomial time algorithm to convert a

program into SSI form. We can perform the step of inserting parallel copies in

polynomial time as well.

From an elementary program to puzzle pieces. A variable v is said to

be live-in at instruction i if its live range contains a program point that precedes

i; v is live-out at i if v’s live range contains a program point that succeeds i. For

each instruction i in an elementary program we create a puzzle that has one piece

for each variable that is live in or live out at i (or both). The live ranges that

end at i become X-pieces; the live ranges that begin at i become Z-pieces; and

the live ranges that cross i become Y-pieces. Figure 3.4 gives an example of a

program fragment that uses six variables, and it shows their live ranges and the

resulting puzzle pieces.

We can now explain why each area of a puzzle board has exactly two rows.

We can assign a register both to one live range that ends in the middle and to

one live range that begins in the middle. We model that by placing a X-piece in

44

X Z Y

px: (C, d, E, f)=(C', d', E', f')

px+1: (A”, b”, E”, f”)=(A, b, E, f)
A, b = C, d, E

C

Pi
ec

es

A
E

b

d
f

A b C d E f
px

px+1Li
ve

 R
an

ge
s

V
ar

ia
bl

es

Figure 3.4: Mapping program variables into puzzle pieces.

the upper row and a Z-piece right below in the lower row. However, if we assign

a register to a long live range, then we cannot assign that register to any other

live range. We model that by placing a Y-piece, which spans both rows.

The sizes of the pieces are given by the types of the variables. For example,

for x86, an 8-bit variable with a live range that ends in the middle becomes a

size-1 X-piece, while a 16 or 32-bit variable with a live range that ends in the

middle becomes a size-2 X-piece. Similarly, an 8-bit variable with a live range

that begins in the middle becomes a size-1 Z-piece, while a 16 or 32-bit variable

with a live range that ends in the middle becomes a size-2 Z-piece. An 8-bit

variable with a long live range becomes a size-2 Y-piece, while a 16-bit variable

with a long live range becomes a size-4 Y-piece. Figure 3.8 (a) shows the puzzles

produced for the program in Figure 3.3 (b).

3.2.3 Register Allocation and Puzzle Solving are Equivalent

Theorem 1 (Equivalence) Spill-free register allocation for an elementary pro-

gram is equivalent to solving a collection of puzzles.

45

Proof. See Appendix A.1. �

3.3 Solving Type-1 Puzzles

Figure 3.7 shows our algorithm for solving type-1 puzzles. Our algorithmic nota-

tion is visual rather than textual. The goal of this section is to explain how the

algorithm works and to point out several subtleties. We will do that in two steps.

First we will define a visual language of puzzle solving programs that includes

the program in Figure 3.7. After explaining the semantics of the whole language,

we then focus on the program in Figure 3.7 and explain how seemingly innocent

changes to the program would make it incorrect.

We will study puzzle-solving programs that work by completing one area at a

time. To enable that approach, we may have to pad a puzzle before the solution

process begins. If a puzzle has a set of pieces with a total area that is less than

the total area of the puzzle board, then a strategy that completes one area at a

time may get stuck unnecessarily because of a lack of pieces. So, we pad such

puzzles by adding size-1 X-pieces and size-1 Z-pieces, until these two properties

are met: (i) the total area of the X-pieces equals the total area of the Z-pieces;

(ii) the total area of all the pieces is 4K, where K is the number of areas on

the board. Note that total area includes also pre-colored squares. Figure 3.5

illustrates padding. In the full version [75] we show that a puzzle is solvable if

and only if its padded version is solvable.

3.3.1 A Visual Language of Puzzle Solving Programs

We say that an area is complete when all four of its squares are covered by pieces;

dually, an area is empty when none of its four squares are covered by pieces.

46

(a) (b) (c)

Figure 3.5: Padding: (a) puzzle board, (b) pieces before padding, (c) pieces after

padding. The new pieces are marked with stripes.

Y

X X

Z Z

X

Z Z

X X X

Z Z

X

Z

X

Z

X

Z

X X X

Z

X

ZZ

X

Z Z

Z

X

X
ZZ

X

X

Z

X

X

Z

X

Z

Y Y

Y Y

Y

Z

Y

Y Y

Y
X

Z

X

Z

X

ZZ Z

X X X X
Z Z

 (Program) p ::= s1 . . . sn

(Statement) s ::= r | r : s

 (Rule) r ::=

Figure 3.6: A visual language for programming puzzle solvers.

The grammar in Figure 3.6 defines a visual language for programming type-1

puzzle solvers: a program is a sequence of statements, and a statement is either

a rule r or a conditional statement r : s. We now informally explain the meaning

of rules, statements, and programs.

Rules. A rule explains how to complete an area. We write a rule as a two-by-

two diagram with two facets: a pattern, that is, dark areas which show the squares

(if any) that have to be filled in already for the rule to apply; and a strategy, that

47

is, a description of how to complete the area, including which pieces to use and

where to put them. We say that the pattern of a rule matches an area a if the

pattern is the same as the already-filled-in squares of a. For a rule r and an area

a where the pattern of r matches a,

• the application of r to a succeeds, if the pieces needed by the strategy of r

are available; the result is that the pieces needed by the strategy of r are

placed in a;

• the application of r to a fails otherwise.

For example, the rule

X

Z

has a pattern consisting of just one square—namely, the square in the top-right

corner, and a strategy consisting of taking one size-1 X-piece and one size-2 Z-

piece and placing the X-piece in the top-left corner and placing the Z-piece in the

bottom row. If we apply the rule to the area

and one size-1 X-piece and one size-2 Z-piece are available, then the result is that

the two pieces are placed in the area, and the rule succeeds. Otherwise, if one or

both of the two needed pieces are not available, then the rule fails. We cannot

apply the rule to the area

because the pattern of the rule does not match this area.

Statements. For a statement that is simply a rule r, we have explained

48

above how to apply r to an area a where the pattern of r matches a. For a

conditional statement r : s, we require all the rules in r : s to have the same

pattern, which we call the pattern of r : s. For a conditional statement r : s

and an area a where the pattern of r : s matches a, the application of r : s to a

proceeds by first applying r to a; if that application succeeds, then r : s succeeds

(and s is ignored); otherwise the result of r : s is the application of the statement

s to a.

Programs. The execution of a program s1 . . . sn on a puzzle Pz proceeds as

follows:

• For each i from 1 to n:

– For each area a of Pz such that the pattern of si matches a:

∗ apply si to a

∗ if the application of si to a failed, then terminate the entire exe-

cution and report failure

Example. Let us consider in detail the execution of the program

Z

X X ()Z

X
Y

Z :

on the puzzle

X X

Z
Y

Z

.

The first statement has a pattern which matches only the first area of the

puzzle. So, we apply the first statement to the first area, which succeeds and

results in the following puzzle.

Y
ZZ

X X

.

49

Y

(10

()15

1 2 3 4 5 6

(7) (8)
(9))
(11)
(13)

X X

Z Z

X

Z Z

X

(12)
(14)

X X

Z Z

X

Z

X

Z

X

Z

X X X

Z

X

ZZ

X

Z Z

Z

X X

Z

Z

X X

Z

X

X

Z

X

Z

Y

Y Y

Y Y
Z

:
:
:
:

:
:

:
:

:
:

:
:

Y

Y Y Y
X

Z

X

Z

X

ZZ Z

X X X X
Z Z: : : : : :

Figure 3.7: Our puzzle solving program

The second statement has a pattern which matches only the second area of

the puzzle. So, we apply the second statement to the second area. The second

statement is a conditional statement, so we first apply the first rule of the second

statement. That rule fails because the pieces needed by the strategy of that

rule are not available. We then move on to apply the second rule of the second

statement. That rule succeeds and completes the puzzle.

Time Complexity. It is straightforward to implement the application of a

rule to an area in constant time. A program executes O(1) rules on each area of

a board. So, the execution of a program on a board with K areas takes O(K)

time.

3.3.2 Our Puzzle Solving Program

Figure 3.7 shows our puzzle solving program, which has 15 numbered statements.

Notice that the 15 statements have pairwise different patterns; each statement

completes the areas with a particular pattern. While our program may appear

50

A

A c

A

A c

p
0
p
1

p
2
p
3

p
3
p
4

p
9
p
10

p
5
p
6

p
6
p
7

p
7
p
8

AH AL BH BL

{AX {BX
The board:

A c

A c

A c

A

c

p
0
p
1

p
2
p
3

p
3
p
4

p
9
p
11

p
5
p
6

p
6
p
7

p
7
p
8

A
A

A

A

c

c
A c

Ac

1

2

3

4

5

6

7

 AX = •
p1:
 branch L2, L3

 BL = •
p3:
 xchg BX,AX
 jump L4

 BX = AX
 AL = •
p6:
 AL = AL
p7:
 jump L4

 join L2, L3
p9:
 • = BL,AX
p10:
 jump Lend

p2:

p8:
p4:

p5:

L1

L2

L3

L4

p0:

p11:

(a) (b) (c)

Figure 3.8: (a) The puzzles produced for the program given in Figure 3.3 (b).

(b) An example solution. (c) The final program.

simple and straightforward, the ordering of the statements and the ordering of

the rules in conditional statements are in several cases crucial for correctness. In

general our program tries to fill the most constrained patterns first. For example,

statements 1–8 can only be filled in one way, while the other statements admit

two or more solutions. We will discuss four such subtleties.

First, it is imperative that in statement 7 our program prefers a size-2 X-

piece over two size-1 X-pieces. Suppose we replace statement 7 with a statement

7′ which swaps the order of the two rules in statement 7. The application of

statement 7′ can take us from a solvable puzzle to an unsolvable puzzle, for

example:

X X

X
solved

stuck

X
Y

X
Y

X
Y Y

Because statement 7 prefers a size-2 X-piece over two size-1 X-pieces, the

example is impossible. Notice that our program also prefers the size-2 pieces

51

over the size-1 pieces in statements 8–15 for reasons similar to our analysis of

statement 7.

Second, it is critical that statements 7–10 come before statements 11–14. Sup-

pose we swap the order of the two subsequences of statements. The application

of rule 11 can now take us from a solvable puzzle to an unsolvable puzzle, for

example:

Y Y

X

Z
Y

X
Y

Z

X X

solved

stuck

Notice that the example uses an area in which two squares are filled in. Be-

cause statements 7–10 come before statements 11–14, the example is impossible.

Third, it is crucial that statements 11–14 come before statement 15. Suppose

we swap the order such that statement 15 comes before statements 11–14. The

application of rule 15 can now take us from a solvable puzzle to an unsolvable

puzzle, for example:

Z
Y

Z
Y

X

Z

Y Y
X

Z Z Z

solved

stuck

Notice that the example uses an area in which one square is filled in. Because

statements 11–14 come before statement 15, the example is impossible.

Fourth, it is essential that in statement 11, the rules come in exactly the

order given in our program. Suppose we replace statement 11 with a statement

11′ which swaps the order of the first two rules of statement 11. The application

of statement 11′ can take us from a solvable puzzle to an unsolvable puzzle. For

example:

52

Z
Y

X

Z Z Z

X

ZZ

X

X
Y

solved

stuck

When we use the statement 11 given in our program, this situation cannot

occur. Notice that our program makes a similar choice in statements 12–14; all

for reasons similar to our analysis of statement 11.

Theorem 2 (Correctness) A type-1 puzzle is solvable if and only if our pro-

gram succeeds on the puzzle.

Proof. See Appendix A.2. �

For an elementary program P , we generate |P | puzzles, each of which we can

solve in linear time in the number of registers. So, we have Corollary 3.

Corollary 3 (Complexity) Spill-free register allocation with pre-coloring for

an elementary program P and 2K registers is solvable in O(|P | ×K) time.

A solution for the collection of puzzles in Figure 3.8 (a) is shown in Figure 3.8

(b). For simplicity, the puzzles in Figure 3.8 are not padded.

3.4 Spilling and Coalescing

We now present our approach to spilling and coalescing. Figure 3.9 shows the

combined step of puzzle solving, spilling, and coalescing.

Spilling. If the polynomial-time algorithm of Theorem 3 succeeds, then all

the variables in the program from which the puzzles were generated can be placed

in registers. However, the algorithm may fail, implying that the need for registers

53

exceeds the number of available registers. In that situation, the register allocator

must spill variables.

We use a simple spilling heuristic. The heuristic is based on the observation

that when we convert a program P into elementary form, each of P ’s variables

is represented by a family of variables in the elementary program. For exam-

ple, the variable c in Figure 3.3 (a) is represented by the family of variables

{c23, c3, c4, c67, c7, c8, c9} in Figure 3.3 (b). When we spill a variable in an elemen-

tary program, we choose to simultaneously spill all the variables in its family,

thereby reducing the number of pieces in many puzzles at the same time. The

problem of register allocation with pre-coloring and spilling of families of variables

is to perform register allocation with pre-coloring while spilling as few families of

variables as possible.

Theorem 4 (Hardness) Register allocation with pre-coloring and spilling of

families of variables for an elementary program is NP-complete.

Proof. See Appendix A.3. �

Theorem 4 justifies our use of a spilling heuristic rather than an algorithm that

solves the problem optimally. Figure 3.9 contains a while-loop that implements

the heuristic. It is straightforward to see that this method visits each puzzle

once, that it always terminates, and that when it terminates, all puzzles have

been solved.

In order to avoid separating registers to reload spilled variables only certain

pieces can be removed from an unsolved puzzle. These pieces represent variables

that are neither used nor defined in the instruction that gave origin to the puzzle.

For instance, only the Y piece f can be removed from the puzzle in Figure 3.4.

When choosing a piece to be removed from a puzzle, we use the “furthest-first”

54

• S = empty

• For each puzzle p, in a preorder traversal of the dominator tree of the

program:

– while p is not solvable:

∗ choose and remove a piece s from p, and for every subsequent

puzzle p′ that contains a variable s′ in the family of s, remove s′

from p′.

– S ′ = a solution of p, guided by S according to the algorithm given in

Chapter 4.

– S = S ′

Figure 3.9: Register allocation with spilling and local coalescing

strategy of Belady [6] that was later used by Poletto and Sarkar [77] in linear-

scan register allocation. The furthest-first strategy spills a family of variables

whose live ranges extend the furthest, according to a linearization determined by

a depth first traversal of the dominator tree of the source program. We do not

give preference to any path. Giving preference to a path would be particularly

worthwhile when profiling information is available.

The total number of puzzles that will be solved during a run of our heuristic

is bounded by |P |+ |F |, where |P | denotes the number of puzzles and |F | denotes

the number of families of variables, that is, the number of variables in the source

program.

Coalescing. Traditionally, the task of register coalescing is to assign the same

register to the variables x and y in a copy statement x = y, thereby avoiding the

55

generation of code for that statement. An elementary program contains many

parallel copy statements and therefore many opportunities for a form of register

coalescing. We use an approach that we call local coalescing. The goal of local

coalescing is to allocate variables in the same family to the same register, as

much as possible. Local coalescing traverses the dominator tree of the elementary

program in preorder and solves each puzzle guided by the solution to the previous

puzzle, as shown in Figure 3.9. In Figure 3.8 (b), the numbers next to each puzzle

denote the order in which the puzzles were solved.

The pre-ordering has the good property that every time a puzzle correspond-

ing to statement i is solved, all the families of variables that are defined at

program points that dominate i have already been given at least one location.

The puzzle solver can then try to assign to the piece that represents variable v

the same register that was assigned to other variables in v’s family. For instance,

in Figure 3.3(b), when solving the puzzle between p2 and p3, the puzzle solver

tries to match the registers assigned to A2 and A3. This optimization is possible

because A2 is defined at a program point that dominates the definition site of A3,

and thus is visited before. For empty puzzle boards, the problem of maximizing

the number of matches across two successive puzzles can be solved optimally, as

we show in Chapter 4. As we show in Section 3.6, approximately 90% of the

puzzles found in common benchmarks have an empty board initially.

Figure 3.8 (c) shows the assembly code produced by the puzzle solver for

our running example. We have highlighted the instructions used to implement

parallel copies. The x86 instruction xchg swaps the contents of two registers.

56

3.5 Implementation Details

In this section we describe some implementation details that we found useful in

our register allocator. In addition to these particularities, our puzzle solver uses

three optimizations that are novel: store hoisting, load lowering and redundant

memory transfer elimination. These optimizations are explained in Section 5.6.1.

Bin-packing allocation. During the traversal of the dominator tree, the

physical location of each live variable is kept in a vector. If a spilled variable is

reloaded when solving a puzzle, it stays in a register until another puzzle, possibly

many instructions after the reloading point, forces it to be evicted again. Our

approach to handling reloaded variables is somewhat similar to the second-chance

allocation described by Traub et al. [87].

Size of the intermediate representation. An elementary program has

many more variable names than an ordinary program; fortunately, we do not

have to keep any of these extra names. Our solver uses only one puzzle board at

any time: given an instruction i, variables alive before and after i are renamed

when the solver builds the puzzle that represents i. Once the puzzle is solved, we

use its solution to rewrite i and we discard the extra names. The parallel copy

between two consecutive instructions i1 and i2 in the same basic block can be

implemented right after the puzzle representing i2 is solved.

Critical Edges and Conventional SSA-form. Before solving puzzles, our

algorithm performs two transformations in the target control flow graph that,

although not essential to the correctness of our allocator, greatly simplify the

elimination of φ-functions and π-functions. The first transformation, commonly

described in the literature, (see [14, p.873]), removes critical edges from the con-

trol flow graph. These are edges between a basic block with multiple successors

57

and a basic block with multiple predecessors. The second transformation converts

the target program into a variation of SSA-form called Conventional SSA-form

(CSSA) [84]. A fast algorithm to perform the SSA-to-CSSA conversion is given

in [21]. These two transformations are necessary during the so called SSA elim-

ination phase, that replaces parallel copies, including φ and π functions, with

ordinary assembly instructions. Our SSA elimination method is described in

Chapter 5.

Implementing φ-functions and π-functions. The allocator maintains a

table with the solution of the first and last puzzles found in each basic block.

These solutions are used to guide the elimination of φ-functions and π-functions,

which is performed by the algorithm ImplementComponent from Section 5.5.

During the implementation of parallel copies, the ability to swap register values

is necessary to preserve the register pressure found during the register assignment

phase [11, 74]. Some architectures, such as x86, provide instructions to swap the

values in registers. In systems where this is not the case, swaps can be performed

using xor instructions.

First-chance Coalescing We will say that two variables are φ-related if they

are syntactically related by a common φ-function. The φ-relation is formally de-

fined in Section 5.3. For instance, an instruction such as v = φ(. . . , u, . . . , w, . . .)

would cause the variables u, v and w to be φ-related. We will call Global Coalesc-

ing the optimization that attempts to minimize the number of physical registers

assigned to families of φ-related variables. In our case it is always safe to as-

sign the same physical register to φ-related variables, because the CSSA-form

guarantees that these variables cannot interfere.

Our instance of the global coalescing problem is NP-complete, as proved by

Bouchez et al. [12]. Thus, in order to preserve the fast compilation time, we use a

58

biased coloring heuristics to implement a limited form of global coalescing. In our

representation, every variable is part of an equivalence class of φ-related names.

If a variable is never defined nor used by any φ-function, then its equivalence class

is a singleton. We associate to each non-singleton φ-equivalence class a preferred

slot, which is the position on the puzzle board that is allocated to most of the

elements in the same φ-equivalence class. Our puzzle solver attempts to match Z

pieces with preferred slots whenever it does not compromise the optimal solution

of the puzzle. Notice that the preferred slot of a class might change during the

register assignment phase, as it follows an on-line majority rule. Because the

number of preferences is finite, e.g K, reading and updating the preferred slot is

a constant time operation, and it requires O(K) space per φ-equivalence class,

where K is the number of registers available. This is a standard algorithm for

computing on-line majority [13].

3.6 Experimental Results

Experimental platform. We have implemented our register allocator in the

LLVM compiler framework [58], version 1.9. LLVM is the JIT compiler in the

openGL stack of Mac OS 10.5. Our tests are executed on a 32-bit x86 Intel(R)

Xeon(TM), with a 3.06GHz cpu clock, 3GB of free memory (as shown by the

linux command free) and 512KB L1 cache running Red Hat Linux 3.3.3-7.

