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Abstract. Compilers such as gcc use static-single-assignment (SSA)
form as an intermediate representation and usually performs SSA elim-
ination before register allocation. But the order could as well be the
opposite: the recent approach of SSA-based register allocation performs
SSA elimination after register allocation. SSA elimination before reg-
ister allocation is straightforward and standard, while the state-of-the-
art approaches to SSA elimination after register allocation have several
shortcomings. We present spill-free SSA elimination, a simple and effi-
cient algorithm for SSA elimination after register allocation that avoids
increasing the number of spilled variables. We also present three opti-
mizations of the core algorithm. Our experiments show that spill-free
SSA elimination takes less than five percent of the total compilation
time of a JIT compiler. Our optimizations reduce the number of mem-
ory accesses by more than 9% and improve the program execution time
by more than 1.8%.

1 Introduction

Register allocation is the process of mapping a program that uses an unbounded
number of variables to a program that uses a fixed number of registers, such that
variables with overlapping live ranges are assigned different registers. If registers
cannot accommodate all the variables that are live at some point in the program,
some of these variables must be stored in memory, also known as spilled to
memory. Register allocation is one of the most important compiler optimizations
and can improve the speed of compiled code by more than 250% [16].

Static Single Assignment (SSA) form is an intermediate representation that
defines each variable at most once [8, 22] and in which ϕ-functions express re-
naming of variables. Compilers that use SSA form must eventually do SSA
elimination, that is, replace each ϕ-function with copy and swap instructions
[2, 4, 7, 9, 18]. Many industrial compilers use the SSA form as an intermediate
representation, including gcc 4.0 [10], Sun’s HotSpot JVM [27], IBM’s Java
Jikes RVM [28], and LLVM [14], and they all perform SSA elimination be-
fore register allocation. But the order could as well be the opposite: the re-
cent approach of SSA-based register allocation [3, 6, 11, 12, 19] performs SSA
elimination after register allocation. SSA-based register allocation has three



main advantages: (1) the problem of finding the minimum number of regis-
ters that are needed for a program in SSA form has a polynomial-time solu-
tion, (2) a program in SSA form requires at most as many registers as the
source program, and (3) register allocation can proceed in two separate phases,
namely first spilling and then register assignment. The two-phase approach
works because the number of registers needed for a program in SSA-form is
equal to the maximum of the number of registers needed at any given pro-
gram point. Thus spilling reduces to the problem of ensuring that for each pro-
gram point, the needed number of registers is no more than the total number
of registers. The register assignment phase can then proceed without additional
spills. The next figure illustrates the phases of SSA-based register allocation.
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SSA elimination before register allocation is easier than after register allocation.
The reason is that after register allocation when some variables have been spilled
to memory, SSA elimination may need to copy data from one memory location to
another. The need for such copies is a problem for many computer architectures,
including x86, that do not provide memory-to-memory copy or swap instructions.
The problem is that at the point where it is necessary to transfer data from one
memory location to another, all the registers may be in use! In that case, no
register is available as a temporary location for performing a two-instruction
sequence of a load followed by a store. One solution would be to permanently
reserve a register to implement memory-to-memory transfers. We have evaluated
that solution by reducing the number of available x86 integer registers from seven
to six, and we observed an increase of 5.2% in the lines of spill code (load and
store instructions) that LLVM [14] inserts in SPEC CPU 2000.

Brisk [5, Ch.13] has presented a flexible solution that spills a variable on de-
mand during SSA elimination, uses the newly vacant register to implement mem-
ory transfers, and later reloads the spilled variable when a register is available.
We are unaware of any implementation of Brisk’s approach, but have gauged its
potential quality by counting the minimal number of basic blocks where spilling
would have to happen during SSA elimination in LLVM, independent on the as-
signment of physical locations to variables. We found that for SPEC CPU 2000,
memory-to-memory transfers are required for all benchmarks except 181.mcf -
the smallest program in the set. We also found that the lines of spill code must
increase by at least 0.2% for SPEC CPU 2000, and we speculate that an im-
plementation of Brisk’s algorithm would reveal a substantially higher number.
In our view, the main problem with Brisk’s approach is that its second spilling
phase substantially complicates the design of a register allocator.

Our goal is to do better. We will present spill-free SSA elimination, a simple
and efficient algorithm for SSA elimination after register allocation. Spill-free
SSA elimination never needs an extra register, entirely eliminates the need for
memory-to-memory transfers, and avoids increasing the number of spilled vari-
ables. The next figure summarizes the three approaches to SSA elimination.



