
Wave Propagation and Deep Propagation

A description of two new algorithms for Inclusion Based Points-to Analysis.

Fernando Magno Quintão Pereira
Google DC

fernando@cs.ucla.edu

Daniel Berlin
Google DC

dannyb@google.com

ABSTRACT
This paper describes two new algorithms for solving inclu-
sion based points-to analysis. The first algorithm, the Wave
Propagation Method, is a modified version of an early tech-
nique presented by Pearce et al.; however, it greatly im-
proves on the execution of its predecessor. The second al-
gorithm, the Deep Propagation Method, is a more light-
weighted analysis, that requires less memory. We have com-
pared these algorithms with three state-of-the-art techniques
by Hardekopf-Lin, Heintze-Tardieu and Pearce-Kelly-Hankin.
Our experiments show that Deep Propagation has the best
average execution time across a suite of 17 large bench-
marks, the lowest memory requirements in absolute num-
bers, and the fastest absolute times for benchmarks under
100,000 lines of code. The memory-hungry Wave Propa-
gation has the fastest absolute running times in a memory
rich execution environment, matching the speed of the best
known points-to algorithms in large benchmarks.

1. INTRODUCTION
Two variables are said to alias if they address overlapping
storage locations. Aliasing is a key trait in many imperative
programming languages such as C, C++ and Java, and it
is used, for instance, to avoid copying entire data structures
during parameter passing in function calls. Although a pow-
erful feature, aliasing comes with a price: it makes it hard
for compilers to reason about programs, and it may hinder
many potential optimizations, such as partial redundancy
elimination [9]. The traditional solution adopted by com-
pilers to deal with this problem is alias analysis. This type
of analysis provides to the optimizing compiler information
about which memory locations may alias, which locations
will never alias, and which locations must always alias. Al-
though precise alias analysis is a NP-complete problem [8],
compilers can use imprecise results with great benefits [7].
The most aggressive compiler optimizations tend to require
whole program analysis, and one of the biggest challenges
of this decade has been scaling such analyses for large pro-
grams [3, 5, 7].

In this paper we present two new algorithms for Ander-
sen style [1] inclusion based points-to analysis. The first
is called the Wave Propagation method. This algorithm
is an evolution of the technique introduced by Pearce et
al [13, Fig.3], and it greatly improves on the overall running
time, predictability and scalability of its predecessor. The
second algorithm is named the Deep Propagation method.
It presents very small overhead when compared to other
points-to solvers, in terms of memory usage and preprocess-
ing time. This makes this algorithm an attractive option for
analyzing small to average size programs with up to 100K
lines of code. Both algorithms rely on elegant invariants
that simplify their design and make them competitive with
state-of-the-art solvers already described in the literature.

In the next section we describe points-to analysis with greater
detail and touch some related works. In Section 3 we intro-
duce the wave propagation method, and in Section 4 we
discuss the deep propagation technique. Section 5 describes
experiments supporting both algorithms and Section 6 con-
cludes this paper and indicates future research directions.

2. BACKGROUND
There are different types of pointer analysis with regard
to flow and context sensitiveness. Flow insensitive algo-
rithms [3, 5, 7] ignore the order of statements in a program,
contrary to flow sensitive analyses [2, 18]. Context sensitive
analyses distinguish the different calling contexts of a func-
tion [17]. Flow and context insensitive analyses are further
divided between inclusion based and unification based. The
former variation, when facing an assignment such as a = b,
assumes that the locations pointed by b are a subset of the
locations pointed by a. The unification based analyses, in
which the Steensgard’s Algorithm [15] is the most famous
representative, assume that the locations pointed by both
variables are the same; thus, trading precision by speed.
Although flow and context sensitive analyses produce more
precise results, for many purposes the accuracy provided by
the flow and context insensitive analyses is regarded as suf-
ficient. For instance, popular compilers such as the Gnu C
Compiler (GCC) and LLVM [10] use inclusion based flow
and context insensitive analyses. The algorithms provided
in this paper fit in this category.

Andersen’s dissertation [1] contains one of the first descrip-
tions of the inclusion based points-to analysis problem, which
he specifies using typing rules. This seminal work has in-
spired research in many different directions. Later works



have attempted to improve the precision of Andersen’s anal-
ysis or, as in our case, have attempted to speed up the algo-
rithms used to solve constraint sets. Constraints are derived
from statements involving variable assignment or parameter
passing in the program that is being analyzed. There are
basically four types of constraints, which are enumerated in
the table below, taken from [5]:

Statement Name Constraint
a = &b Base a ⊇ {b}
a = b Simple a ⊇ b
a = *b Complex 1 a ⊇ ∗b
*a = b Complex 2 ∗a ⊇ b

Complex constraints represent variable dereferencing. A
constraint such as a ⊇ ∗b signifies that for any variable v,
if v is in the points-to set of b, then the points-to set of v
is a subset of the points-to set of a. The analogous ∗a ⊇ b
signifies that for any variable v, if v is in the points-to set
of a, then the points-to set of b is a subset of the points-to
set of v. The input of the Andersen style points-to analysis
problem is a collection of constraints. The output is a con-
servative assignment of variables to point-to set that satis-
fies the constraints. Solving the points-to problem amounts
to computing the transitive closure of the constraint graph.
This graph has one vertex for each variable in the constraint
set, and it has one edge connecting variable v to variable u
if the points-to set of v is a subset of the points to set of
u. In the figure below we show a simple program, and its
constraint graph, augmented with a solution to the points-to
problem.