Benchmark characteristics. The LLVM distribution provides a broad va-

riety of benchmarks: our implementation has compiled and run over 1.3 million

lines of C code. LLVM 1.9 and our puzzle solver pass the same suite of bench-

marks. In this section we will present measurements based on the SPEC CPU2000

benchmarks. Some characteristics of these benchmarks are given in Figure 3.10.

All the figures use short names for the benchmarks; the full names are given in

59

Figure 3.10. We order these benchmarks by the number of non-empty puzzles

that they produce, which is given in Figure 3.12.

Puzzle characteristics. Figure 3.11 counts the types of puzzles generated

from SPEC CPU2000. A total of 3.45% of the puzzles have pieces of different

sizes plus pre-colored areas so they exercise all aspects of the puzzle solver. Most

of the puzzles are simpler: 5.18% of them are empty, i.e., have no pieces; 58.16%

have only pieces of the same size, and 83.66% have an empty board with no pre-

colored areas. Just 226 puzzles contained only short pieces with precolored areas

and we omit them from the chart.

As we show in Figure 3.12, 94.6% of the nonempty puzzles in SPEC CPU2000

can be solved in the first try. When this is not the case, our spilling heuristic

allows for solving a puzzle multiple times with a decreasing number of pieces until

a solution is found. Figure 3.12 reports the average number of times that the

puzzle solver had to be called per nonempty puzzle. On average, we solve each

nonempty puzzle 1.05 times.

Number of moves/swaps inserted by the puzzle solver. Figure 3.13

shows the number of copy and swap instructions inserted by the puzzle solver in

each of the compiled benchmarks. Local copies denote instructions used by the

puzzle solver to implement parallel copies between two consecutive puzzles inside

the same basic block. Global copies denote instructions inserted into the final

program during the SSA-elimination phase in order to implement φ-functions and

π-functions. Target programs contains one copy or swap per each 14.7 puzzles

in the source program, that is, on average, the puzzle solver has inserted 0.025

local and 0.043 global copies per puzzle.

The effect of First-Chance Global Coalescing. Figure 3.14 outlines

static improvements on the code produced by the puzzle solver due to the global

60

Benchmark LoC asm btcode

gcc 176.gcc 224,099 12,868,208 2,195,700

plk 253.perlbmk 85,814 7,010,809 1,268,148

gap 254.gap 71,461 4,256,317 702,843

msa 177.mesa 59,394 3,820,633 547,825

vtx 255.vortex 67,262 2,714,588 451,516

twf 300.twolf 20,499 1,625,861 324,346

crf 186.crafty 21,197 1,573,423 288,488

vpr 175.vpr 17,760 1,081,883 173,475

amp 188.ammp 13,515 875,786 149,245

prs 197.parser 11,421 904,924 163,025

gzp 164.gzip 8,643 202,640 46,188

bz2 256.bzip2 4,675 162,270 35,548

art 179.art 1,297 91,078 40,762

eqk 183.equake 1,540 91,018 45,241

mcf 181.mcf 2.451 60,225 34,021

Figure 3.10: Benchmark characteristics. LoC: number of lines of C code. asm:

size of x86 assembly programs produced by LLVM with our algorithm (bytes).

btcode: program size in LLVM’s intermediate representation (bytes).

coalescing heuristics described in Section 3.5. On average, first-chance coalescing

reduces the number of memory accesses, mostly store instructions, by 3.4%, and

the number of move instructions by 7.1%. Notice that this form of coalescing

does not reduce the number of spilled variables, although it reduces the number

of spill instructions.. The reduction in spill instructions happens during the

elimination of π and φ-functions, because there are more variables in the same

61

Short/longs, no precol

Short/longs, precol

Longs only, no precol
Shorts only, no precol

Longs only, precol

33.199%
50.448%
0.013%
3.452%
7.707%

Empty puzzles 5.181%

.5

.4

.3

.2

.1
0

.6

.7

.8

.9
1

g
z
p

v
p
r

g
c
c

m
s
a

a
r
t

m
c
f

e
q
k

c
r
f

a
m
p

p
r
s

p
b
k

g
a
p

v
t
x

b
z
2

t
w
f

Figure 3.11: The distribution of the 1,486,301 puzzles generated from SPEC

CPU2000.

physical location across basic blocks.

Three other register allocators. We compare our puzzle solver with three

other register allocators, all implemented in LLVM 1.9 and all compiling and run-

ning the same benchmark suite of 1.3 million lines of C code. The first is LLVM’s

default algorithm, which is an industrial-strength version of linear scan that uses

extensions by Wimmer et al. [90] and Evlogimenos [34]. The algorithm does

aggressive coalescing before register allocation and handles holes in live ranges

by filling them with other variables whenever possible. We use ELS (Extended

Linear Scan) to denote this register allocator.

The second register allocator is the iterated register coalescing of George and

Appel [40] with extensions by Smith, Ramsey, and Holloway [83] for handling

register aliasing. We use EIRC (Extended Iterated Register Coalescing) to de-

note this register allocator. The third register allocator is based on partitioned

62

Benchmark #puzzles avg max once

gcc 476,649 1.03 4 457,572

perlbmk 265,905 1.03 4 253,563

gap 158,757 1.05 4 153,394

mesa 139,537 1.08 9 125,169

vortex 116,496 1.02 4 113,880

twolf 60,969 1.09 9 52,443

crafty 59,504 1.06 4 53,384

vpr 36,561 1.10 10 35,167

ammp 33,381 1.07 8 31,853

parser 31,668 1.04 4 30,209

gzip 7,550 1.06 3 6,360

bzip2 5,495 1.09 3 4,656

art 3,552 1.08 4 3,174

equake 3,365 1.11 8 2,788

mcf 2,404 1.05 3 2,120

1,401,793 1.05 10 1,325,732

Figure 3.12: Number of calls to the puzzle solver per nonempty puzzle. #puzzles:

number of nonempty puzzles. avg and max: average and maximum number of

times the puzzle solver was used per puzzle. once: number of puzzles for which

the puzzle solver was used only once.

Boolean quadratic programming (PBQP), and is implemented after Hames and

Scholz [49]. We use this algorithm to gauge the potential for how good a register

allocator can be. Lang Hames and Bernhard Scholz produced the implementa-

tions of EIRC and PBQP that we are using.

Stack size comparison. The top half of Figure 3.15 compares the maximum

63

Local Moves Global Moves

g
z
p

v
p
r

g
c
c

m
s
a

a
r
t

m
c
f

e
q
k

c
r
f

a
m
p

p
r
s

p
b
k

g
a
p

v
t
x

b
z
2

t
w
f

a
v
g

0.12

0

0.10

0.08

0.06

0.04

0.02

Figure 3.13: Number of copy and swap instructions inserted per puzzle.
g
z
p

v
p
r

g
c
c

m
s
a

a
r
t

m
c
f

e
q
k

c
r
f

a
m
p

p
r
s

p
b
k

g
a
p

v
t
x

b
z
2

t
w
f

a
v
g

1.00

0.80

0.84

0.88

0.92

0.96

Memory Accesses Move Instructions

Figure 3.14: Static improvement due to First-Chance Coalescing. The bars are

normalized to register allocation without global coalescing.

amount of space that each assembly program reserves on its call stack. The stack

size gives an estimate of how many different variables are being spilled by each

allocator. The puzzle solver and extended linear scan (LLVM’s default) tend to

spill more variables than the other two algorithms.

Spill-code comparison. The bottom half of Figure 3.15 compares the num-

ber of load/store instructions in the assembly code. The puzzle solver inserts

marginally fewer memory-access instructions than PBQP, 1.2% fewer memory-

access instructions than EIRC, and 9.6% fewer memory-access instructions than

64

ELS(LLVM default) EIRC PBQP
1.1

1.05
1

.95
.9

.85
.8

D
ata norm

alized to puzzle solver.

Stack Size

.8

.9

1.3

1.4
1.5

g
z
p

v
p
r

g
c
c

m
s
a

a
r
t

m
c
f

e
q
k

c
r
f

a
m
p

p
r
s

p
b
k

g
a
p

v
t
x

b
z
2

t
w
f

a
v
g

Memory Accesses

1.2

1.1

1

Figure 3.15: In both charts, the bars are relative to the puzzle solver; shorter

bars are better for the other algorithms. Stack size: Comparison of the maxi-

mum amount of bytes reserved on the stack. Number of memory accesses:

Comparison of the total static number of load and store instructions inserted by

each register allocator.

extended linear scan (LLVM’s default). Note that although the puzzle solver

spills more variables than the other allocators, it removes only part of the live

range of a spilled variable.

Run-time comparison. Figure 3.16 compares the run time of the code

produced by each allocator. Each bar shows the average of five runs of each

benchmark; smaller is better. The base line is the run time of the code when

compiled with gcc -O3 version 3.3.3. Note that the four allocators that we use

(the puzzle solver, extended linear scan (LLVM’s default), EIRC and PBQP) are

implemented in LLVM, while we use gcc, an entirely different compiler, only for

65

ELS(LLVM default) EIRC PBQPPuzzle Solver

.8

1

1.2

.6

.4

.2

1.4

g
z
p

v
p
r

g
c
c

m
s
a

a
r
t

m
c
f

e
q
k

c
r
f

a
m
p

p
r
s

p
b
k

g
a
p

v
t
x

b
z
2

t
w
f

a
v
g

Figure 3.16: Comparison of the running time of the code produced with our

algorithm and other allocators. The bars are relative to gcc -O3; shorter bars are

better.

reference purposes. Considering all the benchmarks, the four allocators produce

faster code than gcc; the fractions are: puzzle solver 0.944, extended linear scan

(LLVM’s default) 0.991, EIRC 0.954 and PBQP 0.929. If we remove the float-

ing point benchmarks, i.e., msa, amp, art, eqk, then gcc -O3 is faster. The

fractions are: puzzle Solver 1.015, extended linear scan (LLVM’s default) 1.059,

EIRC 1.025 and PBQP 1.008. We conclude that the puzzle solver produces faster

code than the other polynomial-time allocators, but slower code than the time

demanding PBQP.

We have found that the puzzle solver does particularly well on sparse control-

flow graphs. We can easily find examples of basic blocks where the puzzle solver

outperforms even PBQP, which is a slower algorithm. For instance, with two

register pairs (AL, AH, BL, BH) available, the puzzle solver allocates the program

in Figure 3.17 without spilling, while the other register allocators (ELS, EIRC

and PBQP) spill at least one variable. In this example, the puzzle solver inserts

66

a = •

B = •

c = •

d = B

E = c

• = a,d,E

a B c d E

R4 = R1

a

a
B

a
c

B

a c
B

d

c

E
d a

E d a

a

a

a

a

a

a

B

B

B

c

c

c

d

d

d

E

E

R1 R2 R3 R4
1

2

3

4

5

6

Figure 3.17: (left) Example program. (center) Puzzle pieces. (right) Register

assignment.

one copy between instructions four and five to split the live range of variable a.

Compile-time comparison. Figure 3.18 compares the register allocation

time and the total compilation time of the puzzle solver and extended linear scan

(LLVM’s default). On average, extended linear scan (LLVM’s default) is less

than 1% faster than the puzzle solver. The total compilation time of LLVM with

the default allocator is less than 3% faster than the total compilation time of

LLVM with the puzzle solver. We note that LLVM is industrial-strength and

highly tuned software, in contrast to our puzzle solver.

We omit the compilation times of EIRC and PBQP because the implementa-

tions that we have are research artifacts that have not been optimized to run fast.

Instead, we gauge the relative compilation speeds from statements in previous pa-

pers. The experiments shown in [49] suggest that the compilation time of PBQP

is between two and four times the compilation time of extended iterated register

coalescing. The extensions proposed by Smith et al. [83] can be implemented in a

way that adds less than 5% to the compilation time of a graph-coloring allocator.

67

g
z
p

v
p
r

g
c
c

m
s
a

a
r
t

m
c
f

e
q
k

c
r
f

a
m
p

p
r
s

p
b
k

g
a
p

v
t
x

b
z
2

t
w
f

a
v
g

Time of register assignment pass Total compilation time

1

.5

0

1.5

2

2.5

Figure 3.18: Comparison between compilation time of the puzzle solver and ex-

tended linear scan (LLVM’s default algorithm). The bars are relative to the

puzzle solver; shorter bars are better for extended linear scan.

Timing comparisons between graph coloring and linear scan (the core of LLVM’s

algorithm) span a wide spectrum. The original linear scan paper [77] suggests

that graph coloring is about twice as slow as linear scan, while Traub et al. [87]

gives an slowdown of up to 3.5x for large programs, and Sarkar and Barik [81]

suggests a 20x slowdown. From these observations we conclude that extended

linear scan (LLVM’s default) and our puzzle solver are significantly faster than

the other allocators.

3.7 Related Work

We now discuss work on relating programs to graphs and on complexity results

for variations of graph coloring. Figure 3.21 summarizes most of the results.

Register allocation and graphs. Figure 3.19 shows the interference graph

of the elementary program in Figure 3.3 (b). Any graph can be the interference

graph of a general program [24]. SSA-form programs have chordal interference

graphs [10, 19, 48, 73], and the interference graphs of SSI-form programs are

68

A3

c3

A4

c4

A5

AL56

A6

AL6

c67

A7

c7

A8

c8

A9

c9

A2

c23

Figure 3.19: Interference graph of the program in Figure 3.3 (b).

P3

2P3

P4
K3,1

(The claw)

T2
(star2,2,2)

S3

Clique substitutions
of P3

Elementary graphs Unit-
interval
graphs

Interval
graphs

RDV-graphs
Chordal graphs

Figure 3.20: Elementary graphs and other intersection graphs. RDV-graphs are

intersection graphs of directed lines on a tree [63].

interval graphs [20]. We call the interference graph of an elementary program an

elementary graph. Each connected component of an elementary graph is a clique

substitution of P3, the simple path with three nodes. We construct a clique

substitution of P3 by replacing each node of P3 by a clique, and connecting all

the nodes of adjacent cliques.

Elementary graphs are a proper subset of interval graphs, which are contained

in the class of chordal graphs. Figure 3.20 illustrates these inclusions. Elementary

graphs are also Trivially Perfect Graphs [41]. In a trivially perfect graph, the size

of the maximal independent set equals the size of the number of maximal cliques.

Aligned 1-2-coloring Extension. The combination of 1-2-aligned coloring

and pre-coloring extension is called aligned 1-2-coloring extension. This problem,

when restricted to elementary graphs, is equivalent to solving type-1 puzzles;

69

Class of graphs

Program general SSA-form SSI-form elementary

Problem general chordal interval elementary

Aligned 1-2- NP-complete [53] NP-complete [8] NP-complete [8] linear [TD]

coloring extension

Aligned 1-2- NP-complete [53] NP-complete [59] NP-complete [59] linear [TD]

coloring

Coloring NP-complete [53] NP-complete [8] NP-complete [8] linear [TD]

extension

Coloring NP-complete [53] linear [38] linear [38] linear [38]

Figure 3.21: Algorithms and hardness results for graph coloring. TD = this

dissertation.

thus, it has a polynomial time solution.

3.8 Final Remarks

In this chapter we have introduced register allocation by puzzle solving. We have

shown that our puzzle-based allocator runs as fast as the algorithm used in an

industrial-strength JIT compiler and that it produces code that is competitive

with state-of-the-art algorithms. A compiler writer can model a register file as a

puzzle board, and easily transform a source program into elementary form and

then into puzzle pieces. For a compiler that already uses SSA-form as an inter-

mediate representation, the extra step to elementary form is small. Our puzzle

solver works for architectures such as x86, ARM, and PowerPC. Recently Jens

Palsberg and Siddharth Tiwary showed that the aligned 1-2 graph coloring prob-

lem has polynomial time solution for type-2 puzzles. Their proof demonstrates

that spill-free register allocation has polynomial time solution also for member

of the SPARC family of processors. This work has not yet been published. Our

puzzle solver produces competitive code even though we use simple approaches to

70

spilling and coalescing. We speculate that if compiler writers implement a puzzle

solver with advanced approaches to spilling and coalescing, then the produced

code will be even better.

71

CHAPTER 4

Local Coalescing

In this chapter we present a exact polynomial time algorithm for the problem of

local coalescing. Given a solved register allocation puzzle, which we will call the

guider, local coalescing is concerned in finding a solution to the next puzzle, the

follower. This solution must minimize the number of instructions that are inserted

between guider and follower to preserve the semantics of the target program. We

can solve this problem exactly for type-1 puzzles if the follower has an empty

board, what happens in about 90% of the puzzles found in SPEC CPU 2000.

Local coalescing in nonempty boards and higher order puzzles remains an open

problem. Global coalescing, that is, the problem of minimizing the number of

instructions inserted across the whole program is NP-complete, even for straight

line code.

4.1 Introduction

As we discussed in Section 2.1.4, coalescing is the act of assigning the same

register to variables related by copy instructions. When doing register allocation

in elementary form, coalescing has a broader meaning: it consists in assigning the

same registers to variables in the same family across two successive puzzles, as we

discussed in Section 3.4. If a variable is assigned to the same register across two

consecutive puzzles, we call it a fixed point. As an example, the solution found

72

S(a) W(a) N(a) E(a) SW(a) NW(a) NE(a) SE(a)

Figure 4.1: The different parts of the puzzle board.

by the puzzle solver for the program in Figure 3.17 contains eleven fixed points.

Local coalescing is the problem of maximizing the number of fixed points in a

puzzle, which is called the follower, given a solution to the predecessor puzzle,

which is called the guider. Put in other words, local coalescing can be defined

as the problem of minimizing the number of instructions that the puzzle solver

must insert between two puzzles in order to preserve the semantics of the source

program. Continuing with our example from Figure 3.17, that register assignment

is an optimal solution to the local coalescing problem, as an exhaustive search

shows that no register assignments in this case can produce a solution with less

than one copy. The objective of this chapter is to show that, in the absence of

pre-coloring, we can always find an optimal solution for local coalescing.

We will be using the notation shown in Figure 4.1 in order to name the blocks

inside an area of the puzzle board. Blocks are named South (S), West (W), North

(N) and East (E) according to their position inside the puzzle area.

4.2 Solving Uncolored Puzzles

The puzzle solving program given in Figure 3.7 uses the statement shown in

Figure 4.2 to handle puzzles that do not contain pre-colored areas on the board.

We will call this program Pu, and we will number its rules from one to seven, as

shown in Figure 4.2. The objective of this section is to show that the order in

73

Y Y Y Y
X

Z

X

Z

X

ZZ Z

X X X X

Z Z: : : : : :
1 2 3 4 5 6 7

Figure 4.2: Program Pu that solves puzzles containing no pre-coloring.

which the rules are applied to the puzzle is not important.

Lemma 5 Let Pz be a solvable puzzle. If the application of any rule r of Pu on

Pz succeeds, then the resulting puzzle Pz′ is solvable.

Proof. If Pz is solvable, then there must exist a function S that maps pieces

to areas such that S is a solution of Pz. In Figure 4.2 we see all the possible

ways in which S can fill areas of Pz. In each of these configurations, size-1 pieces

always come in pairs. For each rule r, we must show that its application does

not invalidate preservation. We will describe in details rule 7, as it is the most

involved, and we will illustrate the cases for rules 2-5 in Figures 4.4 and 4.5. Rule

1 is immediate, as there is only one way in which S can arrange a size-4 Y piece,

and rule 6 is similar to rule 5.

(r = 7): If r succeeds, then Pz contains an empty area, two size-1 X pieces

(p1 and p2), and two size-1 Z pieces (p3 and p4). There are only a finite number

of ways in which S can place the pieces p1, p2, p3 and p4 on the board. If S fills

any area with four size-1 pieces, we simply swap these pieces with {p1, p2, p3, p4}.