Accommodates optimal Avoids spilling
register assignment during SSA elimination

Spare register No Yes
On-demand spilling [5] Yes No

Spill-free SSA elimination Yes Yes

The starting point for our approach to SSA-based register allocation is Con-
ventional SSA (CSSA)-form [26] rather than the SSA form from the original
paper [8] (and text books [2]). CSSA form ensures that variables in the same
ϕ-function do not interfere. We show how CSSA-form simplifies the task of re-
placing ϕ-functions with copy or swap instructions. We also assume that the
CSSA-form program contains no critical edges. A critical edge is a control-flow
edge from a basic block with multiple successors to a basic block with multiple
predecessors. Algorithms for removing critical edges are standard [2].

We will present both a core algorithm for spill-free SSA elimination as well
as three optimizations. We have implemented our SSA elimination framework in
a puzzle-based register allocator [19]. We convert the source program to CSSA-
form before the spilling phase. Our experiments show that our approach to SSA
elimination takes less than five percent of the total compilation time of a JIT
compiler. Our optimizations reduce the number of memory accesses by more
than 9% and improve the program execution time by more than 1.8%. Our SSA
elimination framework works for any SSA-based register allocator such as [12],
and it can also be used to insert the fixing code required by register allocators
that follow the bin-packing model [13, 19, 24, 29].

We will state three theorems with either just a proof sketch or no proof at
all; the proofs can be found in Pereira’s Ph.D. dissertation [17].

2 Example

We now present an example that assumes a target architecture with a single
register r. Figure 1(a) shows a program in SSA form, Figure 1(b) shows the pro-
gram after spilling and register assignment, and Figure 1(c) shows the program
after SSA elimination with on-demand spilling. Notice that in Figure 1(c), a
ϕ-function has been replaced with four instructions that implement a copy from
m2 to m. The need for that copy happens at a program point where the only
register r is occupied by b2. So we must first spill r to mb, then we can copy
from m2 to m via the register r, and finally we can load mb back into into r.

Now we go on to illustrate that spill-free SSA elimination can do better.
Figure 1(d) shows the same program as in Figure 1(a), but this time in CSSA
form, Figure 1(e) shows the program after spilling and register assignment, and
Figure 1(f) shows the program after spill-free SSA elimination. Notice that in
Figure 1(d), top right corner, CSSA makes a difference by requiring the extra
instruction that copies from a2 to a3. We now do register allocation and assign
each of a, a1, and a3 to the same memory location m because those variables do
not interfere. In Figure 1(e), top right corner, the value of a2 arrives in memory
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Fig. 1. Top: SSA-based register allocation and SSA elimination with on-demand
spilling. Bottom: SSA-based register allocation and spill-free SSA elimination.

location m2, and is then copied to memory location m via the register r. The
point of the copy is to let both elements of the first row of the ϕ-matrix be
represented in m, just like both elements of the second row of the ϕ-matrix are
represented in r. We finally arrive at Figure 1(e) without any further spills.

3 CSSA form and spartan parallel copies

We now show that for programs in CSSA-form, the problem of replacing each
ϕ-function with copy and swap instructions is significantly simpler than for pro-



grams in SSA-form (Theorem 1). Along the way, we will define all the concepts
and notations that we use.

SSA form uses ϕ-functions to express renaming of variables. We will describe
the syntax and semantics of ϕ-functions using the matrix notation introduced
by Hack et al. [12]. Figure 1 contains examples of ϕ-matrices. An assignment
such as V = ϕM , where V is a vector of length n, and M is an n ×m matrix,
represents n ϕ-functions and m parallel copies [15, 25, 30]. Each column in the
ϕ-matrix corresponds to an incoming control-flow edge. A ϕ-function works as
a multiplexer: it assigns to each element vi of V an element vij of M , where j is
determined by the actual control-flow edge taken during the program’s execution.
The parameters of a ϕ-function are evaluated simultaneously at the beginning of
the basic block where the ϕ-function is defined [1]. For instance, the ϕ-matrix in
Figure 1 (a) represents the parallel copies (a, b) := (a1, b1) and (a, b) := (a2, b2).
The first parallel copy is executed if control reaches L3 from L1, while the second
is executed if control reaches L3 from L2.

