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Abstract. Register allocation is NP-complete in general but can be
solved in linear time for straight-line programs where each variable has
at most one definition point if the bank of registers is homogeneous. In
this paper we study registers which may alias: an aliased register can
be used both independently or in combination with an adjacent register.
Such registers are found in commonly-used architectures such as x86,
the HP PA-RISC, the Sun SPARC processor, and MIPS floating point.
In 2004, Smith, Ramsey, and Holloway presented the best algorithm for
aliased register allocation so far; their algorithm is based on a heuristic
for coloring of general graphs. Most architectures with register aliasing
allow only aligned registers to be combined: for example, the low-address
register must have an even number. Open until now is the question of
whether working with restricted classes of programs can improve the
complexity of aliased register allocation with alignment restrictions. In
this paper we show that aliased register allocation with alignment re-
strictions for straight-line programs is NP-complete.

1 Introduction

Register Allocation. Programmers write most software in high-level program-
ming languages such as C, C++, and Java, and use compilers to translate their
programs to a growing variety of hardware, including multicore platforms, graph-
ics processing units, and network processors. To achieve high execution speed,
programmers rely on compilers to optimize the program structure and to use
registers and memory in clever ways. The latter task, known as register alloca-
tion, has grown steadily in significance because of the widening gap between the
short time to access a register and the longer time to access memory. Today,
the register allocator may be among the most important and most complicated
parts of a compiler. For example, our experiments with the gcc compiler on the
StrongARM architecture shows that a good register allocator typically improves
execution speed by a factor of 2.5. A register allocator can also be a significant
part of the code of a compiler implementation: 10% for lcc [8] and 12% for gcc
2.95.2.

Most programs use more variables than the number of registers on the target
computer. The core of the register allocation problem is to determine whether
all the program variables can be placed in machine registers. The reason why
a register allocator may be able to place a high number of variables in a small



number of registers is that some variables are not live at the same time and
so they can share a register. When the need for registers exceeds the number of
available registers, the register allocator faces the difficult task of choosing which
variables will be placed in registers and which variables will be spilled, that is,
placed in memory. In this paper we focus on the core register allocation problem
and do not discuss spilling of variables.

Chaitin et al. [5] showed that the core register allocation problem is NP-
complete by a reduction from the graph coloring problem. The essence of Chaitin
et al.’s proof is that every graph is the interference graph of some program.
Chaitin et al.’s proof assumes a homogeneous bank of registers, where each
register can be used to hold the value of any program variable.
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Fig. 1. General purpose registers from the x86 architecture

Aliased Registers. In this paper we study register allocation for hardware
in which the bank of registers is not homogeneous. We focus on aliased registers:
when an assignment to one register name can affect the value of another, such
register names alias [18]. For example, Figure 1 shows the set of general purpose
registers used in the x86 architecture. The x86 architecture has four general
purpose 16-bit registers that can also be used as eight 8-bit registers. Each 8-bit
register is called a low address or a high address. The initial bits of a 16-bit
register must be aligned with the initial bits of a low-address 8-bit register. The
x86 architecture allows the combination of two 8-bit registers into one 16 bit
register. Another example of aliased registers is the combination of two aligned
single precision floating-point registers to form one double-precision register.
Examples of architectures with such aliased registers include early versions of
HP PA-RISC, the Sun SPARC, and the ARM processors. For a different kind
of architecture, Scholz and Eckstein [17] describe experiments with the Carmel
20xxDSP Core, which has six 40 bit accumulators that can also be used as six
32-bit registers or as twelve 16-bit aligned registers.

Architectures that allow unaligned pairing exist but are rare. Some models
even allow registers wrapping around, that is, the last and the first registers
in the bank combine to form one double register. An example of this type of
architecture is the ARM VFP coprocessor.

Aliased Register Allocation. We will refer to register allocation for hard-
ware with aliased registers as aliased register allocation.

Several research groups have proposed solutions to the aliased register allo-
cation problem. Some of the solutions are based on heuristics for graph coloring
[18, 3, 4, 15, 16, 14], while others are based on integer linear programming [11, 13,



1, 9, 17, 12] which is flexible enough to describe many architecture irregularities
but leads to compile times that are worst-case exponential in the size of the
input program.

Our Results. We prove that the core aliased register allocation problem
with alignment restrictions is NP-complete for straight-line programs where each
variable has at most one definition point. A straight-line program is a sequence of
instructions without jumps. Our proof consists of three steps, from 3-SAT via a
flow problem and then a coloring problem to our register allocation problem. Our
coloring problem without alignment restrictions is equivalent to the shipbuilding
problem; Stockmeyer proved that the shipbuilding problem is NP-complete [10,
Application 9.1, p.204]. While we can easily reduce the aligned coloring problem
to the unaligned coloring problem (and thereby give an alternative proof of
Stockmeyer’s theorem), we have been unsuccessful in doing a reduction in the
opposite direction. The aligned case is more restricted than the unaligned case;
yet our result shows that the complexity of aliased register allocation in the
aligned case is NP-complete.

Our result and Stockmeyer’s result may be surprising because straight-line
programs where each variable has at most one definition point are extremely
simple. For a homogeneous bank of registers, the core register allocation problem
for straight-line programs can be solved in linear time. Our results show that
register aliasing is sufficient to bump the complexity to NP-complete.