Otherwise, Figure 4.3 illustrates the remaining possible configurations. In each

possible case, we can swap pieces in order to obtain the configuration produced by

rule 7. For instance, let a1, a2 and a3 be areas of the puzzle board. If p1 is paired

with another size-1 X piece in a1, then we have that either p4 is paired with a

74

X
p4p4

p1 X

X
p3

X

Z p3
X
p3

X
p3

p1

Z

p2

Z p3

Z

a1

a2 a2 a2 a2

a1

a3 a3 a3 a3

A

C

B
D

E

F

Z

Y

Y

Y

Y

Y

Z

X

X X

Figure 4.3: The case r = 7 of Lemma 5.

size-1 Z piece in a2, or p4 is paired with another size-1 X piece in a2. In the former

case, a swap between S(a1) and S(a2) produces the intended configuration, as

illustrated by the dashed line A in Figure 4.3. Otherwise, we have two more cases

to consider, depending on the configuration of p3. If p3 is paired with another

size-1 X piece in a3, then we use swap C in Figure 4.3, otherwise p3 must be

paired with a size-1 Z piece in a3, and we use swap B. The case in which p1 is

paired with a Z piece in a1 is handled in a similar way. The possible swaps, in

this case, are labeled D, E and F in Figure 4.3. �

4.3 Optimal Local Coalescing

A good puzzle-based register allocator should strive to maximize the number

of variables assigned to the same board positions across successive puzzles. If a

piece is assigned to different board positions in two successive puzzles, then either

a copy or a swap instruction will be necessary to preserve the semantics of the

75

X

Z
p1

X

Z
p2

Y p1

p2

X
Y

B

Xp2

Z

Zp3
XX

p3
Y

C.1

C.2
DA

r = 2 r = 3

a1

a2

a1
a2 a2

a3 a3

Figure 4.4: The cases r = 2 (left) and r = 3 (right) of Lemma 5.

a1

X X
p1

Z Z

p1

A

Z

p1

Z p1
X

B
X
p1

Y

Z p2
X
p2

Y
X

D

C.2

C.1

a2

a1

a2 a2

a3 a3

r = 4 r = 5

Figure 4.5: The cases r = 4 (left) and r = 5 (right) of Lemma 5. The case r = 6

is similar to r = 5 and was omitted.

target code. If a piece v is assigned to area a in the guider, then we say that a is

the preferred area for v in follower. For instance, in Figure 3.17, area R2 is the

preferred position for piece c in puzzle 4, because c was assigned to R2 in puzzle

3. Y pieces always have preferred areas, whereas Z pieces never have it. The X

pieces used in the padding of the puzzle do not have preferred areas, but the X

76

ybya xbxa xa y x y• • •xxyy •

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.6: Configurations of preferences in a board without pre-coloring.

pieces that are part of the original, unpadded puzzle always have it.

In order to tackle the program of local coalescing, we extend the notation

introduced in Chapter 3 to include preferences between pieces and board areas.

We show all the possible configurations of preferences in Figure 4.6. The dotted

areas are not part of our notation for puzzle solving programs. They only indicate

the shape of the preferred pieces for each area. In this figure, the two little indices

above each area indicate the preference for the two columns that make that area.

If a puzzle piece has no preference, we call it an anonymous piece, to contrast

with labeled pieces which have preference for some area. Anonymous pieces are

marked with •, and labeled pieces are given the name of the variable that they

represent. We will consider puzzle solving programs that solve one area of the

board at a time. If the preferred area of a piece v is filled with a piece different

from v, and v is still available to fill other areas, we remove the name of v and

mark it as an anonymous piece. This step is illustrated in Figure 4.7.

Although Lemma 5 has shown that pre-colored puzzle boards can be filled in

any order, some ordering is necessary to maximize the number of variables locally

coalesced. This ordering is defined in the puzzle solving program Pc shown in

Figure 4.8. Program Pc attempts to assign pieces to areas according to the

preferences in the puzzle. For instance, statement one handles registers that

77

ydxc •ya

yd ya
zE

xc x•

ydxc •ya

x• xc

zE
y•yd

(a) (b)

Figure 4.7: (a) The puzzle formed for the instruction E := c in Figure 3.17. (b)

Puzzle after one area has been filled.

have been assigned to a long variable by the previous puzzle, e.g, this statement

applies to registers R1,R2 in the third puzzle of Figure 3.17. The successful

execution of statement one means that we can assign a size-4 Y variable to its

preferred registers. A simple inspection of the statements and rules of program

Pc reveal that size-4 Y pieces and size-2 X pieces are always assigned to areas

with matching preference. The rules that break local coalescing in Figure 4.8 are

in statements seven and eight, where we have size-2 Z pieces displacing size-2 Y

pieces, and size-2 Y pieces displacing size-1 X pieces.

Lemma 6 (Progress) If Pz is solvable, then there is a rule r ∈ Pc that can be

applied to Pz.

Proof. We will use the characters a, b, c and d to name rules in statements of

program Pc that have multiple rules. For instance, the first rule of statement 2

will be called rule 2.a. We assume that Pz is produced from a original puzzle Pzo

by successive application of rules of Pc. A rule of Pc can be applied if its required

area a and the required pieces {v1, . . . , vn} are available. If the application of

some rule of Pc causes a piece v with a preferred area to become an anonymous

piece, we say that v is displaced. The proof is a case analysis on the patterns p

shown in Figure 4.6.

78

y

1

(:z•

x x

z•z•
ybya z•

xbxa xbxa
z•z•)

x•x

z•z•z•

x•x

z•

x•x• x•x•
z•z•(:)(:)

xxa
z•

x

z•

x•x•
z•

x•
z•(:)

(:)

(:)
2 3 4

5 6

7

8

x ybya xbxa xbxa

x x

yy x

y y

• • • • •

• •

xxxyy

•

x

y

x

: y•

y

y

y

y: y•

y •

xx•
z•

:
y x

Figure 4.8: Program Pc that maximizes local coalescing.

(p = a): this pattern is handled by statement one of Pc. An application of

statement one can only be preceded by other applications of this statement. Y

pieces always have a preferred area, and only areas with preferences are taken by

statement one. Thus, the size-4 piece y must still be available in Pz.

(p = b): this pattern is handled by statement 2 of Pc. Applications of state-

ment two can only be preceded by applications of statements one and two. Piece

x is available because all the rules used so far only assign pieces to their preferred

areas. The size-2 Z piece, in case of rule 2.a, or the two size-1 Z pieces in case of

rule 2.b exist because the puzzle is solvable.

(p = c): similar to p = a. Pattern c is handled by statement three of Pc.

Rules that precede statement three only assign pieces to their preferred areas;

therefore, the two size-2 Y pieces must still be available in Pz.

79

(p = d): similar to p = b.

(p = e): these patterns are handled by statement five of Pc. We want to show

that Pz contains a size-1 X piece x• with no preference for any area, i.e, this

piece was created due to padding (Claim 2). With this purpose, lets consider

the first time when Pc uses statement five. The piece xa must still be available,

because all the rules that precede statement five only assign size-1 X pieces to

their preferred areas. We must also show that Pz contains either one size-2 Z

piece, or two size-1 Z pieces (Claim 1).

• Claim 1: Pz contains either one size-2 Z piece or two size-1 Z pieces. If we

assume the contrary, then Pz must contain a size-2 Y piece plus a size-1 Z

piece, because Pz is solvable by hypothesis. We will call this piece y1. Y

pieces always have a preferred area; thus, in a solution of Pz, the preferred

area of y1 must be covered with, either (i) another size-1 Y piece, (ii) one

size-1 X piece plus one size-1 Z piece, or (iii) a size-2 Z piece plus a size-1

X piece. In case (i), we let the new size-2 Y piece be called y2, and look

at how the preferred area of y2 is covered in a solution of Pz. Because the

number of Y pieces is finite, we will have that some yn piece is covered as

in (ii) or (iii), which contradicts the initial assumption.

• Claim 2: Pz contains one size-1 X piece with no preference for any area.

As seem in Claim 1, Pz contains either one size-2 Z piece or two size-1 Z

pieces. Because Pz is a padded puzzle, it must contain a size-1 X piece x1.

By hypothesis of this claim, x1 has preference for some area a1. Because

size-4 Y pieces and size-2 X pieces have been already placed by previous

statements, a solution of Pz can cover a1 in one of the following ways: (i)

with a size-2 Y piece y2 with preference for some area a2, (ii) with a size-1

X piece x2 with preference for some area a2. We look at how a2 is covered

80

in a solution of Pz to find more pieces like in (i) or (ii). By repeating

this argument indefinitely, we derive a contradiction, because the number

of pieces in Pz is finite.

From Claim 1 and Claim 2 we know that statement five of Pc is always able to

complete the pattern e of Figure 4.6. Moreover, from Claim 2 we know that no

size-1 piece with a preference can be displaced by statement five, i.e, it is always

possible to find a piece xb without preferences to fill pattern e.

(p = f): similar to p = e. We show that Pz either contains a size-2 Z piece

or two size-1 Z pieces, as in Claim 1, and we show that Pz contains two size-1 X

pieces, using the reasoning seen in Claim 2.

(p = g): these patterns are handled by statement seven, which is divided into

four rules: 7.a, 7.b, 7.c and 7.d. Statement seven contains all the three possible

patterns that can be assembled with the pieces not used by statements 1-6. We

only have to show that the preference requirements described in statement seven

can be fulfilled with these remaining pieces. We look into the rules of statement

seven in the order in which they can be applied to Pz.

• (7.a) Pz contains y and x , because no rule used before 7.a can displace

such pieces. If Pz contains a size-1 Z piece, rule 7.a can be applied.

• (7.b) If Pz contains a size-2 Z piece, then it must contain two size-1 X

pieces, as Pz is a solvable puzzle, and all the size-2 X pieces have been

already assigned by statement two. Pz must contain xb, because no size-1

piece with preference has been displaced by the rules that precede 7.b. If

Pz contains a size-1 X piece without preference, rule 7.b can be applied.

• (7.c) If Pz contains a size-2 Z piece, then it must contain two size-1 X pieces,

as Pz is a solvable puzzle, and all the size-2 X pieces have been already

81

assigned by statement two. If Pz contains xb, rule 7.c can be applied.

• (7.d) Pz contains ya, because no size-2 Y piece with a preferred area has

been allocated to an area that is not its preference so far. If x ∈ Pz, then

Pz would contain a size-1 Z piece, as seen in the proof of rule 7.a. Given

that Pz does not contain x, this piece must have been used in rule 7.c, that

is the only rule that displaces size-1 X pieces. However, rule 7.c has also

the effect of displacing a size-2 Y piece. Therefore, Pz contains a piece y•.

(p = h): these patterns are handled by statement eight, which is divided into

three rules: 8.a, 8.b, and 8.c. We have that all the size-1 X pieces that remain

in Pz have no preference, because the pieces that had preference have either

been assigned to their preferred areas by statements five and seven, or have been

displaced in statement seven. We look into the rules of statement eight in the

order in which they can be applied to Pz.

• (8.a) If Pz contains a size-2 Z piece, then it contains two size-1 X pieces,

because Pz is solvable by hypothesis.

• (8.b) Pz must contain the size-2 Y piece y, because no size-2 Y piece with

a preferred area has been used to cover an area that is not its preference

so far. If Pz contains a size-1 X piece, it must contain a size-1 Z piece,

because Pz is solvable by hypothesis.

• (8.c) If Pz contains only size-2 Y pieces, than we have that Pz contains

n areas, and 2n pieces, because Pz is solvable by hypothesis. We have

that half of these pieces still have their preferred areas available, because

no size-2 Y piece with a preferred area available has been misplaced by any

of the rules seen so far, and only patterns p = h remain to be filled. The

82

size-2 Y pieces without preference have been displaced by either statement

seven (rules 7.a, 7.b and 7.c), or rule 8.a.

�

Lemma 7 (Preservation) If Pz is solvable, and Pc applies rule r on Pz to

produce Pz′, then Pz is solvable.

Proof. This follows directly from Lemma 5, as any of the patterns used in Pc is

listed among the rules of Pu. �

Lemma 8 If Pz can be solved with n displaced pieces, and rule r is applied

producing Pz′ and causing k displaced pieces, then Pz′ can be solved with no

more than n− k displaced pieces.

Proof. The proof is a case analysis on each rule of Pc. By hypothesis, we know

that there exists a solution S for Pz that displaces n pieces. At each statement,

we let the area been filled by that statement be called a. When swapping pieces

of S in order to obtain a new solution S ′, we determine the profit of this swap as

the number of displaced pieces in S minus the number of displaced pieces in S ′.

(r = 1): if S(y) = a, then we are done, otherwise, lets assume that S(y) = a′.

We get a positive profit of at least +1 by swapping the contents of a and a′.

(r = 2.a): if S does not assign x to a, then there must exist an area a′ such that

S(x) = N(a′). Furthermore, there must exist an area a” such that S(z•) = a”.

We get a better solution than S by performing the following sequence of swaps:

swap S(a′) and S(a”), swap a′ and a.

(r = 2.b): in this case, Pz contains no size-2 Z piece. If S assigns x to an area

N(a′) other than N(a), we have that S(a′) must contain two size-1 Z pieces. We

get a better solution than S by swapping the contents of a and a′.

83

(r = 3): if S does not assign ya and yb to a, then we have that ya has been

assigned to an area a′, and yb has been assigned to an area a”. Without loss of

generality, we assume that ya is assigned to W (a′), and yb is assigned to E(a”).

We get a better solution than S by performing the following sequence of swaps:

swap E(a′) and W (a”) (may have a negative profit of −1), swap a and a′ (has a

positive profit of §+ 2S).

(r = 4.a): similar to previous rules. Without loss of generality, we assume

that S(xa) = NW (aa), S(xb) = NE(ab) and S(z•) = S(az). We apply the

following sequence of swaps: swap NW (aa) and NW (az) (may have a negative

profit of −1), swap NE(ab) and NE(az) (may have a negative profit of −1), swap

az and a (has a positive profit of +2).

(r = 4.b): similar to r = 4.a, but Pz contains no size-2 X or Z pieces.

Thus, if S(xa) = NE(aa), we know that SE(aa) is a size-1 Z piece. Likewise,

if S(xb) = NW (ab), we know that SW (ab) is a size-1 Z piece. We apply the

following sequence of swaps: swap aa and a (may displace one piece in S, but

balances this displacement by adding a match for xa), swap W (ab) with E(a)

(positive profit of +1 because matches ab).

(r = 5.a): we assume that S(z•) = S(az). Because Pz no longer contains

size-2 X pieces, we have that N(az) is filled with two size-1 X pieces. At least one

of the pieces in N(az) is anonymous, i.e x•, because areas with two preferences

for size-1 X pieces have been handled by statement four. We swap x• with xa for

a positive profit of at least +1.

(r = 5.b): We assume that S(z•) = S(az). Let S(x) = NW (ax). We let

S(x•) = NW (a•) for some area a• ∈ Pz. We first swap E(ax) and W (a•). This

swap may have a negative profit of at most −1. We then swap the contents of ax

and a, which has a positive profit of +1.

84

(r = 6.a): we assume that S(z•) = S(az). If az has no preferences, we swap

the contents of az and a. Otherwise, az must be the pattern (g) in Figure 4.6. In

this case, az might contain at most one matching size-1 X piece. The solution S

may be covering a in one of the three different ways shown below:

(a) (b) (c)

In case of (a), we swap S(a) and S(az). In case of (b), we swap (W (a) plus

SE(a)) with (NW (az) plus S(az)). In case of (c), we swap the contents of a

and az. Case (c) may have a negative profit of −1; however, we can swap one

of the size-2 Y pieces newly assigned to az with the size-2 Y piece that has the

preference for az, given that this area is the pattern (g) in Figure 4.6.

(r = 6.b): in this case we do not have any size-2 X or Z piece in Pz. Again,

S can arrange pieces in area a in three different ways, which are shown below:

(a) (b) (c)

There is nothing to be done in case (a). In case (b), we swap the size-2 Y

piece with whatever pieces are occupying the preferred area for this piece. This

swap is always possible because Pz contains no piece spanning two columns. This

swap has a positive profit of +1. We repeat this procedure until a contains four

size-1 puzzle pieces. Case (c) is similar to case (b).

(r = 7.a): S may cover a in three different ways, and for each way we illustrate

in the figure below how swaps can be inserted to convert S into S ′. The pieces

have been arranged in the board without any loss of generality, and we use the

85

operator ⊕ to indicate a swap. The minimum profit of each swap is show next to

its description. The little marks above some of the areas indicate possible, but

not necessary, matchings in S.

x1 y
x x2

z•
(a)

(b)

(c)

A B C D

BE ⊕ DE : -2

B ⊕ A : +1

CNE ⊕ ANE : +1

✓ ✓ ✓

x1y1 y
x

✓ ✓

BW ⊕ AW : +1

CNE ⊕ ANE : +1

y1 y2 y

✓

x x2
z•

✓ ✓
BW ⊕ AW : +1

DNE ⊕ CNE : +1

DE ⊕ AE : +1

(r = 7.b): if rule 7.a cannot be used, it means that Pz does not contain any

size-1 Z piece. In this case, either (i) a is covered with two size-2 Y pieces, e.g y

and yaux, or (ii) with one size-2 Z piece plus two size-1 X pieces. Showing that

swaps on the second case do not produce a worse solution than S is immediate.

On the first case, we have that x must be paired with a size-2 Z piece plus another

size-1 X piece in some area a′. Given that the only patterns listed in Figure 4.6

that remain in our puzzle are (g) and (h), we know that a′ can have at most

one size-1 X piece matching its preference. In this case, a′ is a (g) pattern. By

swapping the contents of a and a′ we may remove at most two matches from S,

and we add one match for x - a minimum profit of −1. We then swap yaux with

the Y piece that has the preference for a′ to produce a solution as good as S.

(r = 7.c): same as r = 7.b. We have not used in the proof of r = 7.b the fact

that Pz contains a size-1 X piece with no preferred area.

86

(r = 7.d): if Pz contains no Z pieces, it cannot contain X pieces either,

otherwise Pz would be unsolvable. Furthermore, Pz contains only the patterns

(g) and (h) of Figure 4.6. In this case it is trivial to show that the maximum

number of matching pieces in any area a is one.

(r = 8.a, 8.b, 8.c): all the preference patterns in Pz are like Figure 4.6(h).

Each size-2 Z piece will displace a size-2 Y piece, and there must be at most one

matching size-2 Y piece per area of Pz. Thus, the three rules that constitute

statement eight of Pc are optimal.

�

4.3.1 On The Number of Pieces Displaced

The number of pieces displaced by the program Pc can be directly computed

from the types of preference patterns found in the input puzzle, where the eight

possible preference patterns are listed in Figure 4.6. We divide the puzzle board

into groups according to the eight preference patterns. For instance, all the areas

that fit the pattern in Figure 4.6(a) are placed into a set called Pa. The other

seven patterns determine the sets Pb, . . . , Ph. We let Z2 be the set of size-2 Z

pieces in a type-1 puzzle Pz.

The minimum number of pieces nz displaced in a solution of a type-1 puzzle

is determined uniquely by the types of patterns and the number of size-2 Z pieces

found in the puzzle. The algorithm to compute nd is given below:

• let nd = |Z2| − (|Pb|+ |Pd|+ |Pe|+ |Pf |)

• if nd ≤ 0

– then nz ← 0

87

• else if |Ph| ≥ nd

– then nz ← nd

– else nz ← Ph + 2× (nd − Ph)

In order to see that the formula above produces the right number of displaced

pieces, we point that, according to the program Pc, size-2 Z pieces are the only

reason for displacements. This happens because the preferences for a given puzzle

Pz2 are determined by the arrangement of pieces in a previous puzzle Pz1. Thus,

if Pz2 contains no size-2 Z pieces, all the pieces with preferred areas can be fit

onto its board, given that they already fit on the board of Pz1. Pc attempts

to fit size-2 Z pieces in patterns of type Pb, Pd, Pe and Pf , which do not cause

the displacement of any piece with a preferred area. We let nd be the difference

|Z2| − (|Pb|+ |Pd|+ |Pe|+ |Pf |).