Conventional Static Single Assignment (CSSA) form was first described by
Sreedhar et al. [26] who used CSSA form to facilitate register coalescing. In order
to define CSSA form, we first define an equivalence relation ≡ over the set of
variables used in a program. We define ≡ to be the smallest equivalence relation
such that for every set of ϕ-functions V = ϕM , where V is a vector of length n
with entries vi, and M is an n×m matrix with entries vij , we have

for each i ∈ 1..n : vi ≡ vi1 ≡ vi2 ≡ . . . ≡ vim.

Sreedhar et al. use ϕ-congruence classes to denote the equivalence classes of ≡.

Definition 1. A program is in CSSA form if and only if for every pair of vari-
ables v1, v2 that occur in the same ϕ-function, we have that if v1 ≡ v2, then v1

and v2 do not interfere.

Budimlic et al. [7] presented a fast algorithm for converting an SSA-form
program to CSSA-form. A register allocator for a CSSA-form program can assign
the same location to all the variables vi, vi1, . . . , vim, for each i ∈ 1..n, because
none of those variables interfere. We say that register allocation is frugal if it uses
at most one memory location together with any number of registers as locations
for vi, vi1, . . . , vim, for each i ∈ 1..n.

The problem of doing SSA-elimination consists of implementing one parallel
copy for each column in each ϕ-matrix. We can implement each parallel copy
independently of the others. We will use the notation

(l1, . . . , ln) := (l′1, . . . , l
′
n)

for a single parallel copy, in which li, l
′
i, i ∈ 1..n, range over R ∪M , where R =

{r1, r2, . . . , rk} is a set of registers, and M = {m1,m2, . . .} is a set of memory
locations. We say that a parallel copy is well defined if all the locations on its left
side are pairwise distinct. We will use ρ to denote a store that maps elements of
R∪M to values. If ρ is a store in which l′1, . . . , l

′
n are defined, then the meaning

of a parallel copy (l1, . . . , ln) = (l′1, . . . , l
′
n) is ρ[l1 ← ρ(l′1), . . . ln ← ρ(l′n)].



l1
l2
l3
l4

l2   l3   l4
l3   l3   l1
l2   l4   l2
l3   l5   l3

=Φ
l2 l3

l4l1
l1l2

l3
l4 l5 l2 l3

l4l1

First
Column

Second
Column

Third
ColumnΦ-matrix

Fig. 2. A ϕ-matrix and its representation as three location transfer graphs.

We say that a well-defined parallel copy (l1, . . . , ln) = (l′1, . . . , l
′
n) is spartan

if

1. for all l′a, l′b, if l′a = l′b, then a = b;
2. for all la, l′b such that la and l′b are memory locations, we have la = l′b if and

only if a = b.

Informally, condition (1) says that the locations on the right-hand side are pair-
wise distinct, and condition (2) says that a memory location appears on both
sides of a parallel copy if and only if it appears at the same index.

Theorem 1. After frugal register allocation, the ϕ-functions used in a program
in CSSA-form can be implemented using spartan parallel copies.

4 From windmills to cycles and paths

We now show that a spartan parallel copy can be represented using a particularly
simple form of graph that we call a spartan graph (Theorem 2).

We will represent each parallel copy by a location transfer graph.

Definition 2. Location Transfer Graph. Given a well-defined parallel copy
(l1, . . . , ln) := (l′1, . . . , l

′
n), the corresponding location transfer graph G = (V,E)

is directed graph where V = {l1, . . . , ln, l′1, . . . , l
′
n}, and E = {(l′a, la) | a ∈ 1..n}.

Figure 2 contains a ϕ-matrix and its representation as three location transfer
graphs. The location transfer graphs that represent well-defined parallel copies
form a family of graphs known as windmills [21]. This name is due to the shape
of the graphs: each connected component has a central cycle from which sprout
trees, like the blades of a windmill.

The location transfer graphs that represent spartan parallel copies form a
family of graphs that is significantly smaller than windmills. We say that a
location transfer graph G is spartan if

– the connected components of G are cycles and paths;



– if a connected component of G is a cycle, then either all its nodes are in R,
or it is a self loop (m,m);

– if a connected component of G is a path, then only its first and/or last nodes
can be in M ; and

– if (m1,m2) is an edge in G, then m1 = m2.

Notice that the first and second graphs in Figure 2 are not spartan because
they contain nodes with out-degree 2. In contrast, the third graph in Figure 2 is
spartan (if l1, l2, l3, l4 are registers): it is a cycle.

Theorem 2. A spartan parallel copy has a spartan location transfer graph.