Related Work. At least two other important register allocation problems
are NP-complete for straight-line programs: register allocation with precolored
registers [2]; and the placement of load and store instructions to transfer values
to and from memory [7]. Our proof was inspired in part by a paper of Biro,
Hujter, and Tuza [2] who showed how to relate a coloring problem to a flow
problem. They used a flow algorithm to solve the precoloring extension problem
for interval graphs. Our proof was also inspired by a paper by Even, Itai and
Shamir [6] who proved NP-completeness for the multicommodity flow problem.

Rest of the Paper. In Section 2 we define our register allocation problem
and in Section 3 we define a coloring problem and reduce it to the register
allocation problem. In Section 4 we introduce the notion of colored flow for
simple graphs, and in Section 5 we reduce the flow problem to the coloring
problem. In Section 6 we show how to reduce 3-SAT to the flow problem. Two
key proofs are given in Appendices A+B.

2 Aliased register allocation for straight-line programs

Programs. We will define a family of programs that compute with short values
and long values. A short value can be represented with half as many bits as a
long value. We use v to range over program variables; a variable is either of type
short or of type long. A variable of type short can only hold short values, and a
variable of type long can only hold long values. We define a statement by this



grammar:
(Statement) S ::= short v = (definition of v)

| long v = (definition of v)
| = v (use of v)

A statement either defines a variable or uses a variable. We define a straight-line
program to be a sequence of statements with the property that each variable is
defined only once and used at least once, and every use of a variable comes after
its definition.

In program S1; . . . ;Sq, a variable v is live at statement Sj , if v is defined at
Si, i ≤ j and v is used at Sk, j < k [19]. Let i be the index of the statement
that defines v, and let k be the index of the last statement that uses v. The live
range of v is the half open interval [i, k[, which includes i and excludes k.

If v1, v2 are variables and their live ranges have a nonempty intersection, then
we say that v1, v2 interfere [5].

Aliased Register Allocation. Suppose we have a machine with 2K regis-
ters that each can hold a short value. The registers are called r0, . . . , r2K−1; we
call them short registers. Suppose further that any two registers r2i, r2i+1, where
i ∈ 0..K − 1, can be used to hold a long value. Notice the restriction that two
registers can hold a long value only if the indices are consecutive and the first
index is even; we call this restriction the alignment restriction. The alignment
restriction models, for example, the rule for how a programmer can use the 8-
bit registers on the x86. For example, r4, r5 can hold a long value, while r7, r8

cannot. We say that the two numbers 2i, 2i + 1 are aligned, and that the two
registers r2i, r2i+1 are aligned. We use the notation that for a natural number
i, 2i = 2i+ 1 and 2i+ 1 = 2i.

We will study the problem of mapping program variables to machine registers:

Core aliased register allocation with alignment restric-

tions (Caraar):

Instance: a straight line program with s short variables and l long vari-
ables, and a number 2K of available short registers r0, . . . , r2K−1.
Problem: Can each short variable be mapped to one of the short reg-
isters and can each long variable be mapped to a pair r2i, r2i+1, i ∈
0..K−1, of short registers, such that variables with interfering live ranges
are assigned registers that are all different?

3 Interval graphs and aligned 1-2-coloring

Interval Graphs. We recall the definitions of an intersection graph and an
interval graph [10, p.9].

Let S be a family of nonempty sets. The intersection graph of S is obtained
by representing each set in S by a vertex and connecting two vertices by an
edge if and only if their corresponding sets intersect. An interval graph is an
intersection graph of a family of subintervals of an interval of the real numbers.



We will examine interval graphs with two kinds of intervals, called short and
long intervals; we call such graphs aliased interval graphs.

Aligned 1-2 Coloring. We will study a variant of graph coloring which we
call aligned 1-2-coloring. We will use natural numbers as colors; for example,
if we have 2K colors, then we will use 0, 1, . . . , 2K − 1 as the colors. We will
color each vertex, that is, each interval. We will use the terms “short interval”
and “short vertex” interchangeably; and similarly for “long interval” and “long
vertex”. We define a 1-2-coloring to be a mapping that assigns one color to each
short vertex and two colors i, i + 1, i ∈ 0..2K − 2, to each long vertex such
that adjacent vertices have colors that are all different. We define an aligned
1-2-coloring to be a 1-2-coloring that assigns two aligned colors to each long
vertex.

Aligned 1-2-coloring of aliased interval graphs (A12CAIG):

Instance: an aliased interval graph and a number 2K of colors.
Problem: Find an aligned 1-2-coloring that uses 2K colors.

We will show that A12CAIG is NP-complete.
From aligned 1-2 coloring to aliased register allocation We now

present a reduction of aligned 1-2-coloring of aliased interval graphs to aliased
register allocation with alignment restrictions. The key step is to show that any
aliased interval graph is the interference graph of one of our straight-line pro-
grams. We first define a convenient representation of interval graphs. We say
that an interval graph is program like if (1) all the intervals are of the form
[u, v[, (2) the start and end points of the intervals form the set 1..2q, where q is
the number of intervals, (3) no two intervals start at the same point, (4) no two
intervals end at the same point, and (5) no interval starts in the point where
another interval ends.

Proposition 1. A graph is an interval graph if and only if it is a program-like
interval graph.

Proof. The right-to-left direction is immediate. To prove the left-to-right direc-
tion, let H be an interval graph with q intervals whose start and end points
are drawn from the set U . We can in polynomial time construct an enumeration
` : 1..2q → U such that if u < v, then `(u) ≤ `(v). The graph

{ [u, v[ | ∃ an interval in H for which `(u) is start point and `(v) is end point }

is a program-like interval graph. �

From a program-like interval graphH, we construct a program P = S1; . . . ;S2q

as follows. Define

∀i ∈ 1..2q : Si =

short vI = if the short interval I begins at i
long vI = if the long interval I begins at i
= vI if the interval I ends at i
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Fig. 2. Aliased interval graphs.