If nd is greater than zero, the number of displacements depends on Ph - the

number of areas with the preference pattern (h). Notice that Pc fills areas with

the preference pattern (g) before than (h). If a size-2 Z piece is inserted into

an area with preference pattern (g), then a size-2 Y piece y is displaced. If Pz

contains an area ah with the preference pattern (h), than y can be fit onto ah

without causing any further displacements. The same reasoning applies if Pz

contains two areas of type (h) and one size-2 Z piece. Therefore, as long as Pz

contains areas of type (h), a size-2 Z piece causes at most one displacement.

Otherwise, if Pz contains only areas of type (g), any size-2 Z piece forces the

displacement of at least two pieces.

88

4.4 Final Remarks

This chapter has presented an optimal strategy for implementing local coalescing

in empty type-1 puzzle boards. Our method gives the maximum number of

fixed points in about 90% of the puzzles found in SPEC CPU 2000. Optimal

local coalescing for nonempty puzzle boards, and for puzzle boards of high order

puzzles, e.g type-2 and up, remains an open problem.

89

CHAPTER 5

SSA Elimination after Register Allocation

Intermediate representations such as SSA-form, or elementary form use notational

abstractions called φ-functions and parallel copies. These instructions have no

analogous in actual machine instruction sets, and they must be replaced by or-

dinary instructions at some point of the compilation path. This process is called

SSA elimination. Compilers usually performs SSA elimination before register

allocation. But the order could as well be the opposite: our puzzle based register

allocator performs SSA elimination after register allocation. SSA elimination be-

fore register allocation is straightforward and standard, while the state-of-the-art

approaches to SSA elimination after register allocation have several shortcom-

ings. In this chapter we present spill-free SSA elimination, a simple and efficient

algorithm for SSA elimination after register allocation that avoids increasing the

number of spilled variables. We also present three optimizations that enhance

the quality of the code produced by the core algorithm. We have implemented

the algorithms described in this Chapter in our puzzle based register allocator.

Our experiments show that spill-free SSA elimination takes less than five percent

of the total compilation time of a JIT compiler. Our optimizations reduce the

number of memory accesses by more than 9% and improve the program execution

time by more than 1.8%.

90

5.1 Introduction

One of the main advantages of SSA based register allocation is the separation of

phases between spilling and register assignment. The two-phase approach works

because the number of registers needed for a program in SSA-form equals the

maximum of the number of registers needed at any given program point. Thus

spilling reduces to the problem of ensuring that for each program point, the

needed number of registers is no more than the total number of registers. The

register assignment phase can then proceed without additional spills. The next

figure illustrates the phases of SSA-based register allocation.

SSA-form
program

K-colorable
SSA-form
program

Colored
SSA-form
program

Executable
program

Spilling
Register
Assignment

SSA
Elimination

SSA elimination before register allocation is easier than after register allocation.

The reason is that after register allocation when some variables have been spilled

to memory, SSA elimination may need to copy data from one memory location to

another. The need for such copies is a problem for many computer architectures,

including x86, that do not provide memory-to-memory copy or swap instructions.

The problem is that at the point where it is necessary to transfer data from one

memory location to another, all the registers may be in use! In that case, no

register is available as a temporary location for performing a two-instruction

sequence of a load followed by a store. One solution would be to permanently

reserve a register to implement memory-to-memory transfers. We have evaluated

that solution by reducing the number of available x86 integer registers from seven

to six, and we observed an increase of 5.2% in the lines of spill code (load and

store instructions) that LLVM [58] inserts in SPEC CPU 2000.

91

Brisk [17, Ch.13] has presented a flexible solution that spills a variable on de-

mand during SSA elimination, uses the newly vacant register to implement mem-

ory transfers, and later reloads the spilled variable when a register is available.

We are unaware of any implementation of Brisk’s approach, but have gauged its

potential quality by counting the minimal number of basic blocks where spilling

would have to happen during SSA elimination in LLVM, independent on the as-

signment of physical locations to variables. For x86, such a basic block contains

thirteen or more φ-functions. We found that for SPEC CPU 2000, memory-to-

memory transfers are required for all benchmarks except 181.mcf - the smallest

program in the set. We also found that the lines of spill code must increase by

at least 0.2% for SPEC CPU 2000, and we speculate that an implementation of

Brisk’s algorithm would reveal a higher number. In our view, the main problem

with Brisk’s approach is not the extra spill lines, but the fact that its second

spilling phase substantially complicates the design of a register allocator.

This chapter describes an algorithm that improves on these two previous

techniques. We will present spill-free SSA elimination, a simple and efficient

algorithm for SSA elimination after register allocation. Spill-free SSA elimination

never needs an extra register, entirely eliminates the need for memory-to-memory

transfers, and avoids increasing the number of spilled variables. The next figure

summarizes the three approaches to SSA elimination.

Accommodates optimal Avoids spilling

register assignment during SSA elimination

Spare register No Yes

On-demand spilling [17] Yes No

Spill-free SSA elimination Yes Yes

92

The starting point for our approach to SSA-based register allocation is Con-

ventional SSA (CSSA)-form [84] rather than the SSA form from the original

paper [27] (and text books [4]). CSSA-form ensures that variables in the same

φ-function do not interfere. We show how CSSA-form simplifies the task of re-

placing φ-functions with copy or swap instructions. We also assume that the

CSSA-form program contains no critical edges. A critical edge is a control-flow

edge from a basic block with multiple successors to a basic block with multiple

predecessors. Algorithms for removing critical edges are standard [4].

This chapter also discusses three optimizations that are implemented on top

of our SSA elimination algorithm. In the register allocator presented in Chapter 3

we convert the source program to CSSA-form before register assignment. Our ex-

periments show that our approach to SSA elimination takes less than five percent

of the total compilation time of LLVM. Our optimizations reduce the number of

memory accesses by more than 9% and improve the program execution time by

more than 1.8%.

Our SSA elimination framework works for any SSA-based register allocator

such as [48], but the implementation of φ-functions in SSA-based register alloca-

tors is not the only use of parallel copies in register allocation. The framework

described in this chapter can also be used to insert the fixing code required

by register allocators that follow the bin-packing model [56, 76, 81, 87]. Bin-

packing allocators allow variables to reside in different registers at different pro-

gram points. A variable may move between registers due to two main factors: to

avoid interferences with pre-colored registers and due to high register pressure.

The price of this flexibility is the necessity of inserting fixing code at basic block

boundaries. The insertion of fixing code follows the same principles that rule the

implementation of φ-functions in SSA-based register allocators.

93

5.2 Example

We now present an example that illustrates the main difficulty of doing SSA

elimination after register allocation. Figure 5.1 (a) contains a program that

continually reads values from the input and prints these values. We built the

loop using a somehow artificial arrangement of the variables a, b and t in order

to show how compiler optimizations might change the SSA representation of a

program in a way that complicates the elimination of φ-functions. Figure 5.1

(b) shows the control flow graph of the example program, this time converted

to SSA form. The program in Figure 5.1 (b) presents an interesting property:

variables in the same φ-function, such as a, a1 and a2 never interfere. Programs

that have this property are said to be in Conventional Static Single Assignment

(CSSA)-form; this representation is formally defined in Section 5.3.

SSA elimination is very simple for programs in conventional SSA-form, as we

will show in the remainder of this Chapter, but not every SSA-form program has

the conventional property. The original SSA construction algorithm proposed by

Cytron et al. [27] always builds CSSA-form programs; however, compiler opti-

mizations might break the conventional representation. Figure 5.1 (c) shows the

same program after it underwent a pass of copy propagation. This optimization

replaced the use of variable t with a use of variable a, and removed the copy

t = a. After this optimization, our example program is no longer in CSSA-form,

because the variables a and a2, which are part of the same φ-function, interfere.

We will be performing SSA elimination after register allocation. This means

that each of our program variables will be bound to a physical location that can

be either a machine register or a memory address. We call a program with such

bindings a colored program. Figure 5.2 (a) shows a possible colored representation

of our example program, assuming a target architecture with only one register r.

94

int a = 0;
int b = 0;
while(true) {
 t = a;
 a = b;
 print(t);
 b = read();
}

a1 = •
b1 = •

a
b

a1 a2
b1 b2

=Φ

t = a
a2 = b
• = t
b2 = •

a1 = •
b1 = •

a
b

a1 a2
b1 b2

=Φ

a2 = b
• = a
b2 = •

(a) (b) (c)

Figure 5.1: (a) Example program in high level language. (b) Control flow of

program converted to SSA-form. (c) Program after constant propagation.

As we have seen in Section 2.3, each φ-matrix encodes one parallel copy per

column. Thus, in order to perform SSA elimination on colored programs we must

implement the parallel copies between physical locations. Figure 5.2 (b) shows

the two parallel copies that we must implement in our running example: if control

reaches block B2 coming from block B1, then the parallel copy (r, m) := (r, m),

which is a no-op, must be implemented, otherwise the parallel copy (r, m) :=

(r, m2) must be implemented. SSA elimination algorithms normally replace these

parallel copies by inserting sequential instructions in the program points where

the parallel copies are defined. Notice that this is the most natural approach

to SSA elimination; however, the replacement code could be inserted anywhere

inside the source program, as long as it maintains the program’s semantics.

Figure 5.2 (c) shows our example program after SSA elimination with on-

demand spilling. Notice that one of the parallel copies has been replaced with

four instructions that implement a copy from m2 to m. The need for that copy

happens at a program point where the only register r is occupied by b2. So we

95

(a1,r) = •
m = r
(b1,r) = •
(m, r) := (m, r)

(a2,r) = (b,r)
m2 = r
r = m
• = (a,r)
(b2,r) = •
(m,r) := (m2,r)

(a1,r) = •
m = r
(b1,r) = •

(a,m)
(b,r)

(a1,m) (a2,m2)
(b1,r) (b2,r)

=Φ

(a2,r) = (b,r)
m2 = r
r = m
• = (a,r)
(b2,r) = •

(a) (b)

B1

B2

B1

B2

(a1,r) = •
m = r
(b1,r) = •

(a2,r) = (b,r)
m2 = r
r = m
• = (a,r)
(b2,r) = •
mb = r
r = m2
m = r
r = mb

(c)

Figure 5.2: (a) A possible colored representation of the example program. (b)

SSA elimination seen as the implementation of parallel copies. (c) SSA elimina-

tion with on-demand spilling.

must first spill r to mb, then we can copy from m2 to m via the register r, and

finally we can load mb back into r.

Now we go on to illustrate that spill-free SSA elimination can do better.

Figure 5.3 (a) shows the same program as in Figure 5.2 (a), but this time in

CSSA-form. To convert the source program into CSSA-form we had to split

the live range of variable a2; this was done by inserting a new copy instruction

a3 = a2, followed by renaming uses of a2 past the new copy. Figure 5.3 (b) shows

the program after spilling and register assignment, and Figure 5.3 (c) shows the

program after spill-free SSA elimination. Notice how, in Figure 5.3 (b), CSSA

makes a difference by requiring the extra instruction that copies from a2 to a3.

We now do register allocation and assign each of a, a1, and a3 the same memory

location m because those variables do not interfere. In Figure 5.3 (b), the value

of a2 arrives in memory location m2, and is then copied to memory location m

96

a1 = •
b1 = •

a
b

a1 a3
b1 b2

=Φ

a2 = b
• = a
a3 = a2
b2 = •

(a1,r) = •
m = r
(b1,r) = •

(a,m)
(b,r)

(a1,m) (a3,m)
(b1,r) (b2,r)

=Φ

(a2,r) = (b,r)
m2 = r
r = m
• = (a,r)
r = m2
m = r
(b2,r) = •

(a) (b)

(a2,r) = (b,r)
m2 = r
r = m
• = (a,r)
r = m2
m = r
(b2,r) = •

(a1,r) = •
m = r
(b1,r) = •

(c)

Figure 5.3: SSA-based register allocation and spill-free SSA elimination.

via the register r. The point of the copy is to let both elements of the first row

of the φ-matrix to be represented in m, just like both elements of the second row

of the φ-matrix are represented in r. We finally arrive at Figure 5.3 (c) without

any further spills.

5.3 Our SSA Elimination Framework

We now show that for programs in CSSA-form, the problem of replacing each

φ-function with copy and swap instructions is significantly simpler than for pro-

grams in SSA-form (Theorem 10). Along the way, we will define all the concepts

and notations that we use. We use the matrix notation from Section 2.3 to

represent φ-functions.

Conventional Static Single Assignment Form The CSSA representation

was first described by Sreedhar et al. [84] who used it to facilitate register co-

alescing. In order to define CSSA-form, we first define an equivalence relation

≡ over the set of variables used in a program. We define ≡ to be the smallest

97

equivalence relation such that for every set of φ-functions V = φM , where V is

a vector of length n with entries vi, and M is an n ×m matrix with entries vij,

we have

for each i ∈ 1..n : vi ≡ vi1 ≡ vi2 ≡ . . . ≡ vim.

Sreedhar et al. use φ-congruence classes to denote the equivalence classes of ≡.

Definition 9 A program is in CSSA-form if and only if for every pair of variables

v1, v2 that occur in the same φ-function, we have that if v1 ≡ v2, then v1 and v2

do not interfere.

The program in Figure 5.4 (a) is not in CSSA-form, because the φ-related

variables a and a2 interfere; however, the programs in Figures 5.4 (b) and (c) are.

A SSA-form program can be converted to CSSA-form via a very simple algorithm,

called the “Method I” or “naive algorithm” by Sreedhar et al. [84, p.199]. This

algorithm splits live ranges of variables used or defined in φ-functions. Sreedhar

et al. have shown that this live range splitting is sufficient to convert a SSA-

form program to a program in conventional-SSA-form. The transformed control

flow graph contains one φ-related equivalence class for each φ-function, and one

equivalence class for each virtual v that does not participate in any φ-function.

Figure 5.4 (b) shows how the equivalence class of the φ-function a = φ(a1, a2)

could be converted into CSSA-form using Sreedhar’s “Method I”.

Although the naive algorithm produces correct programs, it is excessively

conservative: two virtuals are φ-related if, and only if, they are used in the same

φ-function. If a copy inserted by the naive method can be removed without

creating interferences between φ-related variables, we call it redundant. Budimlic

et al. [21] gave a fast algorithm to remove redundant copies. The program in

Figure 5.4 (c) was produced according to this method.

98

a
b

a1 a2

b1 b2

=Φ

a1 = •
b1 = •

a2 = b

•= a

b2 = •

(a)

a'
b

a'1 a'2
b1 b2

=Φ

a1 = •
a'1 = a1

b1 = •

a = a'
a2 = b

•= a

a'2 = a2

b2 = •(b)

a
b

a1 a'2
b1 b2

=Φ

a1 = •
b1 = •

a2 = b

•= a

a'2 = a2

b2 = •

(c)

Figure 5.4: (a) Original, non-CSSA-form program. (b) Program converted into

CSSA via Sreedhar’s “Method I”. (c) Redundant copies removed via Budimlic’s

fast copy coalescing.

Frugal register allocators and Spartan parallel copies A register alloca-

tor for a CSSA-form program can assign the same location to all the variables

vi, vi1, . . . , vim, for each i ∈ 1..n, because none of those variables interfere. We say

that register allocation is frugal if it uses at most one memory location together

with any number of registers as locations for vi, vi1, . . . , vim, for each i ∈ 1..n.

The problem of doing SSA-elimination consists of implementing one parallel

copy for each column in each φ-matrix. We can implement each parallel copy

independently of the others. We will use the notation

(l1, . . . , ln) := (l′1, . . . , l
′
n)

for a single parallel copy, in which li, l
′
i, i ∈ 1..n, range over R ∪M , where R =

{r1, r2, . . . , rk} is a set of registers, and M = {m1, m2, . . .} is a set of memory

locations. We say that a parallel copy is well defined if all the locations on its left

side are pairwise distinct. We will use ρ to denote a store that maps elements of

99

R ∪M to values. If ρ is a store in which l′1, . . . , l
′
n are defined, then the meaning

of a parallel copy (l1, . . . , ln) = (l′1, . . . , l
′
n) is ρ[l1 ← ρ(l′1), . . . ln ← ρ(l′n)].

We say that a well-defined parallel copy (l1, . . . , ln) = (l′1, . . . , l
′
n) is spartan if

1. for all l′a, l
′
b, if l′a = l′b, then a = b;

2. for all la, l
′
b such that la and l′b are memory locations, we have la = l′b if and

only if a = b.

Informally, condition (1) says that the locations on the right-hand side are pair-

wise distinct, and condition (2) says that a memory location appears on both

sides of a parallel copy if and only if it appears at the same index.

Theorem 10 After frugal register allocation, the φ-functions used in a program

in CSSA-form can be implemented using spartan parallel copies.

Proof. We must show that the parallel copies that we derive from a CSSA-

form program after frugal register allocation meet the two properties that define

spartan parallel copies:

1. The CSSA-form is a subset of SSA-form; thus, every variable is defined at

most once. This implies that all the parallel copies must be well defined.

2. Given a set of φ-functions V = φM , a frugal register allocator assigns the

same memory slot to spilled variables in row i of M , and in index i of V . If

a variable in row j, j 6= i is spilled, it must be allocated to a memory spot

different than the one reserved for variables in the i-th row, as variables in

the same column interfere. The same is true for variables in V .

�

100

l1
l2
l3
l4

l2 l3 l4
l3 l3 l1
l2 l4 l2
l3 l5 l3

=Φ
l2 l3

l4l1
l1l2

l3
l4 l5 l2 l3

l4l1

First
Column

Second
Column

Third
ColumnΦ-matrix

Figure 5.5: A φ-matrix and its representation as three location transfer graphs.

5.4 From windmills to cycles and paths

We now show that a spartan parallel copy can be represented using a particularly

simple form of graph that we call a spartan graph (Theorem 12).

We will represent each parallel copy by a location transfer graph.

Definition 11 Location Transfer Graph. Given a well-defined parallel copy

(l1, . . . , ln) := (l′1, . . . , l
′
n), the corresponding location transfer graph G = (V, E) is

a directed graph where V = {l1, . . . , ln, l′1, . . . , l′n}, and E = {(l′a, la) | a ∈ 1..n}.

Figure 5.5 contains a φ-matrix and its representation as three location transfer

graphs. The location transfer graphs that represent well-defined parallel copies

form a family of graphs known as windmills [78]. This name is due to the shape

of the graphs: each connected component has a central cycle from which sprout

trees, like the blades of a windmill.

The location transfer graphs that represent spartan parallel copies form a

family of graphs that is significantly smaller than windmills. We say that a

location transfer graph G is spartan if

• the connected components of G are cycles and paths;

101

• if a connected component of G is a cycle, then either all its nodes are in R,

or it is a self loop (m, m);

• if a connected component of G is a path, then only its first and/or last

nodes can be in M ; and

• if (m1, m2) is an edge in G, then m1 = m2.

Notice that the first and second graphs in Figure 5.5 are not spartan because

they contain nodes with out-degree 2. In contrast, the third graph in Figure 5.5

is spartan (if l1, l2, l3, l4 are registers), because it is a cycle.

Theorem 12 A spartan parallel copy has a spartan location transfer graph.

Proof. It is straightforward to prove the following properties:

1. the in-degree of any node is at most 1;

2. the out-degree of any node is at most 1; and

3. if a node is a memory location m then:

(a) the sum of its out-degree and in-degree is at most 1, or

(b) G contains an edge (m, m).

The result is immediate from (1)–(3). �

5.5 SSA elimination

Our goal is to implement spartan parallel copies in the language Seq that contains

just four types of instructions: register-to-register moves r1 := r2, loads r := m,

102

stores m := r, and register swaps r1 ⊕ r2. Notice that Seq does not contain

instructions to swap or copy the contents of memory locations in one step. We

use ι to range over instructions. A Seq program is a sequence I of instructions

that modify a store ρ according to the following rules:

〈ι, ρ〉 → ρ′

〈ι; I, ρ〉 → 〈I, ρ′〉

〈l1 := l2, ρ〉 → ρ[l1 ← ρ(l2)]

〈r1 ⊕ r2, ρ〉 → ρ[r1 ← ρ(r2), r2 ← ρ(r1)]

The problem of implementing a parallel copy can now be stated as follows.