Proof. It is straightforward to prove the following properties:

1. the in-degree of any node is at most 1;
2. the out-degree of any node is at most 1; and
3. if a node is a memory location m then:

(a) the sum of its out-degree and in-degree is at most 1, or
(b) G contains an edge (m,m).

The result is immediate from (1)–(3). ut

5 SSA elimination

Our goal is to implement spartan parallel copies in the language Seq that con-
tains just four types of instructions: register-to-register moves r1 := r2, loads
r := m, stores m := r, and register swaps r1 ⊕ r2. Notice that Seq does not
contain instructions to swap or copy the contents of memory locations in one
step. We use ι to range over instructions. A Seq program is a sequence I of
instructions that modify a store ρ according to the following rules:

〈ι, ρ〉 → ρ′

〈ι; I, ρ〉 → 〈I, ρ′〉

〈l1 := l2, ρ〉 → ρ[l1 ← ρ(l2)]

〈r1 ⊕ r2, ρ〉 → ρ[r1 ← ρ(r2), r2 ← ρ(r1)]

The problem of implementing a parallel copy can now be stated as follows.

Implementation of a Spartan Parallel Copy
Instance: a spartan parallel copy (l1, . . . , ln) = (l′1, . . . , l

′
n).

Problem: find a Seq program I such that for all stores ρ,

〈I, ρ〉 →∗ ρ[l1 ← ρ(l′1), . . . ln ← ρ(l′n)].

Our algorithm ImplementSpartan uses a subroutine ImplementCom-
ponent that works on each connected component of a spartan location transfer
graph and is entirely standard.



Algorithm 1 – ImplementComponent: Input: G, Output: I

Require: G is a cycle or a path
Ensure: I is a Seq program.
1: if G is a path (l1, r2), . . . , (rn−2, rn−1), (rn−1, ln) then
2: I = (ln := rn−1; rn−1 := rn−2; . . . ; r2 := l1)
3: else if G is a cycle (r1, r2), . . . , (rn−1, rn), (rn, r1) then
4: I = (ln ⊕ ln−1; ln−1 ⊕ ln−2; . . . ; l2 ⊕ l1)
5: end if

Algorithm 2 – ImplementSpartan: Input: G, Output: program I

Require: G is a spartan location transfer graph.
Require: G has connected components C1, . . . , Cm.
Ensure: I is a Seq program.
1: I = ImplementComponent(C1); . . . ; ImplementComponent(Cm);

Theorem 3. For a spartan location transfer graph G, ImplementSpartan(G)
is a correct implementation of G.

Once we have implemented each spartan parallel copy, all that remains to
complete spill-free SSA elimination is to replace the ϕ-functions with the gen-
erated code. As illustrated in Figure 1, the generated code for a parallel copy
must be inserted at the end of the basic block that leads to the parallel copy.

6 Optimizations

We will present three optimizations of the ImplementSpartan algorithm. Each
optimization (1) has little impact on compilation time, (2) has a significant
positive impact on the quality of the generated code, (3) can be implemented
as constant-time checks, and (4) must be accompanied by a small change to the
register allocator.

6.1 Store hoisting

Each variable name is defined only once in an SSA-form program; therefore, the
register allocator needs to insert only one store instruction per spilled variable.
However, algorithm ImplementSpartan inserts a store instruction for each
edge (r, m) in the location transfer graph. We can change ImplementCompo-
nent to avoid inserting store instructions:
1: if G is a path (l1, r2), . . . , (rn−2, rn−1), (rn−1,m) then
2: I = (rn−1 := rn−2; . . . ; r2 := l1)
3: . . .
4: end if

For this to work, we must change the register allocator to explicitly insert
a store instruction after the definition point of each spilled variable. On the
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average, store hoisting removes 12% of the store instructions in SPEC CPU
2000.

6.2 Load Lowering

Load lowering is the dual of store hoisting: it reduces the number of load and copy
instructions inserted by the ImplementSpartan Algorithm. There are situa-
tions when it is advantageous to reload a variable right before it is used, instead
of during the elimination of ϕ-functions. Load lowering is particularly useful in
algorithms that follow the bin-packing model [13, 19, 24, 29]. These allocators al-
low variables to reside in different registers at different program points, but they
require some fixing code at the basic block boundaries. The insertion of fixing
code obeys the same principles that rule the implementation of ϕ-functions in
SSA-based register allocators. In Figure 3 we simulate the different locations of
variable v by inserting mock ϕ-functions at the beginning of basic blocks L2 and
L7, as pointed in Figure 3 (b). The fixing code will be naturally inserted when
these ϕ-functions are eliminated. The load lowering optimization would replace
the instructions used to implement the ϕ-functions, shown in Figure 3 (c), with
a single load before the use of v at basic block L7, as outlined in Figure 3 (d).