Lemma 1. H is the interference graph of P .

Proof. For every interval I in H, the live range of vI in P is I. �

Example Let us explain why aligned 1-2-coloring is a nontrivial problem.
Figure 2 shows three aliased interval graphs; each graph is displayed both as a
collection of intervals and in a conventional way. In the upper part of Figure 2,
we use fat lines to denote long intervals and we use dashed lines to denote short
intervals. In the lower part of Figure 2, we use dark boxes to denote “long”
vertices (representing long intervals) and we use light boxes to denote “short”
vertices (representing short intervals).

A standard interval graph has the property that the size of the largest clique
is equal to the minimal number of colors [10, p.17]. Aligned coloring of an aliased
interval graph does not necessarily have that property. For example, Figure 2
(a) shows a graph for which the minimal 1-2-coloring uses four colors: A =
{0, 1}, B = 2, C = 3, D = 0, E = {1, 2}, while the minimal aligned 1-2-coloring
uses five colors: A = {0, 1}, B = 2, C = 3, D = 4, E = {0, 1}. Notice that the
largest clique is of size 3; even if we treat long variables as counting as two nodes,
the largest clique is of size 4.

A standard interval graph has the property that we can optimally color the
graph by applying greedy coloring to any perfect elimination ordering of the
vertices. (In a perfect elimination ordering, the neighbors of a node v that come
before v in the ordering form a clique [10, p.82].) An aliased interval graph does
not necessarily have that property. For example, Figure 2 (b) shows a graph for
which we have the perfect elimination ordering 〈A,B,C,D〉 that leads greedy
coloring to produce an aligned 1-2-coloring with five colors: A = 0, B = 1, C =
2, D = {4, 5}. If we drop the alignment restriction, greedy coloring again pro-
duces a 1-2-coloring with five colors: A = 0, B = 1, C = 2, D = {3, 4}. However,



in both the aligned and unaligned cases, there exists an optimal assignment using
just four colors: A = 0, B = 2, C = 1, D = {2, 3}.

We might try an algorithm that first applies greedy coloring to the short
intervals and then proceeds to color the longs. That does not necessarily lead
to an optimal 1-2-coloring. For example, Figure 2 (b) shows a graph for which
we have already studied the perfect elimination ordering 〈A,B,C,D〉 in which
all the short intervals come before the long intervals. So, we will get the same
suboptimal colorings as above.

Alternatively, we might try to first apply greedy coloring to the long intervals,
and then proceed to color the shorts. That method is not optimal either. For
example, Figure 2 (c) shows a graph for which the “longs-first” method produces
the 1-2-coloring A = {0, 1}, B = {2, 3}, C = {4, 5}, D = {0, 1}, E = 6. Notice
that the 1-2-coloring is also an aligned 1-2-coloring. However, in both the aligned
and unaligned cases, an optimal assignment uses just six colors: A = {0, 1}, B =
{2, 3}, C = {4, 5}, D = {2, 3}, E = 0.

None of the simple methods work because the aligned and unaligned 1-2-
coloring problems are NP-complete.

4 Simple Graphs, Straight Cuts, and Colored Flows

Let (V,E,Source,Sink , c) be a directed graph with vertex set V , edge set E,
distinguished vertices Source,Sink ∈ V , and a capacity function c : E → Nat ,
where Nat denotes the natural numbers.

A flow is function f : E → Nat , such that

∀(u, v) ∈ E : f(u, v) ≤ c(u, v) (Capacity)
∀v ∈ V \ {Source,Sink} : Σ(u,v)∈Ef(u, v) = Σ(v,w)∈Ef(v, w) (Conservation)

The value of a flow is the sum of the flows of the edges that reach Sink . A
maximal flow is flow f such that for any flow g, the value of g is less than or
equal to the value of f .

We define a set of vertices S to be backwards closed if ∀v ∈ S : if (u, v) ∈ E,
then u ∈ S. We also define a set of vertices T to be forwards closed if ∀u ∈ T :
if (u, v) ∈ E, then v ∈ T . A cut (S, T ) is a partition of V such that Source ∈
S, Sink ∈ T , S ∩ T = ∅, and S ∪ T = V . The capacity of a cut (S, T ), written
c(S, T ) is given by the formula:

c(S, T ) = Σ(u,v)∈E,u∈S,v∈T c(u, v)

which says that the capacity of the cut is the sum of the capacities of the edges
that cross the cut from S to T . A straight cut is a cut (S, T ) such that S is
backwards closed and T is forwards closed. We define a simple graph to be an
acyclic graph (V,E,Source,Sink , c) in which Source has no incoming edges, Sink
has no outgoing edges, and where all the straight cuts have the same capacity.

Figure 3 (a) shows a simple graph. Each dashed line marks a straight cut.
Each edge with nonunit capacity is marked with a small bar and its capacity;
unlabeled edges have unit capacity.
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Fig. 3. (a) Simple graph; (b) colored flow.

Lemma 2. All straight cuts have the same capacity if and only if ∀v ∈ V \
{Source,Sink} :

∑
(u,v)∈E c(u, v) =

∑
(v,w)∈E c(v, w).

