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Abstract. Register allocation is NP-complete in general but can be
solved in linear time for straight-line programs where each variable has
at most one definition point if the bank of registers is homogeneous. In
this paper we study registers which may alias: an aliased register can
be used both independently or in combination with an adjacent register.
Such registers are found in commonly-used architectures such as x86,
the HP PA-RISC, the Sun SPARC processor, and MIPS floating point.
In 2004, Smith, Ramsey, and Holloway presented the best algorithm for
aliased register allocation so far; their algorithm is based on a heuristic
for coloring of general graphs. Most architectures with register aliasing
allow only aligned registers to be combined: for example, the low-address
register must have an even number. Open until now is the question of
whether working with restricted classes of programs can improve the
complexity of aliased register allocation with alignment restrictions. In
this paper we show that aliased register allocation with alignment re-
strictions for straight-line programs is NP-complete. We also present a
proof of a related result by Stockmeyer: the shipbuilding problem is NP-
complete

1 Introduction

Register Allocation. Programmers write most software in high-level program-
ming languages such as C, C++, and Java, and use compilers to translate their
programs to a growing variety of hardware, including multicore platforms, graph-
ics processing units, and network processors. To achieve high execution speed,
programmers rely on compilers to optimize the program structure and to use
registers and memory in clever ways. The latter task, known as register alloca-
tion, has grown steadily in significance because of the widening gap between the
short time to access a register and the longer time to access memory. Today,
the register allocator may be among the most important and most complicated
parts of a compiler. For example, our experiments with the gcc compiler on the
StrongARM architecture shows that a good register allocator typically improves
execution speed by a factor of 2.5 [14]. A register allocator can also be a signifi-
cant part of the code of a compiler implementation: 10% for lcc [9] and 12% for
gcc 2.95.2.



Most programs use more variables than the number of registers on the target
computer. The core of the register allocation problem is to determine whether
all the program variables can be placed in machine registers. The reason why
a register allocator may be able to place a high number of variables in a small
number of registers is that some variables are not live at the same time and
so they can share a register. When the need for registers exceeds the number of
available registers, the register allocator faces the difficult task of choosing which
variables will be placed in registers and which variables will be spilled, that is,
placed in memory. In this paper we focus on the core register allocation problem
and do not discuss spilling of variables.

Chaitin et al. [4] showed that the core register allocation problem is NP-
complete by a reduction from the graph coloring problem. The essence of Chaitin
et al.’s proof is that every graph is the interference graph of some program.
Chaitin et al.’s proof assumes a homogeneous bank of registers, where each
register can be used to hold the value of any program variable.
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Fig. 1. General purpose registers from the x86 architecture

Aliased Registers. In this paper we study register allocation for hardware
in which the bank of registers is not homogeneous. We focus on aliased registers:
when an assignment to one register name can affect the value of another, such
register names alias [19]. For example, Figure 1 shows the set of general purpose
registers used in the x86 architecture. The x86 architecture has four general
purpose 16-bit registers that can also be used as eight 8-bit registers. Each 8-bit
register is called a low address or a high address. The initial bits of a 16-bit
register must be aligned with the initial bits of a low-address 8-bit register. The
x86 architecture allows the combination of two 8-bit registers into one 16 bit
register. Another example of aliased registers is the combination of two aligned
single precision floating-point registers to form one double-precision register.
Examples of architectures with such aliased registers include early versions of
HP PA-RISC, the Sun SPARC, and the ARM processors. For a different kind
of architecture, Scholz and Eckstein [18] describe experiments with the Carmel
20xxDSP Core, which has six 40 bit accumulators that can also be used as six
32-bit registers or as twelve 16-bit aligned registers.

Architectures that allow unaligned pairing exist but are rare. Some models
even allow registers wrapping around, that is, the last and the first registers
in the bank combine to form one double register. An example of this type of
architecture is the ARM VFP coprocessor.



Aliased Register Allocation. We will refer to register allocation for hard-
ware with aliased registers as aliased register allocation.

Several research groups have proposed solutions to the aliased register alloca-
tion problem. The existing approaches to aliased register allocation are based on
heuristics for graph coloring [2, 3, 13, 15, 16, 19], on integer linear programming
[12], or on partitioned Boolean quadratic optimization [11, 18]. Integer linear pro-
gramming and partitioned Boolean quadratic optimization are flexible enough
to describe many architecture irregularities but lead to compile times that are
worst-case exponential in the size of the input program.