A

{A,C}
D C

B

{A,C}

{A}

{A}
B = &A
A = &C
D = A
*D = B
A = *D

These constraints are normally solved iteratively: complex
constraints cause new edges to be added to the constraint
graph, forcing points to be propagated across nodes. The
process is repeated until no more changes are detected. By
the end of the nineties, it was clear that the identification
of cycles was an essential requirement for scaling points-to
analysis. All the nodes in a cycle are guaranteed to have the
same points-to set, and thus they can be collapsed together.
Fahndrich et al. [3] proposed one of the first algorithms to
detect cycles on-line, that is, while complex constraints are
being processed. Since then, many new algorithms have
been proposed. Heintze and Tardieu [7] describe an algo-
rithm that can analyze C programs with over one million
lines of code in a few seconds. Pearce et al. have also intro-
duced important contributions to this field [12, 13]. Finally,
in 2007 Hardekopf and Lin presented two techniques that
considerably improve the state-of-the-art solvers: Lazy Cy-
cle Detection and Hybrid Cycle Detection [5]. In addition

to on-line cycle detection, points-to analyses rely on pre-
processing of constraints for scalability. Two important pre-
processing methods are Off-Line Variable Substitution [14],
and the HVN family of algorithms [6]. Both the on-line and
off-line techniques have seen large use in actual production
compilers. The algorithms designed by Pearce et al.[12, 13]
constitute the core of GCC’s points-to solver. This compiler
also employs off-line cycle detection [5] and variable sub-
stitution [14] plus the HU algorithm described in [6]. The
points-to solver used in LLVM was implemented after [5].
In this paper we compare our algorithms with well tuned
implementations of [5], [7] and [13].

3. WAVE PROPAGATION
The wave propagation method is a modification of the algo-
rithm proposed by Pearce et al in [13, Fig.3]. The proposed
algorithm detaches from the original technique by separating
the insertion of new edges in the constraint graph and the
propagation of points-to sets. The propagation of points-
to sets, which we call Wave Propagation, takes place in an
acyclic constraint graph. The absence of cycles allows us
to propagate points-to information in topological order, so
that only set differences need to be propagated. Once this
phase finishes, we have the invariant that the points-to set
of a node v includes the points-to sets of all the nodes n
that precede v in the constraint graph. These three phases
- collapsing of cycles, points-to propagation and insertion of
new edges - are repeated until no more changes are detected
in the constraint graph, as shown in Algorithm 1.

Algorithm 1 The Wave Propagation Method. Input: a
Constraint Graph G = (V, E). Output: a mapping of nodes
to points-to sets.

1: repeat
2: changed ← false
3: Collapse Strongly Connected Components in G (Algo-

rithm 2)
4: Perform Wave Propagation in G (Algorithm 4)
5: Add new edges to G (Algorithm 5)
6: if a new edge has been added to G then
7: changed ← true
8: end if
9: until changed = False

The first part of Algorithm 1 consists in finding and collaps-
ing the nodes of the constraint graph that are part of cycles.
Following previous algorithms [13, 5], we use Nuutila’s [11]
approach for finding strongly connected components, which
is an improvement on the original algorithm proposed by
Tarjan et al [16]. This method runs in linear time on the
number of edges in the constraint graph, and, as pointed by
Pearce et al [13], it has the beneficial side effect of produc-
ing a topological ordering of the target graph for free. The
pseudo-code for this phase is shown in Algorithms 2 and 3.
We use the following data structures:

• D: map of V to {1, . . . , |V |}∪⊥, associates the nodes
in V to the order in which they are visited by Nuutila’s
algorithm. Initially, D(v) = ⊥.

• R: map of V to V , associates each node in a cycle to
the representative of that cycle. Initially R(v) = v.



Algorithm 2 Collapse the Strongly Connected Components
of G. Input: a constraint graph G = (V, E).

Ensure: G is acyclic after nodes have been visited and SCC com-
ponents have been collapsed.

1: I ← 0
2: for all v such that D(v) = ⊥ do
3: visit node v (Algorithm 3)
4: end for
5: for all v such that R(v) 6= v do
6: unify(v, R(v))
7: end for

Algorithm 3 visit node v. Input: a constraint node v.

1: I ← I + 1
2: D(v)← I
3: R(v)← v
4: for all w such that (v, w) ∈ E do
5: if D(w) = ⊥ then
6: visit node w
7: end if
8: if w /∈ C then
9: R(v)← (D(R(v)) < D(R(w))) ? R(v) : R(w)

10: end if
11: end for
12: if R(v) = v then
13: C ← C ∪ {v}
14: while S 6= ∅ do
15: let w be the node on the top of S
16: if D(w) ≤ D(v) then
17: break
18: else
19: remove top from S
20: C ← C ∪ {w}
21: R(w)← v
22: end if
23: end while
24: push v into T
25: else
26: push v into S
27: end if

• C: subset of V , holds the nodes that are part of a
known strongly connected component. Initially C = ∅.

• S: stack of V , holds the nodes that are in a cycle par-
tially visited by Nuutila’s algorithm. Initially empty.

• T : stack of V , holds the nodes of V that are repre-
sentatives of strongly connected components. T keeps
the nodes in topological order, that is, the top node
has no predecessors. Initially empty.