Proof. ⇒) We can choose a straight cut (S, T ) such that v ∈ S, and another
straight cut (S − {v}, {v} ∪ T ). The first cut contains the outgoing edges of v
and the second cut has all the incoming edges of v. The remaining edges of v
are common to both cuts and thus by the simple graph property of all straight
cuts being equal, the capacity of the incoming edges must equal the capacity of
the outgoing edges.
⇐) If all vertices have the same incoming capacity as outgoing capacity,

then we must show that all straight cuts have the same capacity. The straight
cut ({Source}, V − {Source}) has some capacity K. If we add one vertex v
connected to Source to the first set and remove v from the second set, then
by the incoming-equals-outgoing-capacity property of v, this new straight cut
also has a capacity of K. We may enumerate the straight cuts by adding and
subtracting vertices. By the same reasoning as above, they all have the same
capacity. �

Lemma 3. In a simple graph, c is the maximal flow.

Proof. First we show that c satisfies the capacity constraints. This is immediate
because the flow is the capacity. Next we show that the flow is conserved for every
vertex. From Lemma 2 we have that the incoming capacity equals the outgoing
capacity for every vertex, thus the flow is conserved. The flow is maximal because
any increase in the flow would exceed the capacity constraints. �

We say that an element of 0..K − 1 is a color. We define a colored flow for
a simple graph with every straight cut of capacity K as a function h : E →
20..K−1 such that λe.|h(e)| is a flow and for any straight cut (S, T ), we have
∪(u,v)∈E,u∈S,v∈Th(u, v) = 0..K − 1. Thus, for any straight cut, every color is
used exactly once in the coloring of the edges that cross the cut. Notice that
every color is used at most once because the straight cut has capacity K. We
use Lemma 3 to justify the terminology that a maximal colored flow is a colored
flow with the property that λe.|h(e)| = c.

Figure 3 (b) shows an example of colored flow.



Lemma 4. For a simple graph, h is a colored flow if and only if λe.|h(e)| is a
flow, ∀v ∈ V \{Source,Sink} : ∪(u,v)∈Eh(u, v) = ∪(v,w)∈Eh(v, w), and ∃ straight
cut (S, T ) such that ∪(u,v)∈E,u∈S,v∈Th(u, v) = 0..K − 1,.

Proof. The proof is similar to the proof of Lemma 2 where we here reason about
colors instead of capacities. Notice that for the right-to-left direction, we can
use the given straight cut to show that for any straight cut (S, T ), we have
∪(u,v)∈E,u∈S,v∈Th(u, v) = 0..K − 1. We omit the rest of the details. �

Aligned colored flow. Suppose we have a simple graph (V,E,Source,Sink , c)
with all straight cuts of capacity 2K, a function A : E → Boolean, and a number
2K of colors 0, . . . , 2K−1. We define an aligned colored flow to be a colored flow h
such that if A(e) = true and 2 ≤ c(e), then ∃i : 0 ≤ i ≤ K−1∧{2i, 2i+1} ⊆ h(e).
Intuitively, the function A indicates that an edge e with a capacity of at least
two requires h to assign e the colors 2i and 2i+ 1, among others.

Maximal, aligned colored flow:

Instance: (G, 2K,A), where G is a simple graph (V,E,Source,Sink , c)
with all straight cuts of capacity 2K, and A : E → Boolean.
Problem: Find a maximal, aligned colored flow that uses 2K colors.

5 From maximal, aligned colored flow to aligned 1-2
coloring

In this section we present a reduction of the maximal, aligned colored flow prob-
lem to aligned 1-2-coloring of aliased interval graphs. Let (G, 2K,A) be an in-
stance of the maximal, aligned colored flow problem, whereG = (V,E,Source,Sink , c).
From (G, 2K,A) we construct an aliased interval graph H in the following way.

First we sort V into a topological order with Source first and Sink last. We
can do that because G is a simple graph so Source has no incoming edges and
Sink has no outgoing edges.

Next we define an injective function ` : V → Nat such that if v1 is less than v2

in the topological ordering, then `(v1) < `(v2). The numbers assigned by ` to the
vertices of G will be the start and end points of the intervals in H. The intervals
of H are defined as follows. For each (u, v) ∈ E such that A(u, v) = true, we
create one long interval [`(u), `(v)[ and c(u, v) − 2 short intervals [`(u), `(v)[.
For each (u, v) ∈ E such that A(u, v) = false, we create c(u, v) short intervals
[`(u), `(v)[.

Lemma 5. (G, 2K,A) has a maximal, aligned colored flow if and only if H has
an aligned 1-2-coloring.

Proof. See Appendix A. �



Vertex In Cap Vertex In Cap

Source 0 xik 2

Sink 2K sik 2

S 2 x̄ih 2

T 2 s̄ih 2

cj 6 ai 2

si0 2 bi 2

Fig. 4. Vertices; K = 3m+ 3n+ 1.

6 From 3-SAT to maximal, aligned colored flow

In this section we present a reduction of 3-SAT to the maximal, aligned colored
flow problem. Let

F = ∧mj=1cj

cj = lj1 ∨ lj2 ∨ lj3

be a formula with n Boolean variables x1, . . . , xn and m clauses c1, . . . , cm; each
literal, lj1 or lj2 or lj3, is either a variable or the negation of a variable, and in
each clause the three literals are distinct. Let pi be the number of occurrences
of xi, and let qi be the number of occurrences of x̄i. We index a certain set of
vertices using i and k, where 1 ≤ i ≤ n and 1 ≤ k ≤ pi+1. We index another set
of vertices using i and h, where 1 ≤ i ≤ n and 1 ≤ h ≤ qi + 1. For convenience,
we define p0 = 0 and q0 = 0.

