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SUMMARY

This paper presents Arcademis, a Java-based framework for communication
middleware development. Arcademis consists of a set of abstract classes, interfaces
and concrete components that define the general architecture of middleware systems.
Its main objective is to support the implementation of non-monolithic and easily
configurable middleware platforms. Arcademis can be used by middleware developers
to deploy systems that meet the requirements of a particular network or technology.
Instances of Arcademis can also be customized by distributed systems engineers to
meet the requirements of a particular application. For example, new transport protocols,
connection management policies, authentication algorithms or invocation semantics can
be easily configured in middleware platforms derived from Arcademis. In order to
illustrate the use of the framework, the paper describes the RME system, a middleware
derived from Arcademis that adds a remote method invocation service to the CLDC
configuration of Java 2 Micro Edition (J2ME).

key words: Frameworks, communication middleware, distributed systems.

‡E-mail: {fernandm,bigonha,mariza}@dcc.ufmg.br
§E-mail: mtov@pucminas.br
Contract/grant sponsor: CNPq, FAPEMIG

Copyright c© 2004 John Wiley & Sons, Ltd.



2 F. PEREIRA, M. T. VALENTE, R. BIGONHA AND M. BIGONHA

1. Introduction

In the last decade, distributed systems engineers have often relied on middleware platforms
to increase their productivity. Residing between the operating system and distributed
applications, middleware systems provide abstractions that encapsulate several details inherent
to distributed programming, such as network communication primitives, data marshalling and
unmarshalling, failure handling, heterogeneity, service lookup and synchronization [6, 22]. At
the present time, object-oriented middleware – such as CORBA [16] and Java RMI [26] – are
the most common platforms. In such systems, developers invoke methods on remote objects
using the same syntax of local invocations; therefore, interactions between local and remote
processes seem to coexist in the same address space.

Since the first systems, object oriented middleware platforms have always been designed
in order to make object locations transparent to architects of distributed applications,
i.e., applications running in standard computers connected by local or enterprise networks.
However, in recent years, distributed computing has faced many changes. There are multiple
categories of computing devices (sensors, cell phones, PDAs, multicomputers, clusters, grids,
etc), multiple network infrastructures (local networks, enterprise networks, Internet, wireless
networks, etc), different transport protocols (TCP, UDP, HTTP, etc) and applications with
different quality of service requirements (real time systems, multimedia, mobile systems,
embedded systems, etc).

Nowadays, it is clear the difficulty of traditional middleware systems in supporting new
requirements posed by both end users and middleware developers [5, 8, 12, 23]. Application
developers still want to benefit from transparency. However, in some cases, they would like to
be able to configure the underlying middleware system in order to optimize an application for
a specific environment. For example, they may want to choose a particular transport protocol,
a particular authentication algorithm or to assign priorities to remote calls. On the other
hand, middleware developers have usually evolved their systems by adding new features. This
strategy has resulted in complex and heavyweight platforms. Thus, middleware developers
would also benefit from systems that can be configured to fit the particular requirements of
an application domain.

This paper presents Arcademis, a Java-based framework that supports the implementation
of modular and highly customizable middleware architectures. Arcademis can be used by
middleware developers to deploy systems that meet the requirements of a particular network
and/or technology. For example, Arcademis has been successfully used to provide a remote
method invocation system to J2ME/CLDC [18], the Java technology that targets mobile
devices with limited computing resources. Instances of Arcademis can also be adapted by
distributed systems developers to meet the requirements of a particular application. For
example, new transport protocols, connection management policies, authentication algorithms
or invocation semantics can be easily configured in middleware systems derived from
Arcademis.

In order to provide configurability and composability, Arcademis makes extensive use
of object oriented frameworks and design patterns. A framework is a set of cooperating
classes and interfaces that provide a semi-complete application that can be customized by
programmers [11]. There are two types of frameworks: black-box and white-box. Frameworks
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from the first category provide to software engineers a set of concrete components and
interfaces that can be composed to implement a specific application. White-box frameworks are
constituted by abstract components that the application developer must implement. Arcademis
presents characteristics from both categories. Design patterns document recurring solutions
to problems in software development [7]. In Arcademis, frameworks and design patterns
are applied to promote the implementation of flexible and non-monolithic middleware. As
a framework, Arcademis predefines the overall architecture of middleware platforms, so that
developers can concentrate on the details of their particular applications. Well-known design
patterns, such as singletons, factories, strategies, decorators and façades, are used to improve
code reuse in Arcademis. Arcademis also uses design patterns to solve problems specific to
the domain of distributed systems, such as the Acceptor-Connector pattern, which support
different connection establishment policies [24].