Implementation of a Spartan Parallel Copy

Instance: a spartan parallel copy (l1, . . . , ln) = (l′1, . . . , l
′
n).

Problem: find a Seq program I such that for all stores ρ,

〈I, ρ〉 →∗ ρ[l1 ← ρ(l′1), . . . ln ← ρ(l′n)].

Our algorithm ImplementSpartan uses a subroutine ImplementCompo-

nent that works on each connected component of a spartan location transfer

graph and is entirely standard.

Algorithm 1 – ImplementComponent: Input: G, Output: I

Require: G is a cycle or a path

Ensure: I is a Seq program.

1: if G is a path (l1, r2), . . . , (rn−2, rn−1), (rn−1, ln) then

2: I = (ln := rn−1; rn−1 := rn−2; . . . ; r2 := l1)

3: else if G is a cycle (r1, r2), . . . , (rn−1, rn), (rn, r1) then

4: I = (rn ⊕ rn−1; rn−1 ⊕ rn−2; . . . ; r2 ⊕ r1)

5: end if

103

Algorithm 2 – ImplementSpartan: Input: G, Output: program I

Require: G is a spartan location transfer graph.

Require: G has connected components C1, . . . , Cm.

Ensure: I is a Seq program.

1: I = ImplementComponent(C1); . . . ; ImplementComponent(Cm);

Theorem 13 (Correctness) For a spartan location transfer graph G,

ImplementSpartan(G) is a correct implementation of G.

Proof. See Appendix A.4. �

Once we have implemented each spartan parallel copy, all that remains to

complete spill-free SSA elimination is to replace the φ-functions with the gener-

ated code. As illustrated in Figure 5.3, the generated code for a parallel copy

must be inserted at the end of the basic block that leads to the parallel copy.

5.5.1 SSA Elimination and Critical Edges

Critical edges are edges that connect a basic block with multiple successors to

a basic block with multiple predecessors. Briggs et al. [14] have shown that the

existence of critical edges in the source program may lead to the production

of incorrect code during the replacement of φ-functions by copy instructions.

As demonstrated by Sreedhar et al [84], the CSSA-form allows to handle the

problems pointed by Briggs et al. without requiring the elimination of critical

edges from the source program. Nonetheless, the absence of critical edges greatly

simplifies SSA elimination after register allocation. For instance, if the code

produced by ImplementComponent is always inserted at the end of basic

blocks, then it can produce wrong code, as the example in Figure 5.6 shows. In

this example, the elimination of the φ-function (a2, r2) = φ[(a1, r1), . . .] requires

104

the contents of register r1 to be moved into register r2 in the control-flow path

connecting blocks 1 and 4. However, such transfer cannot be inserted at the end

of block 1, or it would overwrite the value of b, nor at the beginning of block 4,

or it would overwrite the value of a3.

(a1, r1) = •

(b, r2) = •

=Φ(a2, r2) (a1, r1) (a3, r2)

• = (a2, r2)

(a1, r1)

1 2

• = (b, r2)

(b, r2)

3

(a3, r2) = •

4

Figure 5.6: The presence of critical edges leads to incorrect code.

Another problem of critical edges is that they may cause an increase in the

global register pressure of the source program, even if φ-functions are eliminated

before register allocation. The register pressure at some program point, as defined

in Section 2.3.1, is the minimal number of registers necessary to allocate all the

variables alive at that point. The global register pressure of a program is the max-

imum number of registers necessary to allocate all the variables in the program.

For example, the program in Figure 5.7 (a) illustrates the swap-problem, pointed

by Briggs et al. [14], and Figure 5.7 (b) shows the same program, converted into

CSSA-form. The interference graph of the latter program has chromatic number

3, whereas the graph of the former program has chromatic number 2. Figure 5.7

(c) shows the same program, after the critical edge forming the loop has been

removed. The interference graph of this program has chromatic number 2. If

the source SSA-form program has no critical edges, then its register pressure is

105

guaranteed to remain the same after the convertion into CSSA-form, as we show

in Theorem 14.

x1 = •

y1 = •

=Φ
x2

y2

x1 y2

y1 x2

1

2

• = x2

x2, y2

3

x1

y1

x2

y2

x1 = •

y1 = •

=Φ
x2'

y2'

x1 y2

y1 x2”

x2 = x2'

y2 = y2'

x2” = x2

1

2

• = x2

x2”, y2

3

x1

y1

x2'

y2'

y2

x2”
x2

x1 = •

y1 = •

=Φ
x2'

y2'

x1 y2

y1 x2”

x2 = x2'

y2 = y2'

1

2

• = x2

x2”, x2

3

x2” = x2

x1

y1

x2'

y2'

y2

x2”
x2

(a) (b) (c)

Figure 5.7: (a) Example program. (b) Program in CSSA-form. (c) Program

after critical edge is eliminated. The interference graph of each program is shown

below its control flow graph.

Theorem 14 (Register Pressure) Let P be a program whose control flow

graph does not contain critical edges. It is possible to convert P to CSSA-form

without increasing its register pressure.

Proof. See Appendix A.5. �

5.6 Optimizations

We will present three optimizations of the ImplementSpartan algorithm. Each

optimization (1) has little impact on compilation time, (2) has a significant pos-

106

itive impact on the quality of the generated code, (3) can be implemented as

constant-time checks, and (4) must be accompanied by a small change to the

register allocator.

5.6.1 Store hoisting

Each variable name is defined only once in an SSA-form program; therefore, the

register allocator needs to insert only one store instruction per spilled variable.

However, algorithm ImplementSpartan inserts a store instruction for each edge

(r, m) in the location transfer graph. We can change ImplementComponent

to avoid inserting store instructions:

1: if G is a path (l1, r2), . . . , (rn−2, rn−1), (rn−1, m) then

2: I = (rn−1 := rn−2; . . . ; r2 := l1)

3: . . .

4: end if

For this to work, we must change the register allocator to explicitly insert a

store instruction after the definition point of each spilled variable. On the average,

store hoisting removes 12% of the store instructions in SPEC CPU 2000.

5.6.2 Load Lowering

Load lowering is the dual of store hoisting: it reduces the number of load and

copy instructions inserted by the ImplementSpartan Algorithm. There are

situations when it is advantageous to reload a variable right before it is used,

instead of during the elimination of φ-functions. Load lowering is particularly

useful in algorithms that follow the bin-packing model [56, 76, 81, 87], because

they allow the same variable to reach join points in different physical locations.

107

v = •

• = v

Allocate v
into r1

Move v into
r2 to avoid

spilling

v is in
mem. along
dashed path

(a) (b) (c)

L1

L4

L5

L2

Spill v due to high
register pressure

(v, r1) = •
(v,m) = (v, r1)

[r1] = Φ [r1 m]

[r2] = Φ [r1 m]
• = (v, r2)

L7

L3

L6

(v, r1) = •
(v,m) = (v, r1)

(v,r1)=(v,m)

•=(v, r2)

(v,r2)=(v,r1)

(v,r1)=(v,m)

(v,r2)=(v,m)
• = (v, r2)

(d)

(v, r1) = •
(v,m) = (v, r1)

Figure 5.8: (a) Example program (b) Program augmented with mock φ-functions.

(c) SSA elimination without load-lowering. (d) Load-lowering in action.

In Figure 5.8 we simulate the different locations of variable v by inserting mock φ-

functions at the beginning of basic blocks L2 and L7, as pointed in Figure 5.8 (b).

The fixing code will be naturally inserted when these φ-functions are eliminated.

The load lowering optimization would replace the instructions used to implement

the φ-functions, shown in Figure 5.8 (c), with a single load before the use of v at

basic block L7, as outlined in Figure 5.8 (d).

Variables can be lowered according to the nesting depth of basic blocks in

loops, or the static number of instructions that could be saved. The SSA elimi-

nation algorithm must remember, for each node l in the location transfer graph,

which variable is allocated into l. During register allocation we mark all the vari-

ables v that would benefit from lowering, and we avoid inserting loads for locations

that have been allocated to v. Instead, the register allocator must insert reloads

before each use of v. These reloads may produce redundant memory transfers,

which are eliminated by the memory coalescing pass described in Section 5.6.3.

108

The updated elimination algorithm is outlined below:

1: if G is a path (m, r2), . . . , (rn−2, rn−1), (rn−1, ln) then

2: if m is holding a variable marked to be lowered then

3: I = (ln := rn−1; rn−1 := rn−2; . . . ; r3 := r2)

4: else

5: I = (ln := rn−1; rn−1 := rn−2; . . . ; r2 := m)

6: end if

7: . . .

8: end if

5.6.3 Memory coalescing

A memory transfer is a sequence of instructions that copies a value from a mem-

ory location m1 to another memory location m2. The transfer is redundant if

these locations are the same. The CSSA-form allows us to coalesce a common

occurrence of redundant memory transfers. Consider, for instance, the code that

the compiler would have to produce in case variables v2 and v, in the figure below,

are spilled. In order to send the value of v2 to memory, the value of v would have

to be loaded into a spare register r, and then the contents of r would have to be

stored, as illustrated in figure (b). However, v and v2 are mapped to the same

memory location because they are φ-related. The store instruction can always

be eliminated, as in figure (c). Furthermore, if the variable that is the target of

the copy - v2 in our example - is dead past the store instruction, then the whole

memory transfer can be completely eliminated, as we show in figure (d) below:

109

…

v2 = v

…

v … v2=ϕ (v,m) … (v2,m)=ϕ

1: (v,r) = (v,m)
2: (v2,r) = (v,r)

3: (v2,m) = (v2,r)

(v,m) … (v2,m)=ϕ

1: (v2,r) = (v,m)

(v,m) … (v2,m)=ϕ

…
• = (v2,r)

If v2 is dead after
store, the memory
transfer can be
safely removed

(a) (b) (c) (d)

5.7 Experimental results

We rely on the SSA elimination framework described in this chapter to imple-

ment the φ-functions, π-functions and parallel copies that we use to produce the

elementary form from Chapter 3. The experiments shown in this section were

performed in the same execution environment described in Section 3.6.

Impact of our SSA Elimination Method Figure 5.9 summarizes static data

obtained from the compilation of SPEC CPU 2000. Our SSA Elimination algo-

rithm had to implement 197,568 location transfer graphs when compiling this

benchmark suite. These LTGs contain 1,601,110 edges, out of which 855,414, or

53% are memory transfers. Due to properties of spartan location transfer graphs,

edges representing memory transfers are self-loops, that is, an edge from a node

m pointing to itself. Because our memory transfer edges have source and target

pointing to the same address, the SSA Elimination algorithm does not have to

insert any instruction to implement them. Potential spills could have happened

in 11,802 location transfer graphs, or 6% of the total number of graphs, implying

that, if we had used a spilling on demand approach instead of our SSA elimina-

tion framework, a second spilling phase would be necessary in all the benchmark

programs. We mark as potential spills the location transfer graphs that contain

memory transfers, and in which the register pressure is maximum, that is, all the

physical registers are used in the right side of the parallel copy.

110

gcc pbk gap msa vtx twf cfg vpr amp prs gzp bz2 art

#ltg 72.6 40.3 22.1 15.6 15.8 6.8 7.7 4.5 4.0 5.2 .9 .73 .36

%sp 3.3 5.0 9.8 2.3 9.3 6.5 14.9 13.5 7.9 6.5 10.9 22.7 9.2

#edg 586.2 256.3 150.8 96.9 121.5 58.0 124.2 101.7 29.6 35.5 11.1 14.3 2.7

%mt 56.4 41.7 43.5 50.6 47.1 57.3 66.8 75.4 37.4 42.8 63.6 71.8 46.0

Figure 5.9: #ltg: number of location transfer graphs (in thousands), %sp: per-

centage of LTG’s that are potential spills, #edg: number of edges in all the LTG’s

(in thousands), %mt: percentage of the edges that are memory transfers.

Time Overhead of SSA-Elimination The charts in Figure 5.10 show the

time required by our compilation passes. Register allocation accounts for 28%

of the total compilation time. This time is similar to the time required by the

standard linear scan register allocator, as reported in previous works [77, 80]. The

passes related to SSA elimination account for about 4.8% of the total compilation

time. These passes are: (i) Sreedhar’s “Method I”, which splits the live ranges

of all the variables that are part of φ-functions [84, pg.199]; (ii) a pass to remove

critical edges; (iii) a pass to remove redundant copies, based on Budimlic’s fast

copy coalescing [21]; (iv) our spill-free SSA elimination pass. The amount of time

taken by each of these passes is distributed as follows: (i) 0.2%, (ii) 0.5%, (iii)

1.6% and(iv) 2.5%.

Impact of the Optimizations Figure 5.11 shows the static reduction of load,

store and copy instructions due to the optimizations described in Section 5.6. The

criterion used to determine if a variable should be lowered or not is the number

of reloads that would be inserted for that variable versus the number of uses of

the variable. Before running the SSA-elimination algorithm we count the number

of reloads that would be inserted for each variable. The time taken to get this

measure is negligible compared to the time to perform SSA-elimination: loads

111

20%

40%

60%

80%

Phi-lifting + Phi-coalescing + SSA-elimination + Remove crit. edges
Other compilation passesRegister allocation pass

Phi-lifting Remove crit. edges Phi-coalescing SSA-Elimination

20%

40%

60%

80%

gcc pbk gap msa vtx twf crf vpr amp prs gzp bz2 art eqk mcf Avg

gcc pbk gap msa vtx twf crf vpr amp prs gzp bz2 art eqk mcf Avg

Figure 5.10: Execution time of different compilation passes.

can only be the last edge of a spartan location transfer graph (Theorem 12).

A variable is lowered if its spilling causes the allocator to insert more reloads

than the number of uses of that variable in the source program. Store hoisting

(SH) alone eliminates on average about 12% of the total number of stores in the

target program, which represents slightly less than 5% of the lines of spill code

inserted. By plugging in the elimination of redundant memory transfers (RMTE)

we remove other 2.6% lines of spill code. Finally, load lowering (LL), on top of

these other two optimizations, eliminates 7.8% more lines of spill code. Load

lowering also removes 5% of the copy instructions from the target programs.

The chart in the bottom part of Figure 5.11 shows how the optimizations

influence the run time of the benchmarks. On the average, they produce a speed

112

0.6

0.7

0.8

0.9

1

SH SH+RMTE SH+RMTE+LL LL
Memory access instructions eliminated Move instructions eliminated

gcc pbk gap msa vtx twf crf vpr amp prs gzp bz2 art eqk mcf Avg

pbk gap msa vtx twf crf vpr amp prs gzp bz2 art eqk mcf Avggcc
0.94

1

1.03

0.95

0.97

0.99

LL+RMTE LL RMTE

Figure 5.11: Impact of Load Lowering (LL) and Redundant Memory Transfer

Elimination (RMTE) on the code produced after SSA-elimination. (Up) Code

size. (Down) Run-time.

up of 1.9%. Not all the programs benefit from load lowering. For instance, load

lowering increases the run time of 186.crafty in almost 2.5%. This happens

because, for the sake of simplicity, we do not take into consideration the loop

nesting depth of basic blocks when lowering loads. We speculate that more

sophisticated criteria would produce more substantial performance gains. Yet,

these optimizations are being applied on top of a very efficient register allocator,

and they do not incur in any measurable penalty in terms of compilation time.

113

5.8 Final Remarks

This chapter has presented spill-free SSA elimination, a simple and efficient al-

gorithm for SSA elimination after register allocation that avoids increasing the

number of spilled variables. Our algorithm runs in polynomial time and accounts

for a small portion of the total compilation time.

Our approach relies on the ability to swap the contents of two registers. For

integer registers, architectures such as x86 provide a swap instruction, while on

other architectures swaps can be implemented with a sequence of three xor in-

structions. In contrast, for floating point registers, most architectures provide

neither a swap instruction nor a xor instruction, so instead compiler writers have

to use one of the other approaches to SSA-elimination, e.g: separate a temporary

register or perform spilling on demand.

114

CHAPTER 6

Conclusion

In this dissertation we have shown that the spill free register allocation problem

has polynomial time solution even in architectures as irregular and constrained as

the x86. The key insight of our work is to show how the elementary program rep-

resentation simplifies register allocation. Elementary graphs are the interference

graphs of programs in this representation. We have shown that a large array of

problems related to graph coloring has polynomial time solution when restricted

to elementary graphs. This result is particularly surprising when we consider

that most of these problems are already NP-complete for interval graphs, one of

the simplest classes of intersection graphs.

6.1 Summary of Results

Along this research we have made a number of discoveries, which we summarize

in this section.

Proofs of NP-completeness We have shown that a number of register allo-

cation related problems is NP-complete:

• Register allocation after classic SSA-elimination is NP-complete [74]. This

result holds if SSA elimination is performed by algorithms that rely only

on move instructions to implement φ-functions. The algorithms discussed

115

in Section 5 are able to do SSA Elimination without raising the demand for

registers in the target program.

• Finding minimum number of instructions to convert a program from SSA

to CSSA-form is NP-complete [72].

• Alias register allocation is NP-complete for chordal graphs. This proof was

later improved by Lee et al. [59] who showed that alias register allocation

is NP-complete even for interval graphs, a subset of chordal graphs.

• Spilling is NP-complete in elementary programs, as we show in Section A.3.

This proof includes showing that any chordal graph is the interference graph

of some SSA-form program.

Polynomial Time Algorithms We have shown that many problems that are

NP-complete for general graphs have polynomial time solution when restricted

to elementary graphs:

• Graph-coloring, 1-2 Aligned Coloring, Coloring extension and the 1-2 Aligned

coloring extension for type-1 puzzles, as we show in Section A.1.

• We have been able to show that the Max-Coloring Problem, which is known

to be NP-complete for interval graphs [70], has polynomial time solution for

elementary graphs. This implies that the problem of determining the size

of the smallest register bank, in bits, for a given application has polynomial

time solution [71].

• Recently Jens Palsberg and Siddharth Tiwary showed that the aligned 1-2

graph coloring problem has polynomial time solution for type-2 puzzles.

Their proof demonstrates that spill-free register allocation has polynomial

116

time solution for all the most popular computer architectures currently in

use, including x86, PowerPC, ARM, and Ultra-Sparc.

• The minimum number of sequential operations necessary to perform SSA

elimination in a colored CSSA-form program. This result is valid for register

files without aliasing. The analogous question referring to aliased register

banks is an open problem.

Software Implementation Apart from the theoretical results, we have im-

plemented a vast amount of software, currently available under the license of the

Regents of the University of California, Los Angeles:

• a register allocator based on the coloring of chordal graphs [73]. This algo-

rithm is implemented in the JoeQ compilation framework [89];

http://compilers.cs.ucla.edu/fernando/projects/APLAS2005/

• a SSA-based register allocator implemented on PowerPC. This algorithm

follows the description given by Hack et al. [48];

http://compilers.cs.ucla.edu/fernando/projects/soc/

• a translator validator for register allocation. This tool is based on the type-

checking algorithm described by Nandivada et al. [66].

http://compilers.cs.ucla.edu/fernando/projects/debugger/

• the puzzle-based register allocator described in Chapter 3.

http://compilers.cs.ucla.edu/fernando/projects/puzzles/

117

6.2 Limitations of our approach

Register assignment is not the single most important part of register allocation.

We can successfully determine if all the variables in a program can be completely

packed into registers, but, when that is not the case, we have to face the difficult

task of deciding which variables must stay in registers, and which variables must

be stored in memory. Minimizing the cost of memory access is a NP-complete

problem, even in program representations as restricted as the elementary form.

Nevertheless, we have been able to show that the coupling of our register

assignment algorithm and Belady’s heuristics for spilling is powerful enough to

compete with much slower algorithms, such as iterated register coalescing and

partitioned boolean quadratic programming.

We have shown that local coalescing has polynomial time solution for type-1

puzzles that have an empty board. That should be enough, as 95% of the puzzles

found in real benchmarks have empty board. The global coalescing problem is

NP-complete. This is a simple reduction from the Aliased coloring problem.

Global coalescing, in contrast to the local coalescing problem discussed in

Chapter 4, is NP-complete, as proved by Ferriére et al..