From F we construct a simple graph G = (V,E,Source,Sink , c). The graph
is akin to the graph used by Even, Itai and Shamir [6, Section 4] in their proof of
NP-completeness for the multicommodity flow problem. Figure 4 shows a listing
of the vertices in V , along with, for each vertex, the sum of the capacities of the
in-going edges (which, because the graph is simple, is equal to the sum of the
capacities of the outgoing edges, for all vertices except Source, Sink). Figure 6
shows a listing of the edges in E. Figure 6 also shows a set of colors for each
edge; we will need that later. Figure 5 illustrates the graph constructed from
the formula (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3). Let us now briefly walk through the
construction of the graph.

We have the vertices Source, Sink, two vertices S and T , one vertex cj for
each clause, and vertices si0, xik, sik, x̄ih, s̄ih, ai, bi, for each variable xi. For each
variable xi, we construct a lobe. We add the edges (xiu

1→ xi(u+1)), 1 ≤ u ≤
pi to form an upper path. We construct a lower path with the edges (x̄iv

1→
x̄i(v+1)), 1 ≤ v ≤ qi. We connect theses paths to ai and bi to form the lobe by

adding the edges (ai
1→ xi1), (ai

1→ x̄i1), (xi(pi+1)
1→ bi), and (x̄i(qi+1)

1→ bi).
Next we are going to make several edges that have alignment requirements.

For each sik, we create an edge (Source 2→ sik) with a capacity two. Likewise for
all the si0 and the s̄ih vertices. Next we will add an edge (Source 2→ S) also with
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Fig. 5. Construction of a simple graph from (x1 ∨x2 ∨x3)∧ (x̄1 ∨x2 ∨ x̄3). Edges with
a labeled capacity require aligned colors. The edge labels are explained in Figure 7(a).

capacity of two. In total we have made a capacity of 2(3m+ 3n+ 1) leaving the
source. We want to make G simple, so there must be capacities of two leaving
each of these vertices and eventually reaching the Sink. We will create some more
aligned edges which will now connect certain vertices to Sink. For each of the cj
vertices, we create the edges (cj

6→ Sink) with a capacity of six and finally we
add (T 2→ Sink) with a capacity of two. Now all that remains to make the graph
simple is to connect the S, sik, and s̄ih vertices to T, cj , and Sink.

We will first add edges to send the current excess capacity at S to T . We
will add a direct edge (S 1→ T ) to get one unit to T . To get the other unit to T ,
we will connect the lobes serially, by adding the edges (bl, al+1), 1 ≤ l ≤ n − 1.
Finally, we add (S 1→ a1) and (bn

1→ T ), resulting in a path to send the other
unit of capacity to T and two units of capacity reaching Sink.



The ai and bi vertices still have an imbalance of capacity and must have
edges to supply capacity or drain it. To correct for these imbalances, we add the
edges (si0

1→ Sink), (si0
1→ ai), and (bi

1→ Sink). This results in a current total
of 2n+ 2 units of capacity reaching Sink, and the vertices on the lobe currently
balanced.

We will now connect the remaining sik and s̄ih vertices to the cj vertices and
Sink. We add the edges (sik

1→ xik) and (s̄ih
1→ x̄ih) which will send one unit of

capacity from each of these vertices to the corresponding vertices on the lobe.
The other units from the sik and s̄ih vertices will be sent to either some cj vertex
or directly to Sink. We add the edges (si(pi+1)

1→ Sink) and (s̄i(qi+1)
1→ Sink),

which now results in an additional 2n units of capacity reaching Sink for a
running total of 4n + 2. The remaining vertices add an edge (siu

1→ cj) if the
uth appearance of xi occurs in cj . For the s̄iv vertices, we add similar edges.
From these edges we get 3m units of capacity reaching Sink, because each of
these edges corresponds to a clause, and each clause has exactly three literals in
it. All that remains is to drain the single unit of capacity currently residing at
the xik and x̄ih vertices and we will have our simple graph. We add the edges
(xi(u+1)

1→ cj) if the uth appearance of xi occurs in cj as well as (xi(v+1)
1→ cj)

if the vth appearance of x̄i occurs in cj . This results in another 3m units of
capacity reaching Sink. Finally, the last 2n units will be supplied by the edges
(xi1

1→ Sink) and (x̄i1
1→ Sink).

Lemma 6. G is simple.

Proof. It is straightforward to check that G is acyclic, that Source has no incom-
ing edges, and that Sink has no outgoing edges. From Lemma 2 we have that
we must show ∀v ∈ V \ {Source,Sink} :

∑
(u,v)∈E c(u, v) =

∑
(v,w)∈E c(v, w).

Let us examine each vertex v ∈ V \ {Source,Sink} in turn. We see that each
of the ci vertices has an in-capacity of six and an out-capacity of six. All the
other vertices besides Source and Sink each has an in-capacity of two and an
out-capacity of two. So, from Lemma 2 we have that G is simple. �

Let A : E → Boolean be given by mapping each edge e to the Boolean
value obtained by computing 2 ≤ c(e), where c is the capacity function specified
implicitly in Figure 6.

Lemma 7. F is satisfiable if and only if (G, 2(3m+ 3n+ 1), A) has a maximal,
aligned colored flow.

Proof. See Appendix B. �

7 Main result and Conclusion

Theorem 1. For straight-line programs, the core aliased register allocation prob-
lem with alignment restrictions is NP-complete.