The remaining of this paper is organized as follows. Section 2 describes the overall
architecture of Arcademis as well as the main classes and design patterns used in its design.
This section also documents the main aspects of the framework that can be independently
configured. Section 3 presents the RME platform: a J2ME/CLDC remote method invocation
system derived from Arcademis. RME also illustrates the flexibility provided by Arcademis,
since traditional and monolithic middleware, such as Java RMI, are not available for the
J2ME/CLDC platform. Section 4 gives an overview of existing configurable middleware
systems and relates Arcademis with them. Section 5 presents concluding remarks.

2. Architecture

A distributed system built on top of Arcademis is structured on three abstraction levels.
The first level comprises the framework components. Essentially these are abstract classes
and interfaces, although Arcademis also provides concrete components that can be used
without further extensions. The second level is represented by the concrete middleware
platform obtained from Arcademis. The framework defers to this level decisions such as the
communication protocol and the serialization strategy that will be adopted. Finally, the third
abstraction level comprises components that provide services to end users. These components
constitute what is normally called a distributed application.

Each instance of Arcademis has a central component called ORB. This element is
implemented as a singleton, a design pattern that limits the number of instances of a given class
to exactly one [7]. Besides being implemented as a singleton, the ORB contains a set of object
factories. An object factory is a design pattern that is used to create instances of objects [7].
The main advantage of this pattern is to make it easier to change the implementation of a
component without interfering in other modules of the system. For example, in Arcademis all
communication channels are created by an object factory. In order to modify the transport
protocol used by the middleware, for instance, from TCP to UDP, it is sufficient to change
the channel factory bound to the ORB. Because channel factories must preserve the channel
interface, the other components of the platform need not to be changed. Arcademis defines
sixteen different factories, but its instances do not have to use all of them. Figure 1 outlines
the general organization of middleware systems based on Arcademis.
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Figure 1. Factories defined by Arcademis.

Arcademis has been originally designed to support the implementation of object-oriented
middleware platforms. According to this model, a client object uses intermediate components
in order to invoke methods on remote objects. Two of these components are the stub, which
exists on the client side of a distributed application, and the skeleton, which is located on the
server side. The stub acts as a local proxy for the remote object, and its function is to forward
to the server remote calls made by the client. The skeleton represents the invoking client to
the remote object, acting as an adapter. It receives messages containing information about
remote invocations and determines what method of the server should be executed. Although
application developers have the illusion that the methods are processed locally, actually each
remote call is transmitted by the stub to the skeleton and then to the implementation of the
remote object. The results of remote invocations are transmitted across the opposite path.

Arcademis defines the basic structure of stubs and skeletons, but it does not predefine how
stubs and skeletons should be generated. For example, middleware developers may decide to
use a stub/skeleton compiler or may decide to generate stubs/skeletons dynamically using
reflection. Nevertheless, in order to provide support for the automatic generation of stubs and
skeletons, Arcademis includes the source code of rmec, a stub/skeleton compiler based on a tool
available in the NinjaRMI system [9]. The application developer can reuse most of the classes
and methods of this compiler in order to adapt the code that it generates to requirements
posed by particular middleware systems.

Despite how they are generated, stub objects must extend arcademis.Stub, whereas
skeletons are subclasses of arcademis.server.Skeleton. The stub implementation contains
a reference to a factory of invokers (Section 2.9), and the address of the remote
object that it represents (Section 2.6). The skeleton encapsulates the remote object. The
arcademis.server.RemoteObject class, which must be implemented by each remote object,
defines abstract methods for the creation of stubs and skeletons. Stubs are created by calling
the lookup method of the discovery agency (Section 2.7); skeletons are normally created by the
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Figure 2. Main components of Arcademis.

activator component (Section 2.8) during the initialization of the remote object. The activator
is also responsible for linking the skeleton, the dispatcher (Section 2.10), the request receiver
(Section 2.2), and any other component that is part of the server architecture, such as the
scheduler (Section 2.11).

Besides stubs and skeletons, Arcademis defines several other components that collaborate
to define the middleware architecture and to support customizations. The most important of
these elements are represented in Figure 2. The invoker is responsible for emitting remote
calls, whereas its server counterpart, the dispatcher, is in charge of receiving and passing them
to the skeleton. The Scheduler is used whenever necessary to order remote calls according
to their priorities. The network layer, in Arcademis, is represented by a set of components
that constitute the transport protocol, the serialization protocol and the middleware protocol.
Connections are established by two components: the Connector and the Acceptor. Request
senders and receivers provide means to assure the reliability level the middleware provide to
distributed applications. A lookup service allows clients to discover and access remote objects.
Finally, the Activator defines how an object is made ready for receiving remote calls. These
components are explained in detail in the remainder of this section.