Variables can be lowered according to the nesting depth of basic blocks in
loops, or the static number of instructions that could be saved. The SSA elimi-
nation algorithm must remember, for each node l in the location transfer graph,
which variable is allocated into l. During register allocation we mark all the
variables v that would benefit from lowering, and we avoid inserting loads for
locations that have been allocated to v. Instead, the register allocator must in-
sert reloads before each use of v. These reloads may produce redundant memory



transfers, which are eliminated by the memory coalescing pass described in Sec-
tion 6.3. The updated elimination algorithm is outlined below:
1: if G is a path (m, r2), . . . , (rn−2, rn−1), (rn−1, ln) then
2: if m is holding a variable marked to be lowered then
3: I = (ln := rn−1; rn−1 := rn−2; . . . ; r3 := r2)
4: else
5: I = (ln := rn−1; rn−1 := rn−2; . . . ; r2 := m)
6: end if
7: . . .
8: end if

6.3 Memory coalescing

A memory transfer is a sequence of instructions that copies a value from a
memory location m1 to another memory location m2. The transfer is redundant
if these locations are the same. The CSSA-form allows us to coalesce a common
occurrence of redundant memory transfers. Consider, for instance, the code that
the compiler would have to produce in case variables v2 and v, in the figure
below, are spilled. In order to send the value of v2 to memory, the value of v
would have to be loaded into a spare register r, and then the contents of r would
have to be stored, as illustrated in figure (b). However, v and v2 are mapped to
the same memory location because they are ϕ-related. The store instruction can
always be eliminated, as in figure (c). Furthermore, if the variable that is the
target of the copy - v2 in our example - is dead past the store instruction, then
the whole memory transfer can be completely eliminated, as we show in figure
(d) below:

…

v2 = v

…

v …  v2=ϕ (v,m) …  (v2,m)=ϕ

1: (v,r) = (v,m)
2: (v2,r) = (v,r)
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(v,m) …  (v2,m)=ϕ

…
• = (v2,r)

If v2 is dead after
store, the memory
transfer can be
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(a) (b) (c) (d)

7 Experimental results

The data presented in this section uses the SSA-based register allocator described
by Pereira and Palsberg [19], which has the following characteristics:

– the register assignment phase occurs before the SSA-elimination phase;
– registers are assigned to variables in the order in which they are defined,

as determined by a pre-order traversal of the dominator tree of the source
program;

– variables related by move instructions are assigned the same register if they
belong into the same ϕ-equivalence class whenever possible;



gcc pbk gap msa vtx twf cfg vpr amp prs gzp bz2 art eqk mcf

#ltg 72.6 40.3 22.1 15.6 15.8 6.8 7.7 4.5 4.0 5.2 .9 .73 .36 .27 .44

%sp 3.3 5.0 9.8 2.3 9.3 6.5 14.9 13.5 7.9 6.5 10.9 22.7 9.2 20.8 25.6

#edg 586.2 256.3 150.8 96.9 121.5 58.0 124.2 101.7 29.6 35.5 11.1 14.3 2.7 5.8 6.1

%mt 56.4 41.7 43.5 50.6 47.1 57.3 66.8 75.4 37.4 42.8 63.6 71.8 46.0 72.0 57.7

Fig. 4. #ltg: number of location transfer graphs (in thousands), %sp: percentage of
LTG’s that are potential spills, #edg: number of edges in all the LTG’s (in thousands),
%mt: percentage of the edges that are memory transfers.

– two spilled variables are assigned the same memory address whenever they
belong into the same ϕ-equivalence class;

– the allocator follows the bin-packing model, so it can change the register
assigned to a variable to avoid spilling. Thus, the same variable may reach a
join point in different locations. This situation is implemented via the mock
ϕ-functions discussed in Section 6.2.

– SSA-elimination is performed by the Algorithm ImplementSpartan aug-
mented with code to handle register aliasing, plus load-lowering, store hoist-
ing, and elimination of redundant memory transfers.