Proof. Firstly, we see the problem is in NP because a register assignment can
be verified in polynomial time. We have a chain of reductions from 3-SAT to
maximal, aligned colored flow (Lemma 7), from maximal, aligned colored flow
to aligned 1-2 coloring (Lemma 5), and from aligned 1-2 coloring to aliased
register allocation (Lemma 1). �

We have shown that aliased register allocation with alignment restrictions
is difficult, even for straight-line programs where each variable has at most one
definition point. Our result confirms the need for the heuristics and worst-case
exponential time methods that are used today.

In this paper we have considered register allocation as a decision problem.
We can view also view register allocation as an optimization problem: minimize
the number of registers. Open problem: give nontrivial upper and lower bounds
on the approximability of our register allocation problem. For example, is our
register allocation problem APX-hard?



Appendix A: Proof of Lemma 5

Lemma (G, 2K,A) has a maximal, aligned colored flow if and only if H has an
aligned 1-2-coloring.

Proof. ⇒) Suppose (G, 2K,A) has a maximal, aligned colored flow h. We can
then define a mapping κ that assigns a color to each vertex of H as follows.
For each (u, v) ∈ E such that A(u, v) = true, we have that h(u, v) contains
two aligned colors; assign those two colors to the long interval created from
(u, v), and assign each of the rest of the colors in h(u, v) to each of the short
intervals created from (u, v). For each (u, v) ∈ E such that A(u, v) = false,
assign each of the colors in h(u, v) to each of the short intervals created from
(u, v). We need to show that adjacent vertices in H have colors that are all
different. Suppose we have two adjacent intervals I1, I2 in H, that is, they have
a nonempty intersection. Since all the intervals are half-open, the intersection
consists of more than one point. Choose a point p in the intersection which is not
the start or end point of any interval in H. Define S = { v ∈ V | `(v) < p } and
define T = { v ∈ V | `(v) > p }. We have that (S, T ) is a straight cut because
we use a topological sort of V . We also have that I1, I2 both cross the cut. For
every straight cut, every color is used exactly once, so I1, I2 have colors that are
all different.
⇐) Suppose H has an aligned 1-2 coloring κ. We can then define a mapping

h : E → 20..2K−1 as follows. For each (u, v) ∈ E, let h(u, v) be the union of the
colors assigned by κ to the intervals in H created from (u, v). We need to show
that h is a maximal, aligned colored flow.

Let us first show that h is a colored flow. From Lemma 4 we have that we must
show that (1) λe.|h(e)| is a flow, (2) ∀v ∈ V \ {Source,Sink} : ∪(u,v)∈Eh(u, v) =
∪(v,w)∈Eh(v, w), and (3) ∃ straight cut (S, T ) such that ∪(u,v)∈E,u∈S,v∈Th(u, v) =
0..K − 1. To prove (1), note that for each edge e ∈ E, the intervals in H, cre-
ated from e, overlap and hence get all different colors by κ so |h(e)| = c(e).
From Lemma 3 we have that c is a flow. From that c a flow and |h(e)| = c(e),
we have that λe.|h(e)| is a flow, as required. To prove (2), let v be a vertex in
V \ {Source,Sink}. We have that

C1 = ({ u | `(u) < `(v) }, { w | `(v) ≤ `(w) })
C2 = ({ u | `(u) ≤ `(v) }, { w | `(v) < `(w) })

are straight cuts in G and hence both of capacity 2K. Next define E1 to be the
set of edges in E of the form (u, v), and define E2 to be the set of edges in E
of the form (v, w). From Lemma 2 we have that Σe∈E1c(e) = Σe∈E2c(e). We
can find a subset E′ ⊆ E such that E′ ∩ E1 = ∅, E′ ∩ E2 = ∅, the edges that
cross C1 can be written E1 ∪ E′, and the edges that cross C2 can be written
E2 ∪ E′. We conclude that ∪e∈E1h(e) = ∪e∈E2h(e), as required. To prove (3),
let us examine the edges that traverse the straight cut ({Source}, V \ {Source}).
By reasoning similar to what we used to proved (1), we see that all colors on the
edges spanning the straight cut must be distinct.



Let us next show that h is a maximal colored flow. We need to show that
λe.|h(e)| = c and that is immediate from |h(e)| = c(e).

Finally, we have that h is aligned because the construction of H ensures
that for any e for which we have A(e) = true, one long edge is created; the
construction of h then ensures that the aligned colors assigned by κ to that edge
will be two of the colors assigned to e. �



Appendix B: Proof of Lemma 7

Lemma F is satisfiable if and only if (G, 2(3m + 3n + 1), A) has a maximal,
aligned colored flow.

Proof. Define K = 3m+ 3n+ 1.
⇒) Suppose we have a Boolean assignment ψ for the variables in F which

satisfies F . Let h : E → 0..2K− 1 be defined by mapping each edge to the set of
colors given in Figure 6, using the abbreviations in Figure 7. We need to show
that h is a maximal, aligned colored flow.

We can verify that λe.|h(e)| is a maximal flow by inspection of Figure 6: each
edge has a capacity which matches the number of colors in h(e).

From Lemma 4 we have that we can show that h is a colored flow by showing
that ∀v ∈ V \{Source,Sink} : ∪(u,v)∈Eh(u, v) = ∪(v,w)∈Eh(v, w). We can do this
by examining each vertex, in a manner similar to what we did in the proof of
Lemma 6; we omit the details (tedious!). We also must show that there exists a
straight cut such that ∪(u,v)∈E,u∈S,v∈Th(u, v) = 0..K − 1. Examining Figure 6,
we see that the cut ({Source}, V \ {Source}) uses all K colors.