There are eleven basic configurations that can be applied to middleware platforms derived
from Arcademis. Although most configurations are orthogonal, some components of the
framework can collaborate on two or more of them. The aspects that are subject to
configurations in Arcademis are the following:
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data transportation: comprises the techniques and protocols used in the transmission of
raw sequences of bytes between nodes. Arcademis permits the configuration of different
transport protocols and the addition of extra functions to communication channels (for
example, encryption or compression of messages).

connection set up: defines how channels are established between nodes so that data can
be sent across them. For example, it is possible to define synchronous or asynchronous
connection establishment strategies or to add caches in order to reuse channels.

middleware protocol: defines the set of messages exchanged between distributed objects.
This aspect supports the implementation of protocols customized to particular
technologies, such as wireless networks. For example, in order to reduce the number
of messages exchanged in wireless links, middleware designers may decide to eliminate
distributed garbage collection messages [2].

serialization protocol: defines how the internal state of objects is converted into a raw
sequence of bytes and vice-versa. For example, users of the framework can use a protocol
based on the serialization package of Java or define their own protocol.

invocation semantics: determines the level of reliability provided by the implementation of
remote invocations (e.g. best effort, at-most-once, at-least-once, etc).

remote object references: defines how remote objects are handled in distributed
applications. For example, objects can be represented by a host name and object name
pair or using a URL based notation.

service lookup: defines the mechanisms the middleware provides to discover distributed
objects.

remote object activation: determines how a distributed object is made ready for receiving
remote calls.

invocation protocol: defines how a remote call is processed at the client side. For example,
users can customize this protocol in order to buffer, cache or log invocations.

dispatching protocol: defines how a remote call is processed at the server side. For example,
users can customize this protocol in order to authenticate or log arriving calls.

priority policy: defines the order in which method invocations are delivered to remote
objects. Priorities can be assigned, for example, to methods, or to clients.

The remainder of this section describes in more details the previously mentioned
configuration aspects .
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2.1. Data Transportation

In Arcademis, the transport protocol is implemented by two components: Channel and
ConnectionServer. Channels are responsible for transmitting byte sequences between clients
and servers, whereas the function of connection servers is to receive connection requests and
to create channels. The framework does not assume the use of any specific transport protocol,
and possible implementations can be based on UDP, TCP, HTTP, etc. In order to add further
functionality to a channel, Arcademis uses the Decorator design pattern [7], which provides
a way to modify the behavior of individual objects without creating new derived classes. A
channel decorator is an object that implements the Channel interface and, in addition to this,
has an attribute of the Channel type. As a subtype of Channel, the decorator can overwrite
some of its methods in order to aggregate further capabilities to them.

Examples of capabilities that can be aggregated to channels by means of decorators include
mechanisms for compressing or encrypting messages, check points or error correcting code for
handling transmission failures, and buffers to improve performance or to allow undo operations.
Figure 3 (a) shows an example of composition of decorators. ZipChannel compresses messages
in order to make better use of the available bandwidth and LogChannel implements a report
generator that yields a log file describing channel utilization. The TcpSocketChannel class is
one of the concrete components provided by Arcademis. The same chain of capabilities could
have been built using inheritance, but, in this case, it would not be so flexible. In Figure 3,
nothing prevents ZipChannel from being inserted before the other decorator; moreover, a third
decorator can be added to the sequence without requiring modifications in the implementation
of the existing ones.

2.2. Connection Establishment

Connection set up has been implemented according to the acceptor-connector design
pattern [24]. This pattern decouples the connection initialization from its processing, once
the channel has been initialized. The main participants of the pattern are the acceptor, the
connector and the service handlers, which are depicted in Figure 3 (b). The connector is
responsible for contacting the acceptor when necessary to set up a channel between two hosts.
Once the connection is established, the resulting channel is passed to a service handler, which
sends and receives messages according to the application needs. One of the advantages of
this pattern is the possibility of configuring different connection strategies without modifying
the service handlers. Possible strategies include synchronous and asynchronous connection
establishment and the use of caches in order to recycle channels.