After collapsing cycles we perform one round of wave propa-
gation, which consists in sending the points-to-set of a node
v to all its neighbors. If the constraint graph is acyclic, and
the order of propagations is the topological ordering of the
nodes, then we guarantee that any node w reachable from a
node v will contain the points-to-set of node v. Fortunately,
the topological ordering of the constraint nodes, stored in
the stack T , is a byproduct of Algorithm 3. The wave prop-
agation phase is detailed in Algorithm 4. Our algorithm
uses two points-to set per node. The first set, which we call

Algorithm 4 Perform wave propagation in G. Input: a
constraint graph G = (V, E).

Require: G is acyclic.
Ensure: Pcur(v) ⊆ Pcur(w) if w is reachable from v.

1: while T 6= ∅ do
2: v ← pop node on top of T
3: Pdif ← Pcur(v)− Pold(v)
4: Pold(v)← Pcur(v)
5: for all w such that (v, w) ∈ E do
6: Pcur(w)← Pcur(w) ∪ Pdif

7: end for
8: end while

Algorithm 5 Add new edges to G. Input: a constraint
graph G = (V, E), a list of constraints c1, c2, . . . , cm.

1: for all Constraint c = l ⊇ ∗r do
2: Pnew ← Pcur(r)− Pcache(c)
3: Pcache(c)← Pcache(c) ∪ Pnew

4: for all v ∈ Pnew do
5: if (v, l) /∈ E then
6: E ← E ∪ {(v, l)}
7: Pcur(l)← Pcur(l) ∪ Pold(v)
8: end if
9: end for

10: end for
11: for all Constraint c = ∗l ⊇ r do
12: Pnew ← Pcur(l)− Pcache(c)
13: Pcache(c)← Pcache(c) ∪ Pnew

14: for all v ∈ Pnew do
15: if (r, v) /∈ E then
16: E ← E ∪ {(r, v)}
17: Pcur(v)← Pcur(v) ∪ Pold(r)
18: end if
19: end for
20: end for

Pcur(v), is the current points-to set of node v, and, once
Algorithm 1 stops iterating, it is the result of the pointer
analysis for node v. The second set, which we call Pold(v),
holds the points-to information that has been sent from v
since the last iteration of the wave propagation. We keep
track of Pold(v) to avoid re-propagating the whole current
points-to set of v during each iteration of our algorithm.

We add new edges to the constraint graph in the last phase
of the proposed algorithm. New edges are added due to the
evaluation of complex constraints. This step is illustrated in
Algorithm 5. We keep track of Pcache(c), the last collection
of points used in the evaluation of complex constraint c.
This optimization greatly reduces the number of edges that
must be checked for inclusion in G, and speeds up the edge
insertion algorithm considerably.

In order to illustrate the algorithms discussed in this paper,
we will be using the program in Figure 1. Figure 2 outlines
the first iteration of the wave propagation method on that
program. During the search for strongly connected compo-
nents in Algorithm 2, the cycle formed by nodes B and C is
collapse into a single node. In the following step, e.g: Algo-
rithm 4, we propagate the points-to sets across the acyclic
constraint graph. Finally, Algorithm 5 inserts the new edges
produced by the constraints D = ∗H and ∗E = F into the
constraint graph. The analysis will finish in the next itera-
tion, which we omit from the example.



H = &C E = &G B = C

H = &G H = A C = B

A = &E F = D B = A

D = *H *E = F F = &A

Figure 1: The example program.

A B E F

H C D G

{E}

{C,G}

{G}

1) The initial constraint graph.

A BC E F

H D G

{E}

{C,G}

{G}

2) Constraint graph after
collapsing strongly
connected components.

A BC E F

H D G

{E}

{C,E,G}

{G}{E}

3) Constraint graph after first
wave propagation.

A BC E F

H D G

{E}

{C,E,G}

{G}{E}

4) Constraint graph after edge
insertion.

{A} {A}

{A}
{A}

{A}{E,G}

Figure 2: One iteration of the wave propagation
method.

Complexity Analysis. The collapsing of strongly connected
components in the first phase of the proposed algorithm is
linear on the number of edges of the constraint graph. Thus,
for a dense graph G = (V, E), in the worst case, it will be
O(V 2). The wave propagation phase may cause the propa-
gation of a quadratic number of points-to sets in the worst
case. Each union operation is linear on the number of ver-
tices in the constraint graph; therefore, this phase is O(V 3).
Finally, the insertion of edges depends on the number of
complex constraints, but at most O(V 2) edges can be added
into the constraint graph. Each edge insertion leads to the
copy of one points-to set, e.g Pcur ← Pcur ∪ Pold; this oper-
ation is linear on the number of nodes, and results in a final
complexity of O(V 3).

4. DEEP PROPAGATION
The wave propagation method is very memory intensive: it
keeps a cache of points-to information already processed for
both nodes and constraints. The Deep Propagation method
addresses this shortcoming. This new algorithm maintains
the invariant that, if a node w is reachable from a node v,
then the points-to set of w contains the points-to set of v.
This condition is true after the collapsing of strongly con-
nected components followed by the wave propagation step
discussed in the previous section, and that is the starting
point for the deep propagation approach, as shown in Algo-
rithm 6. Notice that in the algorithm presented in Section 3
this property holds after a round of wave propagation, but it
is no longer true after the insertion of new edges performed
by Algorithm 5.