Finally we must show that h is an aligned colored flow, that is, we must show
that if A(e) = true, then ∃i : 0 ≤ i ≤ K − 1 ∧ {2i, 2i+ 1} ⊆ h(e). We can easily
verify that by inspection of Figure 6.
⇐) Suppose we have a maximal, aligned colored flow h of G that uses the

colors 0, . . . , 2K−1. We can then define a Boolean assignment ψ for the variables
of F :

for all i ∈ 1..n : ψ(xi) =

{
true if h(Source 2→ S) = h(S 1→ T ) ∪ h(ai

1→ x̄i1)
false otherwise

Let j ∈ 1..m. We will show that ψ satisfies cj . For convenience, we let S have
the alias b0, and we let T have the alias an+1; this simplifies the statement of
Claim 2 below.

We first prove five properties of h:

– Claim 1: h(Source 2→ S) = h(T 2→ Sink).
– Claim 2: h(Source 2→ S) = h(S 1→ T ) ∪ h(bi

1→ ai+1), i ∈ 0..n.
– Claim 3: (a) If there exists k such that h(Source 2→ sik) ⊆ h(cj

6→ Sink),
then xi appears in cj . (b) if there exists h such that h(Source 2→ s̄ih) ⊆
h(cj

6→ Sink), then x̄i appears in cj .
– Claim 4: For i ∈ 1..n: (a) h(Source 2→ si0) 6⊆ h(cj

6→ Sink), (b) h(Source 2→
si(pi+1)) 6⊆ h(cj

6→ Sink), (c) h(Source 2→ s̄i(qi+1)) 6⊆ h(cj
6→ Sink).

– Claim 5: Either there exists i, k such that h(Source 2→ sik) ⊆ h(cj
6→ Sink),

or there exists i, h such that h(Source 2→ s̄ih) ⊆ h(cj
6→ Sink).

Proof of Claim 1. From Lemma 4, h(Source 2→ S) = h(S 1→ T ) ∪ h(S 1→ a1)
and h(S 1→ T ) ∪ h(bn

1→ T ) = h(T 2→ Sink). This shows that one color d from



h(Source 2→ S) is in h(T 2→ Sink). From the alignment requirements, we have
that both h(Source 2→ S) and h(T 2→ Sink) must contain {d,d̄} and therefore
are equal.

Proof of Claim 2. From Lemma 4, h(Source 2→ S) = h(S 1→ T ) ∪ h(S 1→ a1),
so one color from h(Source 2→ S) is in h(S 1→ T ). Additionally, the complement-
ing color takes some other path from S to T and by inspection, we see that all
paths from S to T contain the edges (bi, ai+1).

Proof of Claim 3. (a) Suppose h(Source 2→ sik) ⊆ h(cj
6→ Sink). The kth

occurrence of xi is in cr for some r, and G contains the edges sik
1→ cr and

xi(k+1)
1→ cr. We must show j = r. Suppose j 6= r. We can now choose a

straight cut (S, T ) such that cj ∈ S and cr ∈ T . Notice that the two edges
cj

6→ Sink and sik
1→ cr both cross (S, T ) and hence must have colors that are

all different. However, from Lemma 4 we have that h(sik
1→ cr) ⊆ h(Source 2→

sik) ⊆ h(cj
6→ Sink), a contradiction. We conclude j = r. (b) The proof is similar

to the proof of (a), we omit the details.
Proof of Claim 4. (a) We can choose a straight cut (S, T ) such that cj ∈ S

and si0 ∈ T . Notice that the two edges Source 2→ si0 and cj
6→ Sink both cross

(S, T ) and hence must have colors that are all different. (b),(c): The proofs are
similar to the proof of (a), we omit the details.

Proof of Claim 5. The set h(cj
6→ Sink) contains two aligned colors d, d̄.

The edges crossing the straight cut (Source, V \ Source) are of the six forms: (i)
Source 2→ S, (ii) Source 2→ si0, (iii) Source 2→ si(pi+1), (iv) Source 2→ s̄i(qi+1),

(v) Source 2→ sik, (vi) Source 2→ s̄ih. Because every color is used exactly once
across a straight cut, one of those edges must have the colors d, d̄. We must rule
out cases (i)–(iv). Consider first case (i). The straight cut (V \ Sink ,Sink) is
crossed by the edges T 2→ Sink and cj

6→ Sink , hence those edges must have
different colors. From Claim 1 we have h(Source 2→ S) = h(T 2→ Sink), so
h(Source 2→ S) 6⊆ h(cj

6→ Sink). Consider then cases (ii)–(iv). Those cases are
impossible because of Claim 4.