2.3. Middleware Protocol

The middleware protocol is defined by a set of messages and by a state machine that determines
how the messages are exchanged. In Arcademis, messages are marshalable implementations
of the Message interface, and the sequence of bytes that composes it is given by the
implementation of its marshal method (this method is further discussed in Section 2.4).
Messages are implemented according to the Command design pattern [7]: each message
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Figure 3. (a) Composition of decorators. (b) The acceptor-connector components.

implements a command that determines the actions to be executed after it is received. This
approach makes it easier to modify the middleware protocol. Whenever a new message should
be added to the system, it is sufficient to provide a new implementations for the Message
interface. Because messages are typed structures, the same code can be used to handle all of
them, by means of polymorphism and dynamic dispatching. The bridge between Messages
and Channels is done by a component called Protocol. The function of this component is to
marshal messages before sending them across channels and to unmarshal messages after a raw
sequence of bytes is received.

2.4. Serialization Protocol

The serialization protocol used in Arcademis depends on serialization methods implemented by
application developers. For this purpose, the framework defines the interfaces Marshalable and
Stream. Serializable objects should implement the Marshalable interface, which declares two
methods: marshal and unmarshal. The first method describes how an object is transformed
into a sequence of bytes, whereas the second one defines how the state of the object can be
recovered from such sequence. The Stream interface specifies the serialization protocol, i.e.,
a collection of methods for reading and writing sequences of bytes. An example of class that
implements Marshalable is presented in Figure 4.

Since the serialization protocol is independent from the built-in serialization package of Java,
middleware systems derived from Arcademis can be used for example in J2ME/CLDC, where
the default serialization package is not available.

2.5. Invocation Semantics

The invocation semantics defines the reliability level that the middleware implementation
provides to application developers. In Arcademis, this semantics is determined by the
implementation of four components, which are interposed between stubs and skeletons: the
request-sender and the request-receiver at the client side, and the response-sender and the
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import arcademis.*;

public class Person

implements Marshalable {

private String name = null;

private int age = 0;

private boolean isMan = false;

public void marshal(Stream b)

throws MarshalException {

b.write(name);

b.write(age);

b.write(isMan);

}

public void unmarshal(Stream b)

throws MarshalException

name = (String)b.readObject();

age = b.readInt();

isMan = b.readBoolean();

}

// implementation of the other methods

}

Figure 4. Example of serializable class.

response-receiver at the server side, as shown in Figure 2. These components are service
handlers, as described in Section 2.2. The three most popular invocation semantics used in
object oriented middleware are best-effort, at-most-once and at-least-once [4]. The first of them
does not provide any guarantee regarding the processing of remote calls. In the presence of
failures, they may be executed once, several times or even may not be executed. The second one
assures that remote invocations will be processed only once or will not be executed. Finally,
the at-least-once semantics gives the client application the guarantee that remote calls will be
executed at least one time.

2.6. Remote Object References

In Arcademis, distributed objects are handled using remote references, which are instances of
subclasses of the RemoteReference abstract class. The implementation of this component
determines how a distributed object is distinguished from others and the semantics of
operations such as equals and toString when invoked remotely. The identifier and address
of a remote object are represented by the interfaces Identifier and EndPointIdentifier,
respectively. These components can be implemented in different ways. For instance, in CORBA,
remote objects are identified using Interoperable Object References (IOR). Among other
information, IORs contain the host and port address of the target object. In SOAP, as common
in the Web, remote objects are identified by means of Uniform Resource Identifiers (URI).

Distributed objects have to inherit from the RemoteObject class. In addition, remote objects
must implement the Remote interface. Although this interface is empty, i.e., it does not declare
any method, it is used by the system to distinguish references to local objects from references to
remote objects. For example, in remote invocations, the implementation of Arcademis should
replace remote references by their associated stubs, in order to simulate call by reference. The
relations among the components described in this section are depicted in Figure 5 (a).
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Figure 5. (a) Components for remote object representation. (b) Service-oriented architectures.

2.7. Service Lookup

Middleware platforms derived from Arcademis can be described as service-oriented
architectures [3]. Such architectures have three different actors: service providers, service
requesters and discovery agencies. Service providers are represented by remote objects, whereas
requesters are represented by clients in general. The discovery agency, or lookup service, is an
independent element that should be provided by all instances of Arcademis. It permits clients to
find and gain access to remote objects. The three main actors of service-oriented architectures
are depicted in Figure 5 (b).

Client and Server applications access the discovery agency by means of different interfaces.
Service providers register themselves using a publish operation, while clients use a find
operation to look for distributed objects. Objects are registered in the discovery agency using
a name (a string) or the interface they implement. Other forms of representation can be
provided by middleware designers.