Optimizing the translation out-of-ssa with renaming constraints

6.3 Open Problems

Finding the minimum number of copies to implement SSA Elimination with alias-

ing. Optimal coalescing for puzzles with pre-colored areas, and for type-n, n > 1.

118

APPENDIX A

Proofs

A.1 Proof of Theorem 1

We will prove Theorem 1 for register banks that give type-1 puzzles. Theorem 1

states:

(Equivalence) Spill-free register allocation with pre-coloring for

an elementary program is equivalent to solving a collection of puzzles.

In Section A.1.1 we define three key concepts that we use in the proof, namely

aligned 1-2-coloring extension, clique substitution of P3, and elementary graph.

In Section A.1.2 we state four key lemmas and show that they imply Theorem 1.

Finally, in four separate subsections, we prove the four lemmas.

A.1.1 Definitions

We first state again a graph-coloring problem that we mentioned in Section 3.7,

namely aligned 1-2-coloring extension.

Aligned 1-2-coloring extension

Instance: a number of colors 2K, a weighted graph G, and a partial

aligned 1-2-coloring φ of G. Problem: Extend φ to an aligned 1-2-

coloring of G.

119

F0 F1 F2 F3 F4

F0[F1, F2, F3, F4]

F1 F2

F4 F3

Figure A.1: Example of a composition graph (taken from [42]).

We use the notation (2K, G, φ) to denote an instance of the aligned 1-2-

coloring extension problem. For a vertex v of G, if v is in the domain of φ, then

we say that v is pre-colored.

Next we define the notion of a clique substitution of P3. Let H0 be a graph

with n vertices v1, v2, . . . , vn and let H1, H2, . . . , Hn be n disjoint graphs. The

composition graph [42] H = H0[H1, H2, . . . , Hn] is formed as follows: for all 1 ≤

i, j ≤ n, replace vertex vi in H0 with the graph Hi and make each vertex of Hi

adjacent to each vertex of Hj whenever vi is adjacent to vj in H0. Figure A.1

shows an example of composition graph.

P3 is the path with three nodes, e.g., ({x, y, z}, {xy, yz}). We define a clique

substitution of P3 as PX,Y,Z = P3[KX , KY , KZ], where each KS is a complete

graph with |S| nodes.

Definition 15 A graph G is an elementary graph if and only if every connected

component of G is a clique substitution of P3.

120

A.1.2 Structure of the Proof

We will prove the following four lemmas.

• Lemma 16: Spill-free register allocation with pre-coloring for an elementary

program P is equivalent to the aligned 1-2-coloring extension problem for

the interference graph of P .

• Lemma 23: An elementary program has an elementary interference graph.

• Lemma 25: An elementary graph is the interference graph of an elementary

program.

• Lemma 27: Aligned 1-2-coloring extension for a clique substitution of P3 is

equivalent to puzzle solving.

We can now prove Theorem 1:

Proof. From Lemmas 16, 23, and 25 we have that spill-free register allocation

with pre-coloring for an elementary program is equivalent to aligned 1-2-coloring

extension for elementary graphs. From Lemma 27 we have that aligned 1-2-

coloring extension for elementary graphs is equivalent to solving a collection of

puzzles. �

A.1.3 From register allocation to coloring

Lemma 16 Spill-free register allocation with pre-coloring for an elementary pro-

gram P is equivalent to the aligned 1-2-coloring extension problem for the inter-

ference graph of P .

121

Proof. Chaitin et al. [24] have shown that spill-free register allocation for a

program P is equivalent to coloring the interference graph of P , where each color

represents one physical register. To extend the spill-free register allocation to

an architecture with a type-1 register bank, we assign weights to each variable

in the interference graph, so that variables that fit in one register are assigned

weight 1, and variables that fit in a register-pair are assigned weight 2. To include

pre-coloring, we define φ(v) = r, if vertex v represents a pre-colored variable, and

color r represents the register assigned to this variable. Otherwise, we let φ(v)

be undefined. �

A.1.4 Elementary programs and graphs

We will show in three steps that an elementary program has an elementary in-

terference graph. We first give a characterization of clique substitutions of P3

(Lemma 18). Then we show that a graph G is an elementary graph if and only

if G has an elementary interval representation (Lemma 20). Finally we show

that the interference graph of an elementary program has an elementary interval

representation and therefore is an elementary graph (Lemma 23).

A.1.4.1 A Characterization of Clique Substitutions of P3

We will give a characterization of a clique substitution of P3 in terms of forbidden

induced subgraphs. Given a graph G = (V, E), we say that H = (V ′, E ′) is an

induced subgraph of G if V ′ ⊆ V and, given two vertices v and u in V ′, uv ∈ E ′

if, and only if, uv ∈ E. Given a graph F , we say that G is F -free if none of its

induced subgraphs is isomorphic to F . In this case we say that F is a forbidden

subgraph of G. Some classes of graphs can be characterized in terms of forbidden

subgraphs, that is, a set of graphs that cannot be induced in any of the graphs

122

in that class. In this section we show that any graph PX,Y,Z has three forbidden

subgraphs: (i) P4, the simple path with four nodes; (ii) C4, the cycle with four

nodes, and (iii) 3K1, the graph formed by three unconnected nodes. These graphs

are illustrated in Figure A.2, along with the bipartite graph K3,1, known as the

claw. The claw is important because it is used to characterize many classes of

graphs. For example, the interval graphs that do not contain any induced copy

of the claw constitute the class of the unit interval graphs [42, p. 187]. A key

step of our proof of Lemma 20 shows that elementary graphs are claw-free.

K3,1: The Claw3K1 P4 C4

Figure A.2: Some special graphs.

We start our characterization by describing the class of the Trivially Perfect

Graphs [41]. In a trivially perfect graph, the size of the maximal independent set

equals the size of the number of maximal cliques.

Theorem 17 (Golumbic [41]) A graph G is trivially perfect if and only if G

contains no induced subgraph isomorphic to C4 or P4.

The next lemma characterizes PX,Y,Z in terms of forbidden subgraphs.

Lemma 18 A graph G is a clique substitution of P3 if and only if G contains no

induced subgraph isomorphic to C4, P4, or 3K1.

Proof. (⇒) Let G be a clique substitution of P3, and let G be of the form

PX,Y,Z . Let us first show that G is trivially perfect. Note that G contains either

123

one or two maximal cliques. If G contains one maximal clique, we have that G

is of the form P∅,Y,∅, and the maximal independent set has size 1. If G contains

two maximal cliques, those cliques must be X ∪ Y and X ∪ Z. In this case,

the maximal independent set has two vertices, namely an element of X − Y and

an element of Z − Y . So, G is trivially perfect, hence, by Theorem 17, G does

not contain either C4 nor P4 as induced subgraphs. Moreover, the maximum

independent set of G has size one or two; therefore, G cannot contain an induced

3K1.

(⇐) If G is C4-free and P4-free, then G is trivially perfect, by Theorem 17.

Because G is 3K1-free, its maximal independent set has either one or two nodes.

If G is unconnected, we have that G consists of two unconnected cliques; thus,

G = PX,∅,Y . If G is connected, it can have either one or two maximal cliques. In

the first case, we have that G = P∅,Y,∅. In the second, let these maximal cliques

be C1 and C2. We have that G = PC1−C2,C1∩C2,C2−C1 . �

A.1.4.2 A Characterization of Elementary Graphs

We recall the definitions of an intersection graph and an interval graph [42, p.9].

Let Sl be a family of nonempty sets. The intersection graph of Sl is obtained by

representing each set in Sl by a vertex and connecting two vertices by an edge if

and only if their corresponding sets intersect. An interval graph is an intersection

graph of a family of subintervals of an interval of the real numbers.

A rooted tree is a directed tree with exactly one node of in-degree zero; this

node is called root. Notice that there is a path from the root to any other vertex

of a rooted tree. The intersection graph of a family of directed vertex paths

in a rooted tree is called a rooted directed vertex path graph, or RDV [63]. A

polynomial time algorithm for recognizing RDV graphs was described in [39].

124

The family of RDV graphs includes the interval graphs, and is included in the

class of chordal graphs. An example of RDV graph is given in Figure A.3.

a

bc

d
e

f

g

a

b

c
d

e f
g

root

(b)(a) (c)

Figure A.3: (a) Directed tree T . (b) Paths on T . (c) Corresponding RDV graph.

Following the notation in [39], we let L = {v1, . . . , vn} denote a set of n

directed paths in a rooted tree T . The RDV graph that corresponds to L is

G = ({v1, . . . , vn}, E), where vivj ∈ E if and only if vi ∩ vj 6= ∅. We call L

the path representation of G. Because T is a rooted tree, each interval v has a

well-defined start point s(v), and a well-defined end point e(v): s(v) is the point

of v closest to the root of T , and e(v) is the point of v farthest from the root.

Given a connected graph G = (V, E), the distance between two vertices

{u, v} ⊆ V is the number of edges in the shortest path connecting u to v. The

diameter of G is the maximal distance between any two pairs of vertices of G. A

key step in the proof of Lemma 20 below (Claim 3) shows that the diameter of

any connected component of an elementary graph is at most 2.

We define elementary interval representation as follows:

Definition 19 A graph G has an elementary interval representation if:

1. G is a RDV graph.

2. If uv ∈ E, then s(u) = s(v), or e(u) = e(v).

125

3. If uv ∈ E, then u ⊆ v or v ⊆ u.

Lemma 20 shows that any elementary graph has an elementary interval rep-

resentation.

Lemma 20 A graph G is an elementary graph if, and only if, G has an elemen-

tary interval representation.

Proof. (⇐) We first prove six properties of G:

• Claim 1: If a, b, c ∈ V , ab ∈ E, bc ∈ E and ac /∈ E, then we have (a∪ c) ⊆ b

in any path representation of G.

• Claim 2: G is P4-free.

• Claim 3: Let C = (VC , EC) be a connected component of G. Given a, b ∈ VC

such that ab /∈ EC , then ∃v such that av ∈ EC and bv ∈ EC .

• Claim 4: G is claw-free.

• Claim 5: Every connected component of G is 3K1-free.

• Claim 6: G is C4-free.

Proof of Claim 1. Let us first show that b * a. If b ⊆ a, then, from ac /∈ E

we would have bc /∈ E, which is a contradiction. Given that ab ∈ E and b * a we

have that a ⊆ b. By symmetry, we have that c ⊆ b. We conclude that (a∪c) ⊆ b.

Proof of Claim 2. Assume G contains four vertices x, y, z and w that induce

the path {xy, yz, zw} in G. From Claim 1 we have (x ∪ z) ⊆ y; in particular,

z ⊆ y. Similarly we have (y ∪ w) ⊆ z; in particular, y ⊆ z. So, y = z. From

zw ∈ E and y = z, we have yw ∈ E, contradicting that the set {x, y, z, w}

induces a path in G.

126

Proof of Claim 3. From Claim 2 we have that G is P4-free, so any minimal-

length path between two connected vertices contains either one or two edges. We

have a, b ∈ VC so a, b are connected, and we have ab 6∈ EC , so we must have a

minimal-length path {av, vb} for some vertex v.

Proof of Claim 4. Let L be G’s directed path representation. Suppose G

contains four vertices x, y, z, w that induce the claw {xy, xz, xw}. Without loss

of generality, we assume s(x) = s(y). Because G is an RDV-graph, we must have

e(x) = e(z). However, x and w interfere, yet, w cannot share the starting point

with x, or it would interfere with y, nor can w share its end point with x, or it

would interfere with z. So, the claw is impossible.

Proof of Claim 5. Let C = (VC , EC) be a connected component of G. Assume,

for the sake of contradiction, that there are three vertices {a, b, c} ∈ VC such that

ab /∈ EC , ac /∈ EC and bc /∈ EC . From Claim 3 we have that there exists a

vertex vab that is adjacent to a and b. Likewise, we know that there exists a

vertex vbc that is adjacent to b and c. From Claim 1 we have that in any path

representation of G, (a ∪ b) ⊆ vab. We also know that (b ∪ c) ⊆ vbc. Therefore,

b ⊆ (vab ∩ vbc), so vabvbc ∈ EC , hence either vab ⊆ vbc or vbc ⊆ vab. If the first

case holds, {a, b, c, vbc} induces a claw in G, which is impossible, given Claim 4.

In the second case, {a, b, c, vab} induces a claw.

Proof of Claim 6. By definition, RDV graphs are chordal graphs, which are

C4 free.

Finally, we prove that every connected component of G is a clique substitution

of P3. By Lemma 18, a minimal characterization of clique substitutions of P3 in

terms of forbidden subgraphs consists of C4, P4, and 3K1. G is C4-free, from

Claim 6, and G is P4-free, from Claim 2. Any connected component of G is

3K1-free, from Claim 5.

127

(⇒) Let G be a graph with K connected components, each of which is a

clique substitution of P3. Let PX,Y,Z be one of G’s connected components. We

first prove that PX,Y,Z has an elementary interval representation. Let T be a

rooted tree isomorphic to P4 = ({a, b, c, d}, {ab, bc, cd}), and let a be its root. We

build an elementary graph GP , isomorphic to PX,Y,Z using intervals on T . We

let −−−−−−→v1v2 . . . vn denote the directed path that starts at node v1 and ends at node

vn. We build an elementary interval representation of PX,Y,Z as follows: for any

x ∈ X, we let x =
−→
ab. For any y ∈ Y , we let y =

−−→
abcd. And for any z ∈ Z, we

let z =
−→
cd. It is straightforward to show that the interval representation meets

the requirements of Definition 19.

Let us then show that G has an elementary interval representation. For each

connected component Ci, 1 ≤ i ≤ K of G, let Ti be the rooted tree that underlies

its directed path representation, and let rooti be its root. Build a rooted tree

T as root ∪ Ti, 1 ≤ i ≤ K, where root is a new node not in any Ti, and let

root be adjacent to each rooti ∈ Ti. The directed paths on each branch of T

meet the requirements in Lemma 20 and thus constitute an elementary interval

representation. �

Lemma 20 has a straightforward corollary that justifies one of the inclusions

in Figure 3.20.

Corollary 21 An elementary graph is a unit interval graph.

Proof. Let us first show that a clique substitution of P3 is a unit interval

graph. Let i be an integer. Given PX,Y,Z , we define a unit interval graph I in the

following way. For any x ∈ X − Y , let x = [i, i + 3]; for any y ∈ (Y − (X ∪ Z)),

let y = [i + 2, i + 5]; and for any z ∈ Z − Y , let z = [i + 4, i + 7]. Those intervals

represent PX,Y,Z and constitute a unit interval graph.

128

By the definition of elementary graphs we have that every connected compo-

nent of G is a clique substitution of P3. From each connected component G we

can build a unit interval graph and then assemble them all into one unit interval

graph that represents G. �

A.1.4.3 An elementary program has an elementary interference graph

Elementary programs were first introduced in Section 3.2.2. In that section we

described how elementary programs could be obtained from ordinary programs

via live range splitting and renaming of variables; we now give a formal definition

of elementary programs.

Program points and live ranges have been defined in Section 3.2.2. We denote

the live range of a variable v by LR(v), and we let d(v) be the instruction that

defines v. A program P is strict [21] if every path in the control-flow graph of P

from the start node to a use of a variable v passes through one of the definitions

of v. A program P is simple if P is a strict program in SSA-form and for any

variable v of P , LR(v) contains at most one program point outside the basic

block that contains d(v). For a variable v defined in a basic block B in a simple

program, we define k(v) to be either the unique instruction outside B that uses

B, or, if v is used only in B, the last instruction in B that uses v. Notice that

because P is simple, LR(v) consists of the program points on the unique path

from d(v) to k(v). Elementary programs are defined as follows:

Definition 22 A program produced by the grammar in Figure A.4 is in elemen-

tary form if, and only if, it has the following properties:

1. Pe is a simple program;

2. if two variables u, v of Pe interfere, then either d(u) = d(v), or k(u) = k(v);

129

P ::= S (L φ(m, n) i∗ π(p, q))∗ E

L ::= Lstart, L1, L2, . . . , Lend

v ::= v1, v2, . . .

r ::= AX, AH, AL, BX, . . .

o ::= •

| v

| r

S ::= Lstart : π(p, q)

E ::= Lend : halt

i ::= o = o

| V (n) = V (n)

π(p, q) ::= M(p, q) = πV (q)

φ(n, m) ::= V (n) = φM(m, n)

V (n) ::= (o1, . . . , on)

M(m, n) ::= V1(n) : L1, .., Vm(n) : Lm

Figure A.4: The grammar of elementary programs.

and

3. if two variables u, v of Pe interfere, then either LR(u) ⊆ LR(v), or LR(v) ⊆

LR(u).

We can produce an elementary program from a strict program:

• insert φ-functions at the beginning of basic blocks with multiple predeces-

sors;

• insert π-functions at the end of basic blocks with multiple successors;

130

• insert parallel copies between consecutive instruction in the same basic

block; and

• rename variables at every opportunity given by the φ-functions, π-functions,

and parallel copies.

An elementary program P generated by the grammar A.4 is a sequence of basic

blocks. A basic block, which is named by a label L, is a sequence of instructions,

starting with a φ-function and ending with a π-function. We assume that a

program P has two special basic blocks: Lstart and Lend, which are, respectively,

the first and last basic blocks to be visited during P ’s execution. Ordinary

instructions either define, or use, one operand, as in r1 = v1. An instruction such

as v1 = • defines one variable but does not use a variable or register. Parallel

copies are represented as (v1, . . . , vn) = (v′1, . . . , v
′
n).

In order to split the live range of variables, elementary programs use φ-

functions and π-functions. φ-functions are an abstraction used in SSA-form to

join the live ranges of variables. An assignment such as:

(v1, . . . , vn) = φ[(v11, . . . , vn1) : L1, . . . (v1m, . . . , vnm) : Lm]

contains n φ-functions such as vi ← φ(vi1 : L1, . . . , vim : Lm). The φ symbol works

as a multiplexer. It will assign to each vi the value in vij, where j is determined

by Lj, the basic block last visited before reaching the φ assignment. Notice that

these assignments happen in parallel, that is, all the variables v1i, . . . , vni are

simultaneously copied into the variables v1, . . . , vn.

The π-functions were introduced in [52] with the name of swicth nodes. The

name π-node was established in [9]. The π-nodes, or π-functions, as we will call

them, are the dual of φ-functions. Whereas the latter has the functionality of a

variable multiplexer, the former is analogous to a demultiplexer, that performs

131

a parallel assignment depending on the execution path taken. Consider, for

instance, the assignment below:

[(v11, . . . , vn1) : L1, . . . (v1m, . . . , vnm) : Lm] = π(v1, . . . , vn)

which represents m π-nodes such as (vi1 : L1, . . . , vim : Lm) ← π(vi). This

instruction has the effect of assigning to each variable vij : Lj the value in vi if

control flows into block Lj. Notice that variables alive in different branches of

a basic block are given different names by the π-function that ends that basic

block.

Lemma 23 An elementary program has an elementary interference graph.

Proof. Let P be an elementary program, let G = (V, E) be P ’s interference

graph, and let TP be P ’s dominator tree. We first prove that for any variable

v, LR(v) determines a directed path in TP . Recall that LR(v) consists of the

vertices on the unique path from d(v) to k(v). Those vertices are all in the

same basic block, possibly except k(v). So every vertex on that path dominates

the later vertices on the path, hence LR(v) determines a directed path in TP .

So, G is an RDV-graph. Given a variable v, we let s(LR(v)) = d(v), and we

let e(LR(v)) = k(v). The second and third requirements in Lemma 20 follow

immediately from the second and third requirements in Definition 22. �

A.1.5 An elementary graph is the interference graph of an elementary

program

In this section we show in two steps that any elementary graph is the interference

graph of some elementary program.

132

Lemma 24 A clique substitution of P3 is the interference graph of an instruction

sequence.