Our Results. We prove that the core aliased register allocation problem
with alignment restrictions is NP-complete for straight-line programs where each
variable has at most one definition point. A straight-line program is a sequence
of instructions without jumps. Our proof consists of three steps, from 3-SAT via
a flow problem and then a coloring problem to our register allocation problem.
Intuitively, the first step transforms a Boolean formula into a graph, the second
step transforms the graph into an interval graph, and the third step transforms
the interval graph into a program. Our coloring problem without alignment re-
strictions is equivalent to the shipbuilding problem; Stockmeyer proved that the
shipbuilding problem is NP-complete [10, Application 9.1, p.204], although un-
til now, to the best of our knowledge, no proof is publicly available. While we
can reduce the aligned coloring problem to the unaligned coloring problem (and
thereby give a proof of Stockmeyer’s theorem), we have been unsuccessful in
doing a reduction in the opposite direction. The aligned case is more restricted
than the unaligned case; yet our result shows that the complexity of aliased
register allocation in the aligned case is NP-complete.

Our result and Stockmeyer’s result may be surprising because straight-line
programs where each variable has at most one definition point are extremely
simple. For a homogeneous bank of registers, the core register allocation problem
for straight-line programs can be solved in linear time. Our results show that
register aliasing is sufficient to bump the complexity to NP-complete.

Related Work. At least two other important register allocation problems
are NP-complete for straight-line programs: register allocation with precolored
registers [1]; and the placement of load and store instructions to transfer values
to and from memory [8]. Our proof was inspired in part by a paper of Biró,
Hujter, and Tuza [1] who showed how to relate a coloring problem to a flow
problem. They used a flow algorithm to solve the precoloring extension problem
for interval graphs. Our proof was also inspired by a paper by Even, Itai and
Shamir [7] who proved NP-completeness for the multicommodity flow problem.

Rest of the Paper. In Section 2 we define our register allocation problem
and in Section 3 we define a coloring problem and reduce it to the register
allocation problem. In Section 4 we introduce the notion of colored flow for simple
graphs, and in Section 5 we reduce the flow problem to the coloring problem. In
Section 6 we show how to reduce 3-SAT to the flow problem. In Section 7 we
prove our main result, and in Section 8 we give a proof of Stockmeyer’s result.



Our proof of Stockmeyer’s result builds upon our main result; we are not aware
of any other publicly available proof.

2 Aliased register allocation for straight-line programs

Programs. We will define a family of programs that compute with short values
and long values. A short value can be represented with half as many bits as a
long value. We use v to range over program variables; a variable is either of type
short or of type long. A variable of type short can only hold short values, and a
variable of type long can only hold long values. We define a statement by this
grammar:

(Statement) S ::= short v = (definition of v)
| long v = (definition of v)
| = v (use of v)

A statement either defines a variable or uses a variable. We define a straight-line
program to be a sequence of statements with the property that each variable is
defined only once and used at least once, and every use of a variable comes after
its definition.

In program S1; . . . ;Sq, a variable v is live at statement Sj , if v is defined at
Si, i ≤ j and v is used at Sk, j < k [20]. Let i be the index of the statement
that defines v, and let k be the index of the last statement that uses v. The live
range of v is the half open interval [i, k[, which includes i and excludes k.

If v1, v2 are variables and their live ranges have a nonempty intersection, then
we say that v1, v2 interfere [4].

Aliased Register Allocation. Suppose we have a machine with 2K regis-
ters that each can hold a short value. The registers are called r0, . . . , r2K−1; we
call them short registers. Suppose further that any two registers r2i, r2i+1, where
i ∈ 0..K − 1, can be used to hold a long value. Notice the restriction that two
registers can hold a long value only if the indices are consecutive and the first
index is even; we call this restriction the alignment restriction. The alignment
restriction models, for example, the rule for how a programmer can use the 8-
bit registers on the x86. For example, r4, r5 can hold a long value, while r7, r8

cannot. We say that the two numbers 2i, 2i + 1 are aligned, and that the two
registers r2i, r2i+1 are aligned. We use the notation that for a natural number
i, 2i = 2i+ 1 and 2i+ 1 = 2i.

We will study the problem of mapping program variables to machine registers:

Core aliased register allocation with alignment restric-

tions (Caraar):

Instance: a straight line program with s short variables and l long vari-
ables, and a number 2K of available short registers r0, . . . , r2K−1.
Question: can each short variable be mapped to one of the short reg-
isters and can each long variable be mapped to a pair r2i, r2i+1, i ∈
0..K−1, of short registers, such that variables with interfering live ranges
are assigned registers that are all different?



3 Interval graphs and aligned 1-2-coloring

Interval Graphs. We recall the definitions of an intersection graph and an
interval graph [10, p.9].

Let S be a finite family of nonempty sets. The intersection graph of S is
obtained by representing each set in S by a vertex and connecting two vertices
by an edge if and only if their corresponding sets intersect. An interval graph
is an intersection graph of a family of subintervals of an interval of the real
numbers. We will examine weighted interval graphs for which each vertex is
assigned a weight of either one or two.