2.8. Remote Object Activation

The activation of remote objects in Arcademis is implemented by a component called
Activator, which allocates the resources the server needs to process remote invocations. For
example, it initializes data structures internal to the middleware and creates threads to wait
for remote calls. It also generates a proper identifier to the remote object and binds it to an
unused network address. The RemoteObject class implements the activate and deactivate
methods, which are used to interact with the activator. Depending on the activation policy
adopted, the activate method may have to be invoked explicitly by application developers
or it may be called automatically during the instantiation of remote objects.
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2.9. Invocation Protocol

In Arcademis, remote methods are invoked by a component called Invoker. The main functions
of invokers are: (i) to create a connection with the server or to reuse one if possible; (ii) to create
messages containing the arguments of remote calls; (iii) to create service handlers to send calls
and to wait for their results. Invokers can also be customized in order to reuse connections
across successive calls or to create a new connection whenever a method invocation is requested.

In order to aggregate further responsibilities to a invoker, Arcademis provides an invoker
decorator, which is used in the same way as the channel decorator described in Section 2.1.
Examples of capabilities that may be aggregated to invokers are: caches (to avoid the
transmission of already requested calls), buffers (to group several remote calls together in
order to make better use of the available bandwidth) and log generators. It is also possible to
use invoker decorators to implement asynchronous calls. In this type of call, a separate thread
is created to process each remote invocation, so that clients do not remain blocked during
remote processing. In this case, results of remote invocations are inserted into a buffer that
clients can inspect afterwards.

2.10. Dispatching Protocol

The Dispatcher is the component responsible for transmitting to a remote object the requests
directed to it. The implementation of the dispatcher determines the general structure of
middleware server side. Figure 6 presents an example of server organization. In this example,
there are three active objects: the activator, the scheduler and the response sender. Call
descriptors (rc) are inserted into a queue and ordered by the scheduler, before being sent
to the remote object. Results of remote invocations are inserted into another queue, and are
asynchronously transmitted to clients by the response sender.

In addition to channel and invoker decorators, Arcademis also supports dispatcher
decorators. Examples of capabilities that can be added to dispatchers by means of decorators
include the implementation of security policies, the generation of log files describing server
usage, the report of the server load rate to clients, the redirection of calls to other servers and
the creation of threads in order to process specific calls.

2.11. Priority Policy

Arcademis supports the definition of priorities among remote calls. The Scheduler is the
component of the framework in charge of applying such priorities. Three possible priority
policies, from the simplest to the most complex, are: the assignment of priorities to remote
methods, the assignment of priorities to clients and the assignment of priorities to endpoints
in the server. In the last case, it is assumed that servers may receive requests in more than one
endpoint. Besides changing the scheduler, the implementation of priorities may also require
changes in other components. For example, in order to assign each remote method a different
priority, it is necessary to modify the implementation of stubs.
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Figure 6. Representation of the main components of Arcademis.

2.12. Implementation

The current implementation of Arcademis has about 4250 lines of code, including 34 interfaces,
11 abstract classes and 36 concrete classes. The system is non-monolithic in the sense that the
set of components that should be present in its instances has being kept as small as possible.
Some required elements are common both to the client and server sides of derived middleware
systems; for instance, communication channels, remote object references, wire protocol, remote
address descriptors, byte streams etc. Other components are exclusive of the client side. This set
includes the connector, the invoker, the request sender and the stub. The minimum structure
of the server side of an Arcademis instance is more complex. Among the mandatory elements
are the activator, the acceptor, the connection server, the dispatcher, the skeleton, the request
response, and the remote object itself.

Most of Arcademis size is due to optional components. These elements may not be present in
every instance of Arcademis. Examples of optional components are the scheduler, the response
sender, the response receiver, invoker decorators, dispatcher decorators, channel decorators,
event handlers, and event notifiers. The realization of Arcademis is defined at compile time,
by the specification of the object factories that will be used.