Proof. Let G = PX,Y,Z be a clique substitution of P3. Let m = |X|, n = |Y |

and p = |Z|. We build a sequence of 2(m + n + p) instructions i1, . . . i2(m+n+p)

that use m+n+ p variables, such that each instruction either defines or uses one

variable:

ij vj = • for j ∈ 1..n

in+j vn+j = • for j ∈ 1..m

in+m+j • = vn+j for j ∈ 1..m

in+2m+j vn+m+j = • for j ∈ 1..p

in+2m+p+j • = vn+m+j for j ∈ 1..p

in+2m+2p+j • = vj for j ∈ 1..n

Figure A.5 illustrates the instructions. It is straightforward to show that PX,Y,Z

is the interference graph of the instruction sequence. �

Lemma 25 An elementary graph is the interference graph of an elementary pro-

gram.

Proof. Let G be an elementary graph and let C1, . . . , Cn be the connected

components of G. Each Ci is a clique substitution of P3 so from Lemma 24 we

have that each Ci is the interference graph of an instruction sequence si. We

build an elementary program P with n + 2 basic blocks: Bstart, B1, . . . , Bn, Bend,

such that Bstart contains a single jump to B1, each Bi consists of si followed by a

single jump to Bi+1, for 1 ≤ i ≤ n− 1, and Bn consists of sn followed by a single

jump to Bend. The interference graph of the constructed program is G. �

133

…

…

…

i1
in
in+1
in+m
in+m+1

in+2m+1

in+2m

in+2m+p
in+2m+p+1
in+2m+2p
in+2m+2p+1
i2n+2m+2p

v1 = •
vn = •

vn+1 = •
vn+m = •

vn+m+p = •

•= vn+m+p

•= vn+m+1

•= v1
•= vn

•= vn+m

•= vn+1

vn+m+1 = •

Index Live Range Instruction

Figure A.5: An elementary program representing a clique substitution of P3.

A.1.6 From Aligned 1-2-coloring to Puzzle Solving

We now show that aligned 1-2-coloring extension for clique substitutions of P3 and

puzzle solving are equivalent under linear-time reductions. Our proof is in two

steps: first we show how to simplify the aligned 1-2-coloring extension problem

by padding a graph, and then we show how to map a graph to a puzzle.

Padding of puzzles has been defined in Section 3.3. A similar concept applies

to clique substitutions of P3. We say that a graph PX,Y,Z is 2K-balanced, if (1)

the weight of X equals the weight of Z, and (2) the weight X ∪ Y is 2K. We

pad PX,Y,Z by letting X ′, Z ′ be sets of fresh vertices of weight one such that the

padded graph P(X∪X′),Y,(Z∪Z′) is 2K-balanced. It is straightforward to see that

padding executes in linear time. Figure A.6 shows an example of padding. The

original graph has two maximal cliques: KX ∪KY with weight 5 and KY ∪KZ

with weight 4. We use square nodes to denote vertices of weight two. After the

padding, each maximal clique of the resulting graph has weight 6.

134

6-padding

Figure A.6: Example of padding. Square nodes represent vertices of weight two,

and the other nodes represent vertices of weight one.

Lemma 26 For any partial aligned 1-2-coloring φ whose domain is a subset of

X∪Y ∪Z, we have that (2K, PX,Y,Z , φ) is solvable if and only if (2K, P(X∪X′),Y,(Z∪Z′), φ)

is solvable.

Proof.

(⇒) Let G = PX,Y,Z , and let Gp = P(X∪X′),Y,(Z∪Z′). Let c be a function

that associates vertices of G with colors, and let cp be a function that associates

vertices of Gp with colors. Let v be a vertex of G, and let vp be the vertex of

Gp that corresponds to v. Finally, let s be a short vertex of Gp created due to

padding. Given c, we let cp(vp) = c(v). After coloring vertices vp, we greedily

color the vertices s. Let M1 and M2 be the maximal cliques of G. Because M1

is a comparability graph, the coloring of M1 uses a number of colors equal to

its weight w1 [42, pp.133]. The same holds true for M2. Let Q1 be the maximal

clique of Gp that corresponds to M1, let s1 be the short vertices of Q1 created due

to padding and let v1 be the vertices of Q1 which have corresponding vertices in

M1. We define w2, Q2, v2 and s2 in analogous way. The number of s1 vertices in

Q1 equals 2K − w1, by the definition of padding, and the coloring of vertices v1

requires exactly w1 colors. We color the s1 vertices with the remaining 2K − w1

colors. The number of s2 vertices in Q2 equals 2K − w2, and the coloring of

vertices v2 requires exactly w2 colors. We color the s2 vertices with the remaining

2K − w2 colors. The colors greedily assigned to vertices s1 and s2 constitute a

135

valid coloring, because s1 vertices are not adjacent to s2 vertices.

(⇐) Given cp, we build c as c(v) = cp(vp). �

We now define a bijection F from the aligned 1-2-coloring extension problem

for 2K-balanced clique substitutions of P3 to puzzle solving. We will view a board

with K areas as a 2-dimensional 2× 2K table, in which the i’th area consists of

the squares with indices (1, 2i), (1, 2i + 1), (2, 2i) and (2, 2i + 1).

Let (2K, G, φ) be an instance of the aligned 1-2-coloring extension prob-

lem, where G is a 2K-balanced clique substitution of P3. We define a puzzle

F (2K, G, φ) with K areas and the following pieces:

• ∀v ∈ X, weight of v is one: a size-1 X-piece. If φ(v) is defined and φ(v) = i,

then the piece is placed on the square (1, i), otherwise the piece is off the

board.

• ∀v ∈ X, weight of v is two: a size-2 X-piece. If φ(v) is defined and φ(v) =

{2i, 2i + 1}, then the piece is placed on the upper row of area i, otherwise

the piece is off the board.

• ∀v ∈ Y , weight of v is one: a size-2 Y-piece. If φ(v) is defined and φ(v) = i,

then the piece is placed on the squares (1, i) and (2, i), otherwise the piece

is off the board.

• ∀v ∈ Y , weight of v is two: a size-4 Y-piece. If φ(v) is defined and φ(v) =

{2i, 2i+1}, then the piece is placed on area i. otherwise the piece is off the

board.

• ∀v ∈ Z, weight of v is one: a size-1 Z-piece. If φ(v) is defined and φ(v) = i,

then the piece is placed on the square (2, i), otherwise the piece is off the

board.

136

• ∀v ∈ Z, weight of v is two: a size-2 Z-piece. If φ(v) is defined and φ(v) =

{2i, 2i + 1}, then the piece is placed on the lower row of area i, otherwise

the piece is off the board.

Given that φ is a partial aligned 1-2-coloring of G, we have that the pieces on the

board don’t overlap. Given that G is 2K-balanced, we have that the pieces have

a total size of 4K and that the total size of the X-pieces is equal to the total size

of the Z-pieces.

It is straightforward to see that F is injective and surjective, so F is a bijection.

It is also straightforward to see that F and F−1 both execute in O(K) time.

Lemma 27 Aligned 1-2-coloring extension for a clique substitution of P3 is equiv-

alent to puzzle solving.

Proof. First we reduce aligned 1-2-coloring extension to puzzle solving. Let

(2K, G, φ) be an instance of the aligned 1-2-coloring extension problem where G

is a clique substitution of P3. Via the linear-time operation of padding, we can

assume that G is 2K-balanced. Use the linear-time reduction F to construct a

puzzle F (2K, G, φ). Suppose (2K, G, φ) has a solution. The solution extends φ

to an aligned 1-2-coloring of G, and we can then use F to place all the pieces on

the board. Conversely, suppose F (2K, G, φ) has a solution. The solution places

the remaining pieces on the board, and we can then use F−1 to define an aligned

1-2-coloring of G which extends φ.

Second we reduce puzzle solving to aligned 1-2-coloring. Let Pz be a puzzle

and use the linear-time reduction F−1 to construct an instance of the aligned

1-2-coloring extension problem F−1(Pz) = (2K, G, φ), where G is a clique sub-

stitution of P3. Suppose Pz has a solution. The solution places all pieces on

the board, and we can then use F−1 to define an aligned 1-2-coloring of G which

137

extends φ. Conversely suppose F−1(Pz) has a solution. The solution extends φ

to an aligned 1-2-coloring of G, and we can then use F to place all the pieces on

the board. �

A.2 Proof of Theorem 2

Theorem 2 states:

(Correctness) A type-1 puzzle is solvable if and only if our pro-

gram succeeds on the puzzle.

We first show that an application of a rule from the algorithm given in Fig-

ure 3.7 preserves solvability of a puzzles.

Lemma 28 (Preservation) Let Pz be a puzzle and let i ∈ {1, . . . , 15} be the

number of a statement in our program. For i ∈ {11, 12, 13, 14}, suppose every

area of Pz is either complete, empty, or has just one square already filled in. For

i = 15, suppose every area of Pz is either complete or empty. Let a be an area

of Pz such that the pattern of statement i matches a. If Pz is solvable, then the

application of statement i to a succeeds and results in a solvable puzzle.

Proof. We begin by outlining the proof technique that we will use for each

i ∈ {1, . . . , 15}. Notice that statement i contains a rule for each possible strategy

that can be used to complete a. Let Sl be a solution of Pz. Given that Sl

completes a, it is straightforward to see that the application of statement i to a

succeeds, although possibly using a different strategy than Sl. Let Pz′ be the

result of the application of statement i to a. To see that Pz′ is a solvable puzzle,

we do a case analysis on (1) the strategy used by Sl to complete a and (2) the

138

strategy used by statement i to complete a. For each case of (1), we analyze the

possible cases of (2), and we show that one can rearrange Sl into Sl′ such that

Sl′ is a solution of Pz′. Let us now do the case analysis itself. If statement i

is a conditional statement, then we will use i.n to denote the nth rule used in

statement i.

i = 1. The area a can be completed in just one way. So, Sl uses the same

strategy as statement 1 to complete a, hence Sl is a solution of Pz′.

i ∈ {2, 3, 4, 5}. The proof is similar to the proof for i = 1, we omit the details.

i = 7. The area a can be completed in two ways. If Sl uses the strategy of

rule 7.1 to complete a, then statement 7 uses that strategy, too, hence Sl is a

solution of the resulting puzzle. If Sl uses the strategy of rule 7.2 to complete

a, we have two cases. Either statement 7 uses the strategy of rule 7.2, too, in

which case Sl is a solution of Pz′. Otherwise, statement 7 uses the strategy of

rule 7.1, in which case we can create Sl′ from Sl in the following way. We swap

the two size-2 X-pieces used by Sl to complete a, with the size-2 X-piece used by

statement 7 to complete a. To illustrate the swap, here are excerpts of Pz, Sl,

Pz′, Sl′ for a representative Pz.

X X X

X X X

X

X X X

X X

P

S

P´

S´

a

It is straightforward to see that Sl′ is a solution of Pz′.

i ∈ {8, 9, 10}. The proof is similar to the proof for i = 7, we omit the details.

i = 11. The area a can be completed in three ways. If Sl uses the strategy

139

of rule 11.1 or of rule 11.3 to complete a, the proof proceeds in a manner similar

to the proof for i = 7, we omit the details. If Sl uses the strategy of rule 11.2

to complete a, we have two cases. Either statement 11 uses the strategy of rule

11.2, too, in which case Sl is a solution of Pz′. Otherwise, statement 11 uses

the strategy of rule 11.1, and now we have several of subcases of Sl. Because

of the assumption that all areas of Pz are either complete, empty, or has just

one square already filled in, the following subcase is the most difficult; the other

subcases are easier and omitted. Here are excerpts of Pz, Sl, Pz′, Sl′.

X X

Y Y

X

Z

X
Y

Z

X

Z

X X

Z

Z
Y

Z Z
Y Y

X

Z
Y Y

a

P

S

P´

S´

It is straightforward to see that Sl′ is a solution of Pz′.

i ∈ {12, 13, 14}. The proof is similar to the proof for i = 11, we omit the

details.

i = 15. The proof is similar to the proof for i = 11, with a total of 28 subcases.

All the subcases turn out to be easy because of the assumption that all areas of

Pz are either complete or empty. We omit the details. �

We can now prove Theorem 2 (Correctness).

Proof. Suppose first that Pz is a solvable puzzle. We must show that our

program succeeds on Pz, that is, all the 15 statements succeed. From Lemma 28

and induction on the statement number we have that indeed all 15 statements

succeed.

140

Conversely, suppose Pz is a puzzle and that our program succeeds on Pz.

Statements 1–4 complete all areas with three squares already filled in. Statements

5–10 complete all areas with two squares already filled in. Statements 11–14

complete all areas with one square already filled in. Statement 15 completes all

areas with no squares already filled in. So, when our program succeeds on Pz,

the result is a solution to the puzzle. �

As a collary we get the following complexity result.

Lemma 29 The aligned 1-2-coloring extension problem for an elementary graph

G is solvable in O(C × K), where C is the number of connected components of

G, and 2K is the number of colors.

Proof. Let (2K, G, φ) be an instance of the aligned 1-2-coloring extension prob-

lem for which G is an elementary graph. We first list the connected components

of G in linear time [26]. All the connected components of G are clique substi-

tutions of P3. Next, for each connected component, we have from Lemma 27

that we can reduce the aligned 1-2-coloring extension problem to a puzzle solving

problem in linear time. Finally, we run our linear-time puzzle solving program on

each of those puzzles (Theorem 2). The aligned 1-2-coloring extension problem

is solvable if and only if all those puzzles are solvable. The total running time is

O(C ×K). �

A.3 Proof of Theorem 4

Theorem 4 states:

(Hardness) Register allocation with pre-coloring and spilling of

families of variables for an elementary program is NP-complete.

141

We reduce this problem to the maximal K-colorable subgraph of a chordal

graph, which was proved to be NP-complete by Yannakakis and Gavril [91]. The

key step is to show that any chordal graph is the interference graph of a program

in SSA form. We first define a convenient representation of chordal graphs.

Suppose we have a tree T and a family V of subtrees of T . We say that (T, V) is

a program-like decomposition if for for all σ ∈ V we have that:

1. the root of σ has one successor.

2. Each leaf of σ has zero or one predecessor.

3. Each vertex of T is the root of at most one element of V .

4. A vertex of T is the leaf of at most one element of V , in which case it is

not the root of any subtree.

5. Each element of V contains at least one edge.

For each subtree σ ∈ V , we identify rootσ as the vertex of σ that is the closest

to the root of T .

In order to prove that any chordal graph has a program like decomposition,

we rely on the concept of nice tree decomposition [61]. Given a nice tree T , for

each vertex x ∈ T we denote by Kx the union of all the subtrees that touch x. T

satisfies the following properties:

1. every node x has at most two children.

2. If x ∈ T has two children, y, z ∈ T , then Kx = Ky = Kz. In this case, x is

called a joint vertex.

3. If x ∈ T has only one child, y ∈ T , then Kx = Ky ∪ {y}, or Kx = Ky \ {y}.

142

4. If x ∈ T has no children, then Kx is reached by at most one subtree, and x

is called a leaf node.

Figure A.7 (b) shows a nice tree decomposition produced for the graph in Fig-

ure A.7 (a). The program like decomposition is given in Figure A.7 (c).

Lemma 30 A graph is chordal if and only if it has a program like tree decompo-

sition.

Proof. ⇐: immediate.

⇒: A graph is chordal if and only if it has a nice tree decomposition [61].

Given a chordal graph, and its nice tree decomposition, we build a program like

decomposition as follows:

1. the only nodes that have more than one successor are the joint nodes. If a

joint node v is the root of a subtree, replicate v. Let v′ be the replicated

node. Add the predecessor of v as the predecessor of v′, and let the unique

predecessor of v be v′. Now, v′ is the root of any subtree that contains v.

2. this is in accordance to the definition of nice tree, for joint nodes are never

leaves of subtrees.

3. If there is v ∈ T such that v is the root of σx, σy ∈ V , then replicate v.

Let v′ be the replicated node in such a way that Kv′ = Kv \ {x}. Add the

predecessor of v as the predecessor of v′, and let the unique predecessor of

v be v′. Now, v′ is the root of any subtree that reaches v, other than σy.

4. If there is v ∈ T such that v is the leaf of σx, σy ∈ V , then replicate v.

Let v′ be the replicated node in such a way that Kv′ = Kv \ {x}. Add the

sucessor of v as the successor of v′, and let the unique successor of v be v′.

Now, v′ is the leaf of any subtree that reaches v, except σy.

143

5. If there is a subtree that only spans one node, replicate that node as was

done in (1).

�

We next define simple notions of statement and program that are suitable for

this paper. We use v to range over program variables. A statement is defined by

the grammar:

(Statement) s ::= v = (definition of v)

| = v (use of v)

| skip

A program is a tree-structured flow chart of a particular simple form: a program

is a pair (T, `) where T is a finite tree, ` maps each vertex of T with zero or

one successor to a statement, and each variable v is defined exactly once and the

definition of v dominates all uses of v. Notice that a program is in strict SSA

form.

The interference graph of a program (T, `) is an intersection graph of a family

of subtrees V of T . The family of subtrees consists of one subtree, called the live

range, per variable v in the program; the live range is the subtree of the finite tree

induced by the set of paths from each use of v to the definition of v. Notice that

a live range consists of both vertices and edges (and not, as is more standard,

edges only). That causes no problem here because we don’t allow a live range to

end in the same node as another live range begins.

From a chordal graph G presented as a finite tree T and a program-like family

of subtrees V , we construct a program PG = (T, `), where for each subtree σ ∈ V ,

we define `(rootσ) to be “vσ =”, and for each subtree σ ∈ V , and a leaf n of σ,

we define `(n) to be “= vσ”. Figure A.7(d) shows the program that corresponds

to the tree in Figure A.7 (c).

144

a =
b =
= a
skip
c =
= b
skip
f =

skip

skip
d =
skip
= c
= f

skip
e =
= d
= e

skip
skip
g =
= f
= g

d f

c

b

e g

a

e

ed

d

df

cdf

cf cf

c

bc

b

ab

cf

f

fg

g

eed
d

df cdf cf

cfcbc
b ab

cfffgg

ed

cdf

aab

bc cf

fg

(a) (b) (c) (d)a

Figure A.7: A chordal graph represented as a program.

Lemma 31 G is the interference graph of PG.

Proof. For all σ ∈ V , the live range of vσ in P is σ. �

In Section 3.4 we introduced families of variables in an elementary program.

This concept is formally defined as:

Definition 32 Let Ps to be a strict program, and let Pe to be the corresponding

elementary program. Given a variable v ∈ Ps, the set Qv of all the variables in

Pe produced from the renaming of v is called the family of variables v.

We emphasize that the union of the live ranges of all the variables in a fam-

ily Qv is topologically equivalent to the live range of v. We state this fact as

Lemma 33.

Lemma 33 Let Ps be a strict program, and let Pe be the elementary program

derived from Ps. Let v and u be two variables of Ps, and let Qv and Qu be the

corresponding families of variables in Pe. The variables v and u interfere if, and

only if, there exists v′ ∈ Qv and u′ ∈ Qu such that v′ and u′ interfere.

Proof. Follows from definition 32. �

145

Theorem 34 The maximal aligned 1-2-coloring extension problem for elemen-

tary graphs is NP-complete.

Proof. The problem of finding the maximum induced subgraph of a chordal

graph that is K colorable is NP-complete [91]. We combine this result with

Lemmas 31 and 33 for the proof of this theorem. �

The proof of Theorem 4 is a corollary of Theorem 34:

Proof. Follows from Theorem 34. �

A.4 Proof of Theorem 13

Theorem 13 was stated as follows:

(Correctness) For a spartan location transfer graph G,

ImplementSpartan(G) is a correct implementation of G.

By Theorem 12, G must be either a cycle or a path; thus, we divide this proof

into two parts: Lemma 35 and Lemma 36. The semantics of parallel copies are

defined in the obvious way:

〈I, (l1, . . . , ln) := (l′1, . . . , l
′
n)〉 → ρ[l1 ← ρ(l′1), . . . ln ← ρ(l′n)]. (A.1)

Lemma 35 If µ is a spartan parallel copy and its location transfer graph is a cy-

cle, then there is a sequence of n−1 swaps in the language Seq that is semantically

equivalent to µ.