Algorithm 6 The Deep Propagation Points-to Solver. In-
put: a Constraint Graph G = (V, E). Output: a mapping
of nodes to points-to sets.

1: Collapse Strongly Connected Components in G (Algo-
rithm 2).

2: Perform Wave Propagation in G (Algorithm 4).
3: repeat
4: changed ← false
5: for all Constraint c = l ⊇ ∗r do
6: Pnew pts ← ∅
7: Pnew edges ← Pcur(r)− Pcache(c)
8: Pcache(c)← Pcache(c) ∪ Pnew edges

9: for all v ∈ Pnew edges do
10: if (v, l) /∈ E then
11: E ← E ∪ {(v, l)}
12: Pnew pts ← Pnew pts ∪ Pcur(v)
13: end if
14: end for
15: Pdif ← Pnew pts − Pcur(l)
16: Deep propagate Pdif from l with stop point l
17: Unmark black nodes and unify gray nodes with l
18: end for
19: for all Constraint c = ∗l ⊇ r do
20: Pnew edges ← Pcur(l)− Pcache(c)
21: Pcache(c)← Pcache(c) ∪ Pnew edges

22: for all v ∈ Pnew edges do
23: if (r, v) /∈ E then
24: E ← E ∪ {(r, v)}
25: Pdif ← Pcur(r)− Pcur(v)
26: deep propagate Pdif from v with stop point r
27: end if
28: end for
29: unmark black nodes and unify gray nodes with r
30: end for
31: until changed = False

In algorithm 6 we compute, for each complex constraint,
the set of nodes that must be deep propagated through the
constraint graph. The deep propagation means that, given a
starting node v, and a points-to set Pdif , we will add Pdif to
the points-to set of v, and also to the points-to set of every
node reachable from v in the constraint graph. Algorithm 6
is divided in two parts. The first part, given in lines 5 to 18,
handles complex 1 constraints. Given a constraint such as
l ⊇ ∗r, our algorithm computes the new points-to set Pdif

that must be propagated from node l. The poinst-to set of
every variable v recently added to the points-to set of node
r contributes to Pdif . However, due to our invariant, nodes
reachable from l already contain l’s current points-to set;
thus, we can remove Pcur(l) from Pdif in line 15 of our algo-
rithm, before the deep propagation begins. The second part
of our algorithm, given in lines 19 to 30, handles complex 2
constraints such as ∗l ⊇ r. We must deep propagate to each
node v recently added to the points-to set of l every node
in the points-to set of r that is not already present in the
points-to set of v. As in the wave propagation method, we
keep the points-to set Pcache(c) of nodes processed for each
complex constraint c, to avoid dealing with edges already
added to the constraint graph.

The core of deep propagation is the recursive procedure de-
tailed in Algorithm 7. That procedure receives three param-
eters: a node v, a points-to set Pdif and a node s, which is
called the stop point. The objective of the deep propagation
is to guarantee that the set Pdif be part of the points-to set
of every node reachable from v. However, not every node



Algorithm 7 The Deep Propagation Routine. Input: the
point-to set Pdif that must be propagated, the node v that
is been visited and the stop point s. Output: true if stop
point s is reachable from v, and false otherwise.

Require: Pcur(v) ⊆ Pcur(w) if w is reachable from v.
Ensure: Pcur(v) ⊆ Pcur(w) if w is reachable from v.
1: if v is gray then
2: return True
3: else if v is black then
4: return False
5: end if
6: Pnew ← Pdif − Pcur(v)
7: if Pnew 6= ∅ then
8: Pcur(v)← Pdif ∪ Pnew

9: changed ← True
10: for all w such that (v, w) ∈ E do
11: if w = s or deep propagate Pnew from w with stop

point s returns true then
12: mark v gray
13: return True
14: else
15: mark v black
16: return False
17: end if
18: end for
19: else if (v, s) ∈ E then
20: mark v gray
21: return True
22: else
23: mark v black
24: return False
25: end if

reachable from v needs to be visited by the deep propaga-
tion routine: this traversal can stop if a node that already
contains Pdif is visited, due to our invariant. This invari-
ant also allow us to reduce the size of Pdif during successive
calls of the deep propagation method, as we do in line 6
of Algorithm 7. Because this difference is computed on the
fly during deep propagation, we do not have to keep the
Pold sets used in the algorithm from Section 3. The node
called stop point is used to identify cycles. As we observe
in lines 16 and 26 of Algorithm 6, this is the node where
the deep propagation effectively starts. If the stop point is
ever reached by a recursive call of deep propagation, then
we know that a cycle has been found.

Set operations such as those executed in lines 6 and 8 of
Algorithm 7 are relatively expensive - they are linear on the
number of nodes in the constraint graph, and we would like
to dodge them as much as possible. Therefore, in order to
avoid testing if Pdif is already part of the current points-to
set of a node, we mark the nodes already visited by the deep
propagation traversal with one of two colors: black or gray.
A node v is marked gray if there is a path from v to the
stop point, otherwise v is marked black. Set operations are
applied only to uncolored nodes. Figure 3 illustrates two
iterations of the deep propagation routine.

The deep propagation method is not guaranteed to elimi-
nate all the cycles in the target constraint graph. Omissions
happen because a node only invokes the deep propagation
routine on its successors if there are points to propagate.
Figure 4 illustrates a case where a cycle is not discovered
during deep propagation. The points-to set of node B is

A BC E F

H D G

{E}

{C,E,G}

{G}{E}

Acyclic constraint graph after initial wave propagation.