3. RME: RMI for J2ME/CLDC

In order to validate Arcademis, the framework was used to derive a remote invocation service
for Java 2 Micro Edition, a Java distribution targeting resource constrained devices such
as cell phones and palmtops [18]. The J2ME platform is divided into configurations. Each
configuration comprises a Java Virtual Machine and a minimal set of libraries that should be
available for the group of devices that meet the minimum hardware requirements defined by
the configuration. Presently, J2ME provides two main configurations: CDC (Connected Device
Configuration) and CLDC (Connected, Limited Device Configuration). CDC groups less-
restrictive devices that can afford at least 2MB of memory and persistent network connections,

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 00:1–18
Prepared using speauth.cls



ARCADEMIS 13

client:Client

:AppStub

:TwoWayInvoker

rs:RmeReqSender

:RmeRespReceiver

:RmeReqReceiver

:RmeRespSender

acc:BlockingAcceptor

:Activator

:RmeDispatcher

:AppSkeleton

obj:RemoteObject

1:m(a)

2:r=invoke(a)

4:open(ch)

5:open(ch)

:Connector

2:open(ch)

6:open(ch)

3:connect(rs)

1:accept()

4:dispatch(rc)

5:m(a)

Client  address  space

Server  address
 space

6:getResult()

3:dispatch(rc)

Figure 7. Architecture of RME.

like set-top boxes. This configuration provides the fundamental APIs from J2SE, including
support for reflection. The CLDC configuration is suitable to more resource constrained
devices, generally mobile and battery-operated, with low bandwidth and intermittent network
connections, like cell phones and low-end PDAs. CLDC defines a subset of the J2SE API which
does not include reflection. Since object serialization in Java RMI depends on reflection, this
middleware is not available for the CLDC configuration.

RME (RMI for J2ME/CLDC) is an instance of Arcademis that provides to the CLDC
configuration of J2ME a remote method invocation service. RME provides distinct services to
the client and server sides of a distributed application. Only the client part of the middleware is
implemented in J2ME. Its server counterpart is implemented in J2SE. This is not a limitation
of Arcademis architecture but merely an implementation decision targeting devices with
constrained resources (at the cost of not allowing clients to export remote objects).

The main components involved in the execution of a remote call in RME are described in
Figure 7. RME is a synchronous service, meaning that client threads remain blocked during
the execution of remote calls. In the server side, the activator and the request receivers are
active objects, that is, they execute in a separated thread, and a new thread is created for each
incoming connection. This arrangement permits to separate the thread in which connections
are received (the acceptor thread), from the threads in which connections are handled (the
request receiver thread). In this figure, AppStub and AppSkeleton are, respectively, stubs and
skeletons that were generated by a tool called rmec. This tool is a version of the stub/skeleton
compiler that is part of the Arcademis framework (Section 2).

The basic invoker provided by RME (Section 2.9) is called TwoWayInvoker. Its
implementation performs remote calls in a two-way basis, that is, the client application is
expected to receive an answer for each remote call issued. Rmec assigns to each remote method
a basic invoker implementation, possibly augmented by a sequence of decorators. In Figure 7,
for example, rmec has assigned to method m() an instance of TwoWayInvoker without any
decorator. In addition to the basic invoker implementation, RME provides three pre-defined
invoker decorators:
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• Cache: caches may be used to store the result of a remote invocation in an attempt to
reuse it later if the same method is triggered again. A cache is particularly useful when
the associated method does not generate side-effects.

• Timer: this decorator allows to define time limits for the execution of remote calls. If a
remote call is not performed in the specified amount of time, an exception is raised.

• Active: this decorator creates a separate thread to carry out remote method invocations,
so that the main application does not remain blocked during the processing of the call.

RME uses TCP/IP for data transmission. The middleware protocol adopted by RME is
named RMEP (RME Protocol), and it defines six different types of messages: call, return, ping,
ack, inq and load. The Call message describes a remote invocation, including its arguments
and identifiers. Return messages holds the results of remote calls. Pings and acks are mostly
used in order to verify if servers or clients are alive. The inq message is used by clients in order
to discover the load on specific servers, which is informed by means of a load message.

Two different invocation semantics are available in RME: best-effort and at-most-once. The
adoption of one of them is just a matter of assigning to the ORB the proper service handler
factory. Figure 8 shows the state machine that describes the implementation of the at-most-
once semantics. According to that scheme, the request sender, after issuing a call, starts a
time counter, and if a certain interval has elapsed before it receives any response, it repeats
the process. After performing a number of calls without answer, the client application assumes
that the server is not achievable and an exception is raised. The request receiver, on the other
hand, keeps identifiers of received calls on a list, in order to discard repeated requests. In this
list, identifiers of remote calls are associated to their return values, and if an already processed
request is received, the server answer it without further processing.

Best-effort semantics does not guarantee the execution of a remote call, although it reports
any failure to the client thread. The request sender, after issuing the call, remains blocked
waiting for the return value or a timeout. If the remote invocation cannot be accomplished in
the expected amount of time, an exception is thrown, and no further processing is performed.
The request receiver simply answers remote invocations as they come.