Proof. The proof is by induction on the length of µ. By Theorem 12 all the

locations in µ are registers, because µ is a cycle by hypothesis.

146

Base case: if µ has lenght two, then by Equation A.1 we have that (r1, r2) :=

(r2, r1) ≡ r1 ⊕ r2.

Induction hypothesis: the theorem is true for parallel copies with up to

n− 1 variables on each side.

Induction step: we consider the parallel copy (r1, r2, . . . , rn−1, rn) := (r2, r3, . . . , rn, r1)

applied on the environment ρ, where ρ(ri) = vi. If we apply r1⊕rn on ρ, we get the

environment ρ′ = ρ[rn ← v1][rn ← v1]. Register rn has the location that would be

assigned to it by µ. Consider now the parallel copy µ′ = (r1, r2, . . . , rn−2, rn−1) :=

(r2, r3, . . . , rn−1, r1). The parallel copy µ′ is similar to µ, except that r1 sends its

value to rn−1, and rn is no longer present. But r1 contains now vn, the value

that should be transfered to rn−1. The result follows by applying induction on

µ′, which has size n. �

Lemma 36 If µ is a spartan parallel copy and its location transfer graph is a

path, then there is a sequence of n− 1 swaps in the language Seq that is seman-

tically equivalent to µ.

Proof. The proof is by induction on the length of µ, and it is similar to the

proof of Lemma 35. �

The proof of Theorem 13 follows by combining the two previous lemmas, plus

the fact that any component of a lcoation transfer graph is either a cycle or a

path.

A.5 Proof of Theorem 14

In this section we prove Theorem 14, which we re-state as follows:

147

(Register Pressure) Let P be a program whose control flow

graph does not contain critical edges. The SSA-to-CSSA conversion

does not increase the global register pressure in P .

We will assume that P is in strict, pruned SSA-form. A program is in strict

SSA form [21] if it is in SSA form and for each variable x, the single definition of x

dominates all its uses. A program is in pruned SSA-form if none of the variables

defined by a φ-function is a dead-definition [25]. We recall the definition of

liveness analysis, as given by Appel and Palsberg [4, p.206], where l is a statement

in the program, in[l] is the set of variables live before l, out[l] is the set of variables

live after l, def [l] is the set of variables defined at l, use[l] is the set of variables

used at l, and succ[l] is the set of statements that succeed l.

in[l] = use[l] ∪ (out[l]− def [l])

out[l] =
⋃

s∈succ[l]

in[s]
(A.2)

. . . vi1 . . .

. . . vi2 . . .

. . .
. . . vin . . .

=ϕ

v1

v2

. . .
vn

define vi1, vi2, . . ., vin

li: last statement of Bi

. . .

Bi

in lϕ

out lϕ

Figure A.8: The parallel copy lφ : (v1, v2, . . . , vn) := (vi1, vi2, . . . , vin).

Lemma 37 Let P be a strict program in pruned-CSSA-form with no critical

edges. If li and lφ are defined as in Figure A.8, then |out(li)| = |out(lφ)|.

148

Proof. In order to prove this lemma, we will use the claims listed below, where

Xi = {vi1, vi2, . . . , vin}, and Xφ = {v1, v2, . . . , vn}:

1. out[li] = in[lφ];

2. vij /∈ out[lφ], 1 ≤ j ≤ n;

3. Xi ∩ out[lφ] = ∅;

4. out[li]−Xi = out[lφ]−Xφ;

5. vij 6= vik, 1 ≤ j, k ≤ n and j 6= k;

6. |Xi| = |Xφ|;

7. Xi ⊆ out[li];

8. Xφ ⊆ out[lφ];

We proof these claims as follows:

• proof of claim 1 This follows from Equation A.2, plus the fact that P has

no critical edges, so
⋃

s∈succ[li]

= {lφ}.

• proof of claim 2 If we assume otherwise, vij would interfere with all vj.

We have that vj ∈ out[lφ] because P is pruned. However, vj and vij cannot

interfere because P is in CSSA-form, and vij and vj are φ-related.

• proof of claim 3 Follows as a simple corollary of claim 2.

• proof of claim 4 According to Equation A.2:

in[lφ] = use[lφ] ∪ (out[lφ]− def [lφ]) = Xi ∪ (out[lφ]−Xφ)

From claim 1:

out[li] = Xi ∪ (out[lφ]−Xφ)

149

From claim 3:

out[li]−Xi = out[lφ]−Xφ

• proof of claim 5 by the definition of CSSA-form program.

• proof of claim 6 Follows as a simple corollary of claim 5.

• proof of claim 7 Follows from Equation A.2, plus claim 1, e.g: out[li] =

in[lφ] = Xi ∪ (. . .).

• proof of claim 8 This claim follows from the fact that we are dealing with

a program in pruned-SSA-form. In this case, none of the variables defined

by φ-functions are dead at the definition point.

Finally, to prove our final result, e.g |out(li)| = |out(lφ)|, we combine claims

4, 6, 7 and 8. �

The global register pressure of a program is bounded by the maximum number

of variables alive at any point of the program. A program in SSA-form never

requires more registers than its global registerpressure.Theorem 14 shows that

the procedure PhiLifting preserves the global register pressure of the target

program, that is, if P is a program in pruned-SSA-form that could be compiled

with K registers before being transformed by PhiLifting, it still can be compiled

with K registers after it.

We now prove Theorem 14:

Proof. Given a φ-function such as ai : B = φ(ai1 : B1, ai2 : B2, . . . , aim : Bm),

the procedure PhiLifting changes it in two ways:

1. it splits the live range of the variable defined by the φ-function with an

instruction I = 〈ai := vi〉.

150

2. it splits the live ranges of the variables used in the φ-function with m

instructions like Ij = 〈vij := aij〉.

We will show that each transformation preserves the global register pressure of

the source program.

1. Because P is a program in pruned-SSA-form, each variable defined by a

φ-function is alive past its definition point. The variable vi inserted by

PhiLifting is alive from the φ-function until instruction I. Variable ai is

alive thereafter.Thus, variable vi does not increase the register pressure in

P , because vi and ai are never simultaneously alive.

2. From Lemma 37 we know that the register pressure at the end of a basic

block that feeds a φ-equation V = φM is bounded by the register pressure

at program point lφ, past the definition point of V , and, from the proof of

(1) above, we know that the register pressure at lφ remains constant after

the source program is modified by φ-lifting.

�

151

References

[1] Scott Ananian. The static single information form. Master’s thesis, MIT,
September 1999.

[2] Andrew W. Appel. SSA is functional programming. SIGPLAN Notices,
33(4):17–20, 1998.

[3] Andrew W. Appel and Lal George. Optimal spilling for CISC machines with
few registers. In PLDI, pages 243–253. ACM Press, 2001.

[4] Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in
Java. Cambridge University Press, 2nd edition, 2002.

[5] Rajkishore Barik, Christian Grothoff, Rahul Gupta, Vinayaka Pandit, and
Raghavendra Udupa. Optimal bitwise register allocation using integer linear
programming. In LCPC, volume 4382 of Lecture Notes in Computer Science,
pages 267–282. Springer, 2006.

[6] L. Belady. A study of the replacement of algorithms of a virtual storage
computer. IBM System Journal, 5:78–101, 1966.

[7] Anne Berry, Jean Blair, Pinar Heggernes, and Barry Peyton. Maximum
cardinality search for computing minimal triangulations of graphs. Algorith-
mica, 39(4):287 – 298, 2004.

[8] M Biró, M Hujter, and Zs Tuza. Precoloring extension. I:interval graphs. In
Discrete Mathematics, pages 267 – 279. ACM Press, 1992. Special volume
(part 1) to mark the centennial of Julius Petersen’s “Die theorie der regularen
graphs”.

[9] Rastislav Bodik, Rajiv Gupta, and Vivek Sarkar. ABCD: eliminating array
bounds checks on demand. In Conference on Programming Language Design
and Implementation, pages 321–333, 2000.

[10] Florent Bouchez. Allocation de registres et vidage en mémoire. Master’s
thesis, ENS Lyon, October 2005.

[11] Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice Rastello.
Register allocation: What does the NP-completeness proof of chaitin et al.
really prove? In 5th Annual Workshop in Duplicating, Deconstructing, and
Debunking, 2006.

[12] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of
register coalescing. In CGO, pages 102 – 104. IEEE, 2007.

152

[13] Robert S. Boyer and J. Strother Moore. Mjrty: A fast majority vote algo-
rithm. In Automated Reasoning: Essays in Honor of Woody Bledsoe, pages
105–118, 1991.

[14] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson.
Practical improvements to the construction and destruction of static single
assignment form. Software Practice and Experience, 28(8):859–881, 1998.

[15] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. In
PLDI, pages 311–321, 1992.

[16] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to
graph coloring register allocation. Transactions on Programming Languages
and Systems (TOPLAS), 16(3):428–455, 1994.

[17] Philip Brisk. Advances in Static Single Assignment Form and Register Al-
location. PhD thesis, UCLA - University of California, Los Angeles, 2006.

[18] Philip Brisk, Foad Dabiri, Roozbeh Jafari, and Majid Sarrafzadeh. Optimal
register sharing for high-level synthesis of ssa form programs. IEEE Trans.
on CAD of Integrated Circuits and Systems, 25(5):772–779, 2006.

[19] Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh.
Polynomial-time graph coloring register allocation. In 14th International
Workshop on Logic and Synthesis. ACM Press, 2005.

[20] Philip Brisk and Majid Sarrafzadeh. Interference graphs for procedures in
static single information form are interval graphs. In 10th international
workshop on Software and compilers for embedded systems, pages 101–110.
ACM Press, 2007.

[21] Zoran Budimlic, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, Tim-
othy S. Oberg, and Steven W. Reeves. Fast copy coalescing and live-range
identification. In PLDI, pages 25–32. ACM Press, 2002.

[22] Rainer E. Burkard, Eranda Çela, Panos M. Pardalos, and Leonidas S. Pit-
soulis. Quadratic assignment problems. European Journal of Operational
Research, 15:283–289, 1984.

[23] G. J. Chaitin. Register allocation and spilling via graph coloring. Symposium
on Compiler Construction, 17(6):98–105, 1982.

[24] Gregory J. Chaitin, Mark A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. Register allocation via color-
ing. Computer Languages, 6:47–57, 1981.

153

[25] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction
of sparse data flow evaluation graphs. In POPL, pages 55–66, 1991.

[26] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cliff Stein.
Introduction to Algorithms. McGraw-Hill, 2nd edition, 2001.

[27] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. TOPLAS, 13(4):451–490, 1991.

[28] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh Vazirani. Algo-
rithms. McGraw-Hill Science/Engineering/Math, 2006.

[29] François de Ferriére, Christophe Guillon, and Fabrice Rastello. Optimiz-
ing the translation out-of-SSA with renaming constraints. ST Journal of
Research Processor Architecture and Compilation for Embedded Systems,
1(2):81–96, 2004.

[30] Dietmar Ebner, Florian Brandner, Bernhard Scholz, Andreas Krall, Peter
Wiedermann, and Albrecht Kadlec. Generalized instruction selection using
SSA-graphs. In LCTES, pages 31–40, 2008.

[31] Erik Eckstein, Oliver König, and Bernhard Scholz. Code instruction selec-
tion based on ssa-graphs. In SCOPES, pages 49–65, 2003.

[32] Erik Eckstein and Bernhard Scholz. Addressing mode selection. In CGO,
pages 337–346, 2003.

[33] S Even, A Itai, and A Shamir. On the complexity of timetable and multi-
commodity flow problems. SIAM J. Computing, 5(4):691 – 703, 1976.

[34] Alkis Evlogimenos. Improvements to linear scan register allocation. Techni-
cal report, University of Illinois, Urbana-Champaign, 2004.

[35] Martin Farach and Vincenzo Liberatore. On local register allocation. In 9th
ACM-SIAM symposium on Discrete Algorithms, pages 564–573. ACM Press,
1998.

[36] Changqing Fu and Ken D. Wilken. A faster optimal register allocator. In
Internation Symposium on Microarchitecture, pages 245–256. ACM, 2002.

[37] Fanica Gavril. Algorithms for minimum coloring, maximum clique, mini-
mum covering by cliques, and maximum independent set of a chordal graph.
SICOMP, 1(2):180 – 187, 1972.

154

[38] Fanica Gavril. The intersection graphs of subtrees of a tree are exactly the
chordal graphs. Journal of Combinatoric, B(16):46 – 56, 1974.

[39] Fanica Gavril. A recognition algorithm for the intersection graphs of directed
paths in directed trees. Discrete Mathematics, 13:237 – 249, 1975.

[40] Lal George and Andrew W. Appel. Iterated register coalescing. Transactions
on Programming Languages and Systems (TOPLAS), 18(3):300–324, 1996.

[41] Martin Charles Golumbic. Trivially perfect graphs. Discrete Mathematics,
24:105 – 107, 1978.

[42] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs.
Elsevier, 1st edition, 2004.

[43] David W. Goodwin and Ken D. Wilken. Optimal and near-optimal global
register allocations using 0-1 integer programming. SPE, 26(8):929–965,
1996.

[44] Brian J. Gough. An Introduction to GCC. Network Theory Ltd, 1st edition,
2005.

[45] Daniel Grund and Sebastian Hack. A fast cutting-plane algorithm for op-
timal coalescing. In Compiler Construction, volume 4420, pages 111–115.
Springer, 2007.

[46] Sebastian Hack and Gerhard Goos. Optimal register allocation for SSA-form
programs in polynomial time. Information Processing Letters, 98(4):150–
155, 2006.

[47] Sebastian Hack and Gerhard Goos. Copy coalescing by graph recoloring. In
PLDI, pages 227–237, 2008.

[48] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation for
programs in SSA-form. In 15th Conference on Compiler Construction, pages
247–262. Springer-Verlag, 2006.

[49] Lang Hames and Bernhard Scholz. Nearly optimal register allocation with
PBQP. In JMLC, pages 346–361. Springer, 2006.

[50] Ulrich Hirnschrott, Andreas Krall, and Bernhard Scholz. Graph coloring
vs. optimal register allocation for optimizing compilers. In JMLC, pages
202–213, 2003.

[51] Corporate SPARC International Inc. The SPARC Architecture Manual, Ver-
sion 8. Prentice Hall, 1st edition, 1992.

155

[52] Richard Johnson and Keshav Pingali. Dependence-based program analysis.
In Conference on Programming Language Design and Implementation, pages
78–89, 1993.

[53] Richard M Karp. Reducibility among combinatorial problems. In Complex-
ity of Computer Computations, pages 85–103. Plenum, 1972.

[54] A. B. Kempe. On the geographical problem of the four colours. American
Journal of Mathematics, 2(3):193 – 200, 1879.

[55] David Koes and Seth Copen Goldstein. A progressive register allocator for
irregular architectures. In CGO, pages 269–280, 2005.

[56] David Ryan Koes and Seth Copen Goldstein. A global progressive register
allocator. In PLDI, pages 204–215, 2006.

[57] Timothy Kong and Kent D Wilken. Precise register allocation for irregular
architectures. In Internation Symposium on Microarchitecture, pages 297–
307. ACM, 1998.

[58] Chris Lattner and Vikram Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In CGO, pages 75–88, 2004.

[59] Jonathan K. Lee, Jens Palsberg, and Fernando M. Q. Pereira. Aliased reg-
ister allocation. In ICALP, 2007.

[60] Daniel Marx. A short proof of the NP-completeness of circular arc coloring,
2003.

[61] Dániel Marx. Parameterized coloring problems on chordal graphs. Theoret-
ical Computer Science, 351(3):407–424, 2006.

[62] Daniel Marx. Precoloring extension on unit interval graphs. Discrete Applied
Mathematics, 154(6):995 – 1002, 2006.

[63] Clyde L. Monma and V. K. Wei. Intersection graphs of paths in a tree.
Journal of Combinatorial Theory Series B, 41(2):141 – 181, 1986.

[64] Hanspeter Mossenbock and Michael Pfeiffer. Linear scan register allocation
in the context of SSA form and register constraints. In CC, pages 229–246.
LNCS, 2002.

[65] Mayur Naik and Jens Palsberg. Compiling with code size constraints. Trans-
actions on Embedded Computing Systems, 3(1):163–181, 2004.

156

[66] V. Krishna Nandivada, Fernando Pereira, and Jens Palsberg. A framework
for end-to-end verification and evaluation of register allocators. In Proceed-
ings of SAS’07, International Static Analysis Symposium, pages 153–169,
Kongens Lyngby, Denmark, August 2007.

[67] Venkata Krishna Nandivada and Jens Palsberg. SARA: Combining stack
allocation and register allocation. In 15th International Conference on Com-
piler Construction. Springer-Verlag, 2006.

[68] Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. In IEEE
PACT, pages 196–204, 1998.

[69] Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. ACM
Trans. Program. Lang. Syst., 26(4):735–765, 2004.

[70] Sriram V. Pemmaraju and Rajiv Raman. Approximation algorithms for the
max-coloring problem. In ICALP, pages 1064 – 1075, 2005.

[71] Fernando Magno Quintao Pereira. The minimum register bank problem.
Technical report, University of California, Los Angeles, 2008.

[72] Fernando Magno Quintao Pereira. Ssa elimination after register allocation.
Technical report, University of California, Los Angeles, 2008.

[73] Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation via
coloring of chordal graphs. In APLAS, pages 315–329. Springer, 2005.

[74] Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation
after classic SSA elimination is np-complete. In Foundations of Software
Science and Computation Structures. Springer, 2006.

[75] Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation
by puzzle solving, 2007. http://compilers.cs.ucla.edu/fernando/ projects/
puzzles/.

[76] Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation by
puzzle solving. In PLDI, pages 216–226, 2008.

[77] Massimiliano Poletto and Vivek Sarkar. Linear scan register alloca-
tion. Transactions on Programming Languages and Systems (TOPLAS),
21(5):895–913, 1999.

[78] Laurence Rideau, Bernard P. Serpette, and Xavier Leroy. Tilting at wind-
mills with coq: formal verification of a compilation algorithm for parallel
moves, 2008. To appear.

157

[79] B. K. Rosen, F. K. Zadeck, and M. N. Wegman. Global value numbers and
redundant computations. In POPL, pages 12–27. ACM Press, 1988.

[80] Konstantinos Sagonas and Erik Stenman. Experimental evaluation and im-
provements to linear scan register allocation. Software, Practice and Expe-
rience, 33:1003–1034, 2003.

[81] Vivek Sarkar and Rajkishore Barik. Extended linear scan: an alternate
foundation for global register allocation. In LCTES/CC, pages 141–155.
ACM, 2007.

[82] Bernhard Scholz and Erik Eckstein. Register allocation for irregular archi-
tectures. In LCTES/SCOPES, pages 139–148. ACM, 2002.

[83] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized
algorithm for graph-coloring register allocation. In PLDI, pages 277–288,
2004.

[84] Vugranam C. Sreedhar, Roy Dz ching Ju, David M. Gillies, and Vatsa San-
thanam. Translating out of static single assignment form. In SAS, pages
194–210. Springer-Verlag, 1999.

[85] JVM Team. The java HotSpot virtual machine. Technical Report Technical
White Paper, Sun Microsystems, 2006.

[86] The Jikes Team. Jikes RVM home page, 2007.
http://jikesrvm.sourceforge.net/.

[87] Omri Traub, Glenn H. Holloway, and Michael D. Smith. Quality and speed
in linear-scan register allocation. In Conference on Programming Language
Design and Implementation (PLDI), pages 142–151, 1998.

[88] David L. Weaver and Tom Germond. The SPARC Architecture Manual,
Version 9. Prentice Hall, 1st edition, 1994.

[89] John Whaley. Joeq: a virtual machine and compiler infrastructure. In
Workshop on Interpreters, virtual machines and emulators, pages 58–66.
ACM Press, 2003.

[90] Christian Wimmer and Hanspeter Mossenbock. Optimized interval splitting
in a linear scan register allocator. In VEE, pages 132–141. ACM, 2005.

[91] Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable subgraph
problem for chordal graphs. Information Processing Letters, 24(2):133 – 137,
1987.

158