A BC E F

H D G

{E}

{C,E,G}

{G}
{E}

Constraint graph after processing D = *H, and deep
propagation from D with stop point D.

{E,G}

{A,E,G}

A BC E

H D G

{E}

{C,E,G}

{G}{E}

{A,E,G}

{A,E,G}

F

{A,E,G}

Constraint graph after processing *E = F, and deep
propagation from G with stop point F. The gray
nodes will be collapsed into the stop point F.

stop point

stop point

{A}

Figure 3: Deep propagation in action.

A B{X}

C

E C

D
{X}

{X}{X}

A B

{X}

E

D{X}

{X}

{X}

{X}

Y
{B}

Y
{B}

D = &X
C = B

E = C
C = D

*Y = A

Acyclic constraint graph after initial wave propagation.

Constraint graph after processing *Y = A and deep 
propagating from B with stop point A.

Input Constraints.

A = E
Y = &B

Figure 4: Cycle not found by deep propagation.

already part of the points-to set of node C; thus, the condi-
tion in line 7 of Algorithm 7 will be false, and the presence
of node E in the constraint graph will prevent the test in
line 19 of discovering the cycle.



Complexity Analysis. As discussed before, the initial step
to find cycles is O(V 2), and the single wave propagation is
O(V 3), where V is the number of variables in the target pro-
gram, which equals the number of nodes in the constraint
graph. The deep propagation routine can visit all the nodes
in the constraint graph, and it executes two bitmap opera-
tions per node. Each of these operations, the union and the
set difference, is linear on the number of nodes in the con-
straint graph. Notice that bitmap operations are performed
twice per node, and not per edge; thus, the deep propaga-
tion is O(V 2). Algorithm 6 may call the deep propagation
function once for each new edge added to the constraint
graph. There may exist a potentially quadratic number of
new edges; however, a node is only visited as long as its
points-to set can be augmented, and new points can only be
added up to O(V ) times. Therefore, the final complexity of
this algorithm is O(V 3).

5. EXPERIMENTAL RESULTS
We have performed a number of experiments in order to ver-
ify the efficiency of the proposed algorithms. We have run
tests in two different machines. The first is a 2.4GHz Intel
Core 2 Duo computer running Mac OS X version 10.5.4, with
2 GB of SDRAM. The other machine is a 1GHz four proces-
sors Dual-Core AMD Opteron(tm) running Linux Ubuntu
6.06.2, with 8G of memory. We compare our algorithm with
the three inclusion based solvers implemented by Ben Hard-
ekopf and previously used in [5]. These algorithms are freely
available at Hardekopf’s page: http://www.cs.utexas.edu/
~benh/. The algorithms that we have used are:

• Lazy Cycle Detection [5](LCD): this is the most scal-
able algorithm for solving inclusion based points-to
analysis. Basically, this algorithm searches for cycles
every time it detects that the points-to set of a node v
equals the points-to set of one of its successor nodes w.
To mitigate the number of searches that do not result
in cycles, it executes at most one search per edge in
the constraint graph.

• Heintze-Tardieu [7](HT). This is the first massively
scalable solver presented in the literature. It propa-
gates points on demand, in a depth first fashion, in a
way similar to the deep propagation method; however,
it does not keep the invariant of that algorithm. Thus,
it has to propagate entire points-to sets.

• Pearce-Kelly-Hankin [13](PKH). The base of the cur-
rent points-to solver used in GCC. It relies on a week
topological ordering of the target graph to avoid search-
ing for cycles across the entire space of nodes.

All the programs were compiled with GCC 4.0.1 at the -
O3 optimization level, and use the same data-structure to
represent points-to sets: the bitmap library from GCC.

5.1 Asymptotic Behavior
In order to verify the stability and the asymptotic behavior
of each of the available algorithms, we have run them on
a collection of 216 random constraint graphs. To produce
these graphs, we generate random constraints, using the av-
erage proportion of constraints that we found in actual pro-
grams: 14% of base constraints, 49% of simple constraints,

Number of Constraints (x 104)
0 20 40 60 10080 120

Ti
m

e 
(s

ec
on

ds
)

0
10

0
20

0
30

0
25

0
15

0
50

Number of Constraints (x 104)
0 20 40 60 10080 120

Ti
m

e 
(s

ec
on

ds
)

0
10

0
20

0
30

0
40

0

Figure 5: Asymptotic behavior: (Top) Wave Prop-
agation, (Bottom) Deep Propagation.

25% of complex 1 constraints and 12% of complex 2 con-
straints. For this particular experiment we have used ran-
dom constraint graphs because it is difficult to find a collec-
tion of benchmarks containing files with a gradually increas-
ing number of constraints. Notice that these graphs are dif-
ferent from the constraint graphs that we would obtain from
actual programs. The existence of edges in the constraint
graphs of actual programs does not follow a normal distri-
bution; instead, we observe that some special nodes tend do
span or collect many edges. Furthermore, real constraint
graphs tend to be more dense than our random graphs.
For instance, after components had been collapsed using
the deep propagation method, the random constraint graphs
contain, on average, 0.87 edges per node. In comparison, the
graphs produced in the same way for our real benchmarks
range in density from 0.78 edges per nodes (sendmail) to
139.581 edges per node (wine). Another difference is the
average size of the points-to set produced by the random
graphs, which tend to be 5-10 times bigger than the average
sizes observed in actual programs. Nevertheless, the random
constraints give us an idea about the asymptotic behavior
of each solver.