RME gives to application developers a programming syntax similar to the one pro-
vided by Java RMI. Remote methods must be declared in an interface that extends the
arcademis.Remote interface and must declare the possibility of throwing arcademis.Ar-
cademisException. Remote object classes must implement this interface and extend the
RmeRemoteObject class. Figure 9 (a) shows an example of remote interface and Figure 9 (b)
depicts its implementation. In the given example, the remote method simply sums two integer
numbers. Figures 9 (c) and 9 (d) show, respectively, examples of server and client code. The
server creates a remote object, and the client invokes a remote method on it. Distributed
applications based on RME should configure the ORB before starting its execution, using an
instance of the RmeConfigurator class. The configure operation determines the factories
associated with the ORB. The discovery agency of RME is implemented by the RmeNaming
class, and it defines the same set of methods provided by the class java.rmi.Naming. Because
RME targets resource constrained devices, RmeNaming creates stubs according to the Flyweight
design pattern [7]: before generating a stub, the discovery agency checks whether there is an
stub instance already bound to the same remote object. If there is, a reference to this instance
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time out
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IDLE

PROCESSING
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Do/Execute request

TESTING
recv req
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finish processing/
send(return);
list.add(id, return)

(a) (b)

Figure 8. At-most-once call semantics: (a) request-sender state machine. (b) request-receiver state
machine.

is returned.

Applications Examples of applications based on Arcademis/RME can be found in the
documentation section of the Arcademis web page∗. The remote invocation capabilities
provided by RME permit application developers to improve the processing and the storage
capacity of mobile devices. For instance, one of the applications that we have implemented
using RME is a phone book. The phone information is made available in a database in the fixed
network, which can be accessed by means of remote calls. The amount of persistent memory
available in a typical cell device makes it prohibitive to store locally a large database. On
the other hand, the programming syntax provided by RME conceals the underlying network,
allowing software developers to focus their attention in the application logic.

In another application, which coordinates a stock market system, clients (buyers) and service
providers (vendors) interact by means of a central server. Clients can issue quests to a specific
vendor, in order to wait for events. For instance, an event can be triggered when the price of
the share of a certain company falls under a given threshold. The cell phone application does
not support call backs; however, the use of the active and timer decorators permit the client to
open a connection in order to wait for event notifications, or a timeout, without being blocked.

∗http://www.dcc.ufmg.br/lpp/arcademis
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import arcademis.*;

public interface RemInt

extends Remote {

public int sum(int a, int b)

throws ArcademisException;

}

import rme.*;

import rme.server.*;

public class RemObj extends

RmeRemoteObject implements RemInt {

public int sum(int a, int b) {

return a + b;

}

}

(a) (b)

import rme.*;

import rme.naming.*;

public class Server {

public static void main(String a[])

throws Exception {

RmeConfigurator c =

new RmeConfigurator();

c.configure();

RemObj o = new RemObj();

RmeNaming.bind("obj", o);

o.activate();

}

}

import rme.*;

import rme.naming.*;

public class Client {

public static void main(String a[])

throws Exception {

RmeConfigurator c =

new RmeConfigurator();

c.configure();

RemInt i=(RemInt)

RmeNaming.lookup("obj");

i.sum(2, 2);

}

}

(c) (d)

Figure 9. (a)Remote Interface. (b)Remote Object. (c)Server. (d)Client.

4. Related Work

Conventional object-oriented middleware, such as CORBA [16], Java RMI [27] and .NET [15],
have been designed in order to fulfill the requirements of a wide range of applications and
technologies. Despite this, several versions of these systems were later proposed in order
to address particular application domains. For example, there are at least the following
versions of CORBA: minimum CORBA, Real-Time CORBA, Fault-Tolerance CORBA and
High-Performance CORBA. This proliferation of versions of the same middleware technology
justifies the implementation of frameworks that capture the fundamental architecture of a
given middleware system and that promote its reuse in the various flavors of the system.
Conventional middleware systems have also few hooks for customizations demanded by
application developers. For this purpose, CORBA supports the concept of interceptors, and
Java RMI supports the installation of stub factories. Thus, middleware users should also benefit
from design patterns that add extensibility and flexibility to middleware architectures.