Our register allocator is implemented in the LLVM compiler framework [14],
version 1.9. LLVM is the JIT compiler used in the openGL stack of Mac OS 10.5.
Our tests are executed on a 32-bit x86 Intel(R) Xeon(TM), with a 3.06GHz cpu
clock, 4GB of memory and 512KB L1 cache running Red Hat Linux 3.3.3-7. Our
benchmarks are the C programs from SPEC CPU 2000.

Impact of our SSA Elimination Method Figure 4 summarizes static data ob-
tained from the compilation of SPEC CPU 2000. Our SSA Elimination algo-
rithm had to implement 197,568 location transfer graphs when compiling this
benchmark suite. These LTGs contain 1,601,110 edges, out of which 855,414,
or 53% are memory transfers. Due to the properties of spartan location trans-
fer graphs, edges representing memory transfers are always loops, that is, an
edge from a node m pointing to itself. Because our memory transfer edges have
source and target pointing to the same address, the SSA Elimination algorithm
does not have to insert any instruction to implement them. Potential spills could
have happened in 11,802 location transfer graphs, or 6% of the total number of
graphs, implying that, if we had used a spilling on demand approach instead of
our SSA elimination framework, a second spilling phase would be necessary in
all the benchmark programs. We mark as potential spills the location transfer
graphs that contain memory transfers, and in which the register pressure is max-
imum, that is, all the physical registers are used in the right side of the parallel
copy.

Time Overhead of SSA-Elimination The charts in Figure 5 show the time re-
quired by our compilation passes. Register allocation accounts for 28% of the
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Fig. 5. Execution time of different compilation passes.

total compilation time. This time is similar to the time required by the standard
linear scan register allocator, as reported in previous works [20, 23]. The passes
related to SSA elimination account for about 4.8% of the total compilation time.
These passes are: (i) phi-lifting, which splits the live ranges of all the variables
that are part of ϕ-functions using “method I” due to Sreedhar et al. [26, pg.199];
(ii) a pass to remove critical edges; (iii) phi-coalescing, which reduces the number
of copies inserted by phi-lifting using a variation of the algorithm proposed by
Budimlic et al [7]; (iv) our spill-free SSA elimination pass. The amount of time
taken by each of these passes is distributed as follows: (i) 0.2%, (ii) 0.5%, (iii)
1.6% and(iv) 2.5%.

Impact of the Optimizations Figure 6 shows the static reduction of load, store
and copy instructions due to the optimizations described in Section 6. The cri-
terion used to determine if a variable should be lowered or not is the number of
reloads that would be inserted for that variable versus the number of uses of the
variable. Before running the SSA-elimination algorithm we count the number
of reloads that would be inserted for each variable. The time taken to get this
measure is negligible compared to the time to perform SSA-elimination: loads
can only be the last edge of a spartan location transfer graph (Theorem 2). A
variable is lowered if its spilling causes the allocator to insert more reloads than
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the number of uses of that variable in the source program. Store hoisting (SH)
alone eliminates on average about 12% of the total number of stores in the target
program, which represents slightly less than 5% of the lines of spill code inserted.
By plugging in the elimination of redundant memory transfers (RMTE) we re-
move other 2.6% lines of spill code. Finally, load lowering (LL), on top of these
other two optimizations, eliminates 7.8% more lines of spill code. Load lowering
also removes 5% of the copy instructions from the target programs.

The chart in the bottom part of Figure 6 shows how the optimizations influ-
ence the run time of the benchmarks. On the average, they produce a speed up of
1.9%. Not all the programs benefit from load lowering. For instance, load lowering
increases the run time of 186.crafty in almost 2.5%. This happens because, for
the sake of simplicity, we do not take into consideration the loop nesting depth of
basic blocks when lowering loads. We speculate that more sophisticated criteria
would produce more substantial performance gains. Yet, these optimizations are
being applied on top of a very efficient register allocator, and they do not incur
in any measurable penalty in terms of compilation time.



8 Conclusion

We have presented spill-free SSA elimination, a simple and efficient algorithm
for SSA elimination after register allocation that avoids increasing the number
of spilled variables. Our algorithm runs in polynomial time and accounts for a
small portion of the total compilation time.

Our approach relies on the ability to swap the contents of two registers. For
integer registers, architectures such as x86 provide a swap instruction, while
on other architectures one can implement a swap with a sequence of three xor
instructions. In contrast, for floating point registers, most architectures provide
neither a swap instruction nor an xor instruction, so instead compiler writers
have to use one of the other approaches to SSA-elimination, e.g: separate a
temporary register or perform spilling on demand.
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