The results obtained from running the algorithms on the
MacOS environment are displayed in Figures 5 and 6. Each



Table 1: The Set of Benchmarks used in our exper-
iments.

Benchmark Code #Variables #Constraints
ex ex 3419 3,933
300.twolf tw 4,697 4,849
197.parser pr 5,055 6,491
255.vortex vt 8,262 8,746
sendmail sm 11,408 11,828
254.gap gp 19,336 25,005
emacs em 14,386 27,122
253.perl pl 19,895 28,525
vim vm 31,630 36,997
nethack nh 32,968 38,469
176.gcc gc 39,560 56,791
ghostscript gs 76,717 101,442
insight in 58,763 99,245
gdb gd 84,499 105,087
gimp gm 81,915 125,203
wine wn 150,828 199,465
linux lx 145,293 231,290

figure shows the line produced by fitting a polynomial of de-
gree three on the data points. In order to measure the sta-
bility of each algorithm, we computed the variance of each
point in relation to the regression curve. We observe that,
for these constraint graphs, the Wave Propagation approach
is the most stable, with an average variance of 4.31 seconds
per constraint graph. The variance found for the other al-
gorithms, in increasing order, is 8.819 for Heintze-Tardieu,
12.33 for Deep Propagation, 20.28 for Lazy Cycle Detection
and 39.19 for the Pearce-Kelly-Hankin algorithm.

5.2 Running Time
In order to measure how the proposed algorithms perform
in constraint graphs extracted from actual programs, we
have used the benchmarks presented in [5], plus 12 bench-
marks kindly provided to us by Ben Hardekopf, which in-
clude the six biggest integer programs in SPEC 2000. Ta-
ble 1 shows the benchmarks. The constraints in these bench-
marks are field-insensitive, that is, different variables in the
same struct are treated as the same name. All the algo-
rithms used in our tests are tuned to perform well with field-
insensitive input constraints. The benchmarks have been
preprocessed with an off-line variable substitution analy-
sis [14]. The number of constraints includes all the con-
straint types - base, simple and complex - found in the pro-
grams after off-line variable substitution.

Figure 7 compares the running time of the five algorithms in
the Intel/MacOS setting. All the results are normalized to
the Heintze-Tardieu (HT) algorithm. We observe that across
the benchmarks, the Deep Propagation technique had the
lowest geometric-mean, 0.82 of HT. The Wave Propagation
method had the second lowest geometric-mean: 0.90 of HT.
The average for the other algorithms are 1.77 for LCD, and
3.19 for PKH. The Deep Propagation method has the best
overall performance; however, the Lazy Cycle Detection and
the Wave Propagation techniques tend to outperform Deep
Propagation for bigger benchmarks. For the three biggest

Table 2: The execution time of each algorithm (sec)
on the Intel/MacOS setting.

WP DP HT LCD PKH
ex 0.010 0.004 0.005 0.012 0.041
tw 0.023 0.011 0.015 0.075 0.078
pr 0.056 0.028 0.041 0.097 0.315
vt 0.034 0.024 0.023 0.070 0.120

sm 0.106 0.107 0.114 0.229 0.422
gp 0.316 0.293 0.336 0.725 1.480
em 0.997 0.793 1.445 2.756 2.408
pl 0.895 0.853 1.402 3.589 4.551

vm 1.810 1.673 2.150 4.442 12.25
nh 0.167 0.111 0.154 0.362 0.559
gc 0.813 0.619 0.742 3.397 2.910
gs 51.50 138.07 219.15 175.81 173.91
in 67.47 45.05 42.54 62.68 122.06
gd 32.74 62.86 72.32 87.11 164.87

gm 33.36 53.92 63.21 38.13 101.65
wn 1,327.3 1,423.5 1,578.3 983.6 1987.5
lx 560.0 349.7 382.4 281.1 1,126.2

Tot 2,055.1 2,099.5 2,364.8 1,644.8 3,701.3

benchmarks, gimp, wine and linux, we have the following
geometric means: DP = 0.87, WP = 0.89, LCD = 0.65 and
PKH = 1.81.

Figure 8 compares the five algorithm in the AMD/Linux ex-
ecution environment. We have observed small changes on
the relative execution times for some of the benchmarks. In
particular, Wave Propagation outperforms Lazy Cycle De-
tection for Wine, the most time consuming benchmark. Also
the Heintze-Tardieu algorithm has the second best geometric-
mean. However, the overall time pattern remains the same:
the Deep Propagation method presents the best geometric-
mean: 0.89 of HT. The other means are WP = 1.04, LCD
= 1.65 and PKH = 3.09. Considering only the three biggest
benchmarks, we have: WP = 0.83, DP = 1.0, LCD = 0.69
and PKH = 1.97.

Table 2 gives the absolute running time of all the algorithms
in the Intex/MacOS environment, and Table 3 gives the
equivalent numbers for the AMD/Linux setting. Overall,
the MacOS environment accounted for the fastest times.
The total running time, in seconds, of all the algorithms
in the MacOS Setting is LCD = 1,656.99, WP = 2,094.13,
DP = 2,086.52, HT = 2,376.07 and PKH = 3,733.37. No-
tice that, although LCD has a lower geometric mean than
DP or WP, its absolute running time in this environment is
better, because it produces the fastest results for Wine and
the Linux kernel, the biggest benchmarks. On the other
hand, the absolute running times in the AMD/Linux plat-
form show the wave propagation with the best times: WP =
2,783.22, LCD = 2,817.8, HT = 3,709.01, DP = 3,916.68 and
PKH = 6,565.51. We speculate that the relative variation
between WP and LCD is due to the amount of free mem-
ory in the different machines, which explains the memory-
hungry WP outperforming LCD on the machine with larger
RAM.