Finally, we will show that ψ satisfies cj . From Claim 5 we have that either (I)
there exists i, k such that h(Source 2→ sik) ⊆ h(cj

6→ Sink), or (II) there exists
i, h such that h(Source 2→ s̄ih) ⊆ h(cj

6→ Sink). We will show that ψ satisfies cj
in the case of (I); the case (II) can be proved in a similar fashion. From Claim 3 we
have that xi appears in cj . From Lemma 4 we have that we can find a color d such
that h(Source 2→ sik) = {d, d̄} and h(sik

1→ cj) = {d}. We have that the literals
in clause cj are distinct so when we consider the edges xik

1→ cr and xi(k+1)
1→ cj ,

we have that r 6= j. From h(Source 2→ sik) ⊆ h(cj
6→ Sink) we have that d̄ is a

color of some edge to cj and hence not a color of any edge to cr. The vertex xik
has two outgoing edges xik

1→ xi(k+1) and xik
1→ cr, so h(xik

1→ xi(k+1)) = {d̄}.
So we have h(xik

1→ xi(k+1)) ⊆ h(Source 2→ sik). The edges Source 2→ S and



Source 2→ sik both cross the straight cut ({Source}, V \{Source}) and hence have
colors that are all different. We thus have that h(xik

1→ xi(k+1)) 6⊆ h(Source 2→
S). From h(xik

1→ xi(k+1)) 6⊆ h(Source 2→ S) and Claim 2 we have that h(xik
1→

xi(k+1)) 6= h(bi
1→ ai+1). By Claim 2, we have that h(bi−1

1→ ai) = h(bi
1→ ai+1).

Note that there exists two paths from ai to bi. One path consists of vertices ai,
xi1,. . . ,xi(pi+1), bi; the other of vertices ai, x̄i1,. . . ,x̄i(qi+1), bi. From Lemma 4

we have that the color of h(bi
1→ ai+1) must be assigned to all edges on one of

these paths. From h(xik
1→ xi(k+1)) 6= h(bi

1→ ai+1) we conclude that the color

of h(bi
1→ ai+1) must be assigned to all edges on the path ai, x̄i1,. . . ,x̄i(qi+1), bi.

We conclude ψ(xi) = true. Since xi appears in cj , we have that ψ satisfies cj .
�



Edge Color Edge Color

xiu
1→ xi(u+1) ψ(xi) ? α(i, u) : θ si0

1→ Sink γ(i)

x̄iv
1→ x̄i(v+1) ψ(xi) ? θ : β(i, v) si0

1→ ai γ(i)

ai
1→ xi1 ψ(xi) ? γ(i) : θ bi

1→ Sink ψ(xi) ? δ(i) : η(i)

ai
1→ x̄i1 ψ(xi) ? θ : γ(i) siu

1→ xiu α(i, u)

xi(pi+1)
1→ bi ψ(xi) ? δ(i) : θ si(pi+1)

1→ xi(pi+1) δ(i)

x̄i(qi+1)
1→ bi ψ(xi) ? θ : η(i) s̄iv

1→ x̄iv β(i, u)

Source
2→ siu α(i, u), α(i, u) s̄i(qi+1)

1→ x̄i(qi+1) η(i)

Source
2→ si(pi+1) δ(i), δ(i) si(pi+1)

1→ Sink δ(i)

Source
2→ s̄iv β(i, u), β(i) s̄i(qi+1)

1→ Sink η(i)

Source
2→ s̄i(qi+1) η(i), η(i) siu

1→ cj α(i, u)
if occ(u, xi, cj)

Source
2→ si0 γ(i), γ(i) s̄iv

1→ cj β(i, u)
if occ(v, x̄i, cj)

Source
2→ S θ, θ xi(u+1)

1→ cj ψ(xi) ? α(i, u) : α(i, u+ 1)
if occ(u, xi, cj), (u 6= pi)

cj
6→ Sink See Figure 7(b) xi(pi+1)

1→ cj ψ(xi) ? α(i, pi) : δ(i)
if occ(pi, xi, cj)

T
2→ Sink θ, θ̄ x̄i(v+1)

1→ cj ψ(xi) ? β(i, v) : β(i, v + 1)
if occ(v, x̄i, cj), (v 6= qi)

S
1→ T θ̄ x̄i(qi+1)

1→ cj ψ(xi) ? η(i) : β(i, qi)
if occ(qi, x̄i, cj)

bl
1→ al+1 θ xi1

1→ Sink ψ(xi) ? γ(i) : α(i, 1)

S
1→ a1 θ x̄i1

1→ Sink ψ(xi) ? γ(i) : β(i, 1)

bn
1→ T θ

Fig. 6. Edge construction; ψ(xi)?dT : dF denotes that if ψ(xi) = true then the assigned
color is dT and if ψ(xi) = false then the assigned color is dF . 1 ≤ i ≤ n, 1 ≤ j ≤
m, 1 ≤ u ≤ pi, 1 ≤ v ≤ qi, 1 ≤ l ≤ n − 1. An expression occ(u, xi, cj) means that the
uth occurrence of xi appears in cj .

α(i, k) = 2(Σi
z=1pz−1 + k − 1)

β(i, h) = 2(Σn
z=1pz +Σi

z=1qz−1

+h− 1)

γ(i) = 2(3m+ i− 1)

δ(i) = 2(3m+ n+ i− 1)

η(i) = 2(3m+ 2n+ i− 1)

θ = 2(3m+ 3n)

Condition Colors

xi is uth occ., ψ(xi) = true α(i, u), α(i, u)

xi is uth occ., ψ(xi) = false, u 6= pi α(i, u+ 1), α(i, u)

xi is pthi occ., ψ(xi) = false δ(i), α(i, pi)

x̄i is vth occ., ψ(xi) = false β(i, v), β(i, v)

x̄i is vth occ., ψ(xi) = true, v 6= qi β(i, v + 1), β(i, v)

x̄i is qthi occ., ψ(xi) = true η(i), β(i, qi)

Fig. 7. (a) Abbreviations. (b) For each literal in cj , the set of colors added to h(cj
6→

Sink).
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