Non-monolithic middleware systems have been the focus of intense research since the mid-
1990s. Configurations can be carried out statically (at compilation time) or dynamically (at
execution time). One example of statically configured middleware is the TAO platform [23].
This system, which has been designed to support real time applications, presents a modular
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architecture based on design patterns. Some of these patterns, such as acceptor-connector [24],
have been used in the implementation of Arcademis. Among the examples of dynamically
reconfigurable middleware, it is possible to cite dynamicTAO [13], UIC CORBA [20], Open
ORB [1] and OpenCORBA [14]. Dynamic configuration can be accomplished in a number of
ways; however, the use of computational reflection seems to be the most accepted trend. The
essential difference between Arcademis and the previous platforms is the fact that Arcademis
is not a middleware targeting a specific application domain; it is a framework from which
middleware can be developed. In addition, the architecture of Arcademis presents some unique
characteristics. For instance, concepts such as chains of invokers and dispatchers, channel
decorators, flyweight stubs, and the command pattern in the implementation of messages are
not observed in the former platforms.

Another framework with similar objectives is Quarterware [25]. This system has been used
in the development of platforms compatible with CORBA, Java RMI and MPI. The main
difference between Arcademis and Quarterware concerns the aspects that are subject to
configuration in each framework. Quarterware supports six classes of configuration, whereas
Arcademis supports eleven. Some of the customizations possible in Arcademis are missing in
Quarterware or have been merged into a single aspect. For example, the dispatching strategy
of Quarterware, that comprises remote object discovery and data transmission, is separated in
Arcademis into three different aspects: service discovery, invocation protocol and dispatching
policy.

.NET Remoting is a communication framework targeting the .NET platform [15]. The system
supports redefinition of several low-level communication components, including channels,
formatters and remote references. However, the system lacks support to high-level middleware
reconfiguration aspects, including the middleware protocol, connection set up strategy and
invocation semantics.

Dynamically Programmable and Reconfigurable Software (DPRS) is a technique to support
the construction of dynamically configurable, updateable, and upgradeable middleware
services [19]. DPRS systems are based on the three abstractions: micro building blocks (MBB),
actions and domains. A MBB represents the smallest function unit in the system, an action
coordinates the execution of MBBs, and a domain is a collection of related MBBs. ExORB
is a Java prototype middleware based on DPRS abstractions. The system is composed of
28 micro building blocks that support client only or client/server functionality, and IIOP or
XMLRPC middleware protocols. The MBB-based architecture of ExORB supports on-the-
fly updates and upgrades. In Arcademis, updates and upgrades are always defined at compile
time, creating new object factories and adding decorators to existing components. On the other
hand, the ExORB performance ranges from 45% to 75% of the performance of an equivalent
static implementation of the system. Certainly, this overhead will increase if the logic and
the structure of ExORB becomes more complex, including MBBs and domains to support
interceptors, invokers, dispatchers, activators, schedulers, service handlers etc.

Another research thread related to Arcademis includes mobile computing middleware
platforms, such as UIC CORBA [20] and LegORB [21]. Similar to RME, these platforms
provide a kernel in which only the essential components of a middleware system are presented.
There is also an implementation of Java RMI, the RMI Optional Package (RMI OP) [10], that
targets the CDC configuration of J2ME.
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5. Conclusion

This paper has presented Arcademis, a Java-based framework for communication middleware
development, and RME, a J2ME/CLDC based middleware derived from Arcademis. Arcademis
is a flexible and non-monolithic communication middleware framework. Arcademis is flexible
because middleware systems derived from it are ultimately defined by a set of factories
associated with the ORB object. Thus, it is possible to modify the default behavior of
the middleware by just changing the factories that create the components responsible for
this behavior. For instance, in RME the call semantics, the transport protocol and the
invocation strategy were modified in this way. Moreover, a J2SE implementation of RME can be
accomplished by changing just two factories of the system: the Channel and ConnectionServer
factories.

The factory-based design has also contributed for making Arcademis a non-monolithic
framework. Unnecessary components will not be used if their factories are not associated with
the ORB. For example, in RME all remote methods always have the same priority; therefore,
the Scheduler component is not necessary, and its corresponding factory is not bound to the
ORB. Moreover, the client version of RME runs on J2ME and the server version on J2SE.
The former uses 10 factories, the latter uses 13, and the full framework defines 16 factories.
As a consequence, Arcademis can be used in the instantiation of middleware systems that
accommodate just the requirements presented by a particular application.

Besides RME, Arcademis has already been used in the implementation of a middleware
system that supports the annotation of remote interfaces with tactics that can deal with
phenomena typical of distributed settings [17]. Tactics are described in a high level language,
and can be used to assign priorities to remote methods, to benefit from the existence of several
service providers, to define the reliability level of remote calls and to associate decorators to
remote methods.

Arcademis and RME are available from http://www.dcc.ufmg.br/llp/arcademis.
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