Ti
m

e 
(s

ec
on

ds
)

Number of Constraints (x 104)

0
50

10
0

15
0

20
0

0 20 40 60 10080 120

Number of Constraints (x 104)
0 20 40 60 10080 120

Ti
m

e 
(s

ec
on

ds
)

0
10

0
20

0
30

0
40

0
50

0
60

0

Number of Constraints (x 104)
0 20 40 60 10080 120

Ti
m

e 
(s

ec
on

ds
)

0
50

10
0

15
0

20
0

Figure 6: Asymptotic behavior: (Left) Heintze-Tardieu, (Middle) Pearce-Kelly-Hankin (Right) Lazy Cycle
Detection.

ex tw pr vt sm gp em pl vm nh gc gs in gd gm wn lx GeoM
0.1

1

10
DPWP PKH LCD

Figure 7: Running time comparison between the five solvers (Intel running MacOSX 10.4.1).

We close this section pointing how the time is divided among
the three phases of the wave propagation method. Notice
that, although the edge insertion phase and the wave prop-
agation phase have the same complexity, the latter is much
faster in actual applications. The chart in Figure 9 shows
how the time is divided between the three main phases of
this algorithm. As it can be noted, the insertion of new
edges in the constraint graph accounts for over 89% of the
total running time of the algorithm for the biggest bench-
marks. This difference happens because the search for cycles
is linear on the number of edges of the constraint graph, and
because the wave propagation phase only propagates differ-
ences between points-to sets.

5.3 Memory Usage
Figure 10 shows the memory consumption among the five
tested algorithms. HT is the most economical across the
benchmark suite, with the lowest geometric-mean. The next
algorithm, DP, uses 1% more memory on average than HT.
The memory usage for the other algorithm, relative to HT, is
LCD = 1.07, PKH = 1.16 and WP = 1.42. The wave prop-
agation method demands more memory because it stores an
extra bitset per each variable - the last points-to set prop-

tw pr vt sm gp em pl vm nh gc gs in gd gm wn lxex

0.5

1.0

0

Add Edges Wave Propagation Collapse Cycles

Figure 9: Time division in the wave propagation
method in the Intel/MacOS setting.

agated for that variable, plus an extra bitset per complex
constraint - the last points-to set used to add edges to the



ex tw pr vt sm gp em pl vm nh gc gs in gd gm wn lx GeoM
0.1

1

10
DPWP PKH LCD

Figure 8: Running time comparison between the five solvers (AMD Opteron running Linux Ubuntu 6.06.2).

Table 3: The execution time of each algorithm (sec)
on the AMD/Linux setting.

WP DP HT LCD PKH
ex 0.021 0.009 0.020 0.025 0.103
tw 0.022 0.011 0.016 0.061 0.079
pr 0.064 0.032 0.046 0.084 0.338
vt 0.044 0.029 0.028 0.071 0.131

sm 0.148 0.213 0.151 0.269 0.514
gp 0.642 0.397 0.434 0.867 2.064
em 2.407 1.300 2.098 4.094 3.357
pl 1.262 1.326 1.924 4.818 6.683

vm 3.399 2.757 3.926 6.161 21.971
nh 0.277 0.189 0.213 0.441 0.643
gc 1.081 0.880 0.985 3.886 3.84
gs 90.14 244.20 346.24 277.08 301.68
in 131.45 88.24 62.75 90.12 190.42
gd 67.38 103.77 106.10 123.05 283.42

gm 64.69 98.24 102.21 60.38 173.65
wn 1,191.4 2,769.5 2,396.7 1,754.3 4,013.4
lx 1,227.9 605.7 666.61 501.69 1,784.2

Tot 2,783.2 3,916.7 3,709.0 2,817.8 6,565.5

constraint graph. Wine is responsible for the largest mem-
ory consumption among all the algorithms. The amount of
memory that each algorithm needs to process this bench-
mark is: DP = 1,561M, LCD = 1,750M, PKH = 1,778M,
HT = 2,095M and WP = 2,421M. Because the numbers for
Wine dominate all the other benchmarks, although HT had
the lowest geometric mean, in absolute terms DP was the
most economical algorithm. If we sum up the memory re-
quired by each algorithm to process all the benchmarks, we
get: DP = 3,954M, LCD = 4,121M, PKH = 4,255M, HT =
4,328M and WP = 5,881M.

5.4 Summary of Experiments

Table 4: Summary of Experiments

DP WP LCD HT PKH
GT OSX 0.82 (*) 0.90 1.77 1.0 3.19
GT LX 0.89 (*) 1.04 1.65 1.0 1.97
AT OSX 2,099 2,055 1,645 (*) 2,364 3,701
AT LX 3,917 2,783 (*) 2,818 3,709 6,566
GM 1.01 1.42 1.07 1.0 (*) 1.16
AM 3,954 (*) 5,881 4,121 4,328 4,255
Variance 12.33 4.31 (*) 20.28 8.82 39.19

Table 4 summarizes all the results described in this Section.
GT stands for geometric mean of running time, AT stands
for absolute running time, OSX stands for MacOS/Intel, LX
stands for linux/AMD, GM stands for geometric mean of
memory consumption and AM stands for absolute memory
consumption.

6. CONCLUSION AND FUTURE WORK
This paper has presented two new algorithms for solving
Andersen based points-to analysis: the Wave Propagation
and the Deep Propagation methods. As discussed in Sec-
tion 5, these algorithms improve the current state of the art
in many different directions. One of the main motivations for
the Wave Propagation method is to be a base algorithm for
parallelizing Andersen style points-to analyses, and we are
currently working on such an implementation. Cycle elim-
ination complicates the parallelization of points-to solvers,
because this optimization may force the locking of a po-
tentially linear number of nodes in the constraint graph, in
order to avoid data races. The wave propagation algorithm
is an attempt to get around this problem, because the detec-
tion of cycles is separate from the propagation of points-to
sets. The detection of strongly connected components, the
first phase of the new algorithm, has a well-known parallel
implementation [4]. Once connected components are discov-
ered, each of them can be collapsed by a different thread.
As observed in Figure 9, the insertion of edges accounts for
most of the execution time of the Wave Propagation method.



DPWP PKH LCD

ex tw pr vt sm gp em pl vm nh gc gs in gd gm wn lx GeoM

1

0

2

3

Figure 10: Memory usage in AMD Opteron running Linux Ubuntu 6.06.2.

Although this phase is not an embarrassingly parallel task,
its parallelization requires the locking of a constant number
of nodes per thread. When processing a constraint such as
l ⊇ ∗r, a thread must lock the old and current points-to
set of node r. During the insertion of an edge (v, l), where
v ∈ Pcur(r), the edge set of node v must be locked. When
updating the current points-to set of node l, Pcur(l) and
Pold(v) must be locked. Another future direction is to verify
how much the Hybrid Cycle Detection algorithm proposed
in [5] improves the Deep Propagation and the Wave Propa-
gation methods. We would like to verify also how different
constraint orderings impact the Deep Propagation method.
Algorithm 6 first processes all the complex 1 constraints
and then all the complex 2 constraints, but it is possible
that different orderings improve its running time, as some
preliminary experiments have shown.

acknowledgment We thank Ben Hardekopft for generously
providing the benchmarks used in our experiments and re-
viewing a draft of this paper.

7. REFERENCES
[1] Lars Ole Andersen. Program Analysis and

Specialization for the C Programming Language. PhD
thesis, DIKU, University of Copenhagen, 1994.

[2] Ben-Chung Cheng and Wen-Mei W. Hwu. Modular
interprocedural pointer analysis using access paths:
design, implementation, and evaluation. In PLDI,
pages 57–69, 2000.

[3] Manuel Fahndrich, Jeffrey S. Foster, Zhendong Su,
and Alexander Aiken. Partial online cycle elimination
in inclusion constraint graphs. In PLDI, pages 85–96,
1998.

[4] Alan Gibbons. Efficient Parallel Algorithms.
Cambridge University Press, 1988.

[5] Ben Hardekopf and Calvin Lin. The ant and the
grasshopper: fast and accurate pointer analysis for
millions of lines of code. In PLDI, pages 290–299,
2007.

[6] Ben Hardekopf and Calvin Lin. Exploiting pointer and
location equivalence to optimize pointer analysis. In

SAS, pages 265–280, 2007.

[7] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing
analysis using CLA: A million lines of C code in a
second. In PLDI, pages 254–263, 2001.

[8] Susan Horwitz. Precise flow-insensitive may-alias
analysis is NP-hard. ACM Trans. Program. Lang.
Syst., 19(1):1–6, 1997.

[9] Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond
Lo, Peng Tu, and Fred C. Chow. Partial redundancy
elimination in SSA form. ACM Trans. Program. Lang.
Syst., 21(3):627–676, 1999.

[10] Chris Lattner and Vikram S. Adve. Llvm: A
compilation framework for lifelong program analysis &
transformation. In CGO, pages 75–88, 2004.

[11] Esko Nuutila and Eljas Soisalon-Soininen. On finding
the strongly connected components in a directed
graph. Inf. Process. Lett., 49(1):9–14, 1994.

[12] David J. Pearce, Paul H. J. Kelly, and Chris Hankin.
Online cycle detection and difference propagation for
pointer analysis. In SCAM, pages 3–12, 2003.

[13] David J. Pearce, Paul H. J. Kelly, and Chris Hankin.
Efficient field-sensitive pointer analysis for C. In
PASTE, pages 37–42, 2004.

[14] Atanas Rountev and Satish Chandra. Off-line variable
substitution for scaling points-to analysis. In PLDI,
pages 47–56, 2000.

[15] Bjarne Steensgaard. Points-to analysis in almost linear
time. In POPL, pages 32–41, 1996.

[16] Robert Endre Tarjan. Depth-first search and linear
graph algorithms. SIAM J. Comput., 1(2):146–160,
1972.

[17] John Whaley and Monica S. Lam. Cloning-based
context-sensitive pointer alias analysis using binary
decision diagrams. In PLDI, pages 131–144, 2004.

[18] Jianwen Zhu. Towards scalable flow and context
sensitive pointer analysis. In DAC, pages 831–836,
2005.