For one of our programs P , the interference graph is the intersection graph
of the family of live ranges of P . For each short variable, we assign the corre-
sponding live range the weight one, and for each long variable, we assign the
corresponding live range the weight two.

Aligned 1-2-Coloring. We will study a variant of graph coloring which we
call aligned 1-2-coloring. We will use natural numbers as colors; for example, if
we have 2K colors, then we will use 0, 1, . . . , 2K − 1 as the colors. We define
a 1-2-coloring to be a mapping from vertices to colors which (1) assigns one
color to each vertex of weight one and (2) assigns two consecutive colors i, i+ 1
to each vertex of weight two, such that adjacent vertices have colors that are
all different. A 1-2-coloring is also known as an interval coloring [10, p.203]; we
prefer to use the term 1-2-coloring to avoid confusion with the notion of interval
graphs. We define an aligned 1-2-coloring to be a 1-2-coloring that assigns two
aligned colors to each vertex of weight two.

Aligned 1-2-coloring of weighted interval graphs (A12wig):

Instance: a weighed interval graph G and a number 2K.
Question: does G have an aligned 1-2-coloring with 2K colors?

From aligned 1-2-coloring to aliased register allocation. We now
present a reduction of aligned 1-2-coloring of weighted interval graphs to aliased
register allocation with alignment restrictions. The key step is to show that any
weighted interval graph is the interference graph of one of our straight-line pro-
grams. We first define a convenient representation of interval graphs. We say
that an interval graph is program like if the intervals have startpoints and end-
points that are all different, and the startpoints and endpoints of the intervals
form the set 1..2q, where q is the number of intervals.

Chen [5, Lemma 3] and Saha et al. [17, p.2488] have shown how to convert an
interval graph G with q intervals to an isomorphic program-like interval graph
plig(G) in O(q log q) time.

From a program-like weighted interval graph G with q intervals, we construct
a program prog(G) = S1; . . . ;S2q as follows. Define

∀i ∈ 1..2q : Si =

short vI = if the interval I of weight one begins at i
long vI = if the interval I of weight two begins at i
= vI if the interval I ends at i



We can represent prog(G) as an array of instructions and then the construction
of prog(G) takes O(q) time.

Following Cormen et al. [6], we use the notation L1 ≤P L2 to denote that L1

is polynomial-time reducible to L2.

Lemma 1. A12wig ≤P Caraar.

Proof. From an instance (G, 2K) of A12wig we can construct the instance
(prog(plig(G)), 2K) of Caraar. If G has q intervals, then we can construct
prog(plig(G)) in O(q log q) time. Notice that plig(G) is the interference graph
of prog(plig(G)) because for every interval I in plig(G), the live range of vI in
prog(plig(G)) is I. We have that G has an aligned 1-2-coloring with 2K colors if
and only if plig(G) has an aligned 1-2-coloring with 2K colors if and only if the
interference graph of prog(plig(G)) has an aligned 1-2-coloring with 2K colors if
and only if the answer to Caraar question for (prog(plig(G)), 2K) is true. �
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Fig. 2. Weighted interval graphs.

Example. Let us explain why aligned 1-2-coloring is a nontrivial problem.
Figure 2 shows three weighted interval graphs; each graph is displayed both as a
collection of intervals and in a conventional way. In the upper part of Figure 2, we
use fat lines to denote intervals of weight two and we use dashed lines to denote
intervals of weight one. In the lower part of Figure 2, we use shaded boxes to
denote vertices of weight two, and we use white boxes to denote vertices of weight
one.

A standard interval graph has the property that the size of the largest
clique is equal to the minimal number of colors [10, p.17]. Aligned coloring of a
weighted interval graph does not necessarily have that property. For example,



Figure 2(a) shows a graph for which the minimal 1-2-coloring uses four colors:
A = {0, 1}, B = 2, C = 3, D = 0, E = {1, 2}, while the minimal aligned 1-2-
coloring uses five colors: A = {0, 1}, B = 2, C = 3, D = 4, E = {0, 1}. Notice
that the largest clique is of size 3; even if we treat vertices of weight two as
counting as two nodes, the largest clique is of size 4.

A standard interval graph has the property that we can optimally color the
graph by applying greedy coloring to any perfect elimination ordering of the
vertices. (In a perfect elimination ordering, the neighbors of a node v that come
before v in the ordering form a clique [10, p.82].) A weighted interval graph does
not necessarily have that property. For example, Figure 2(b) shows a graph for
which we have the perfect elimination ordering 〈A,B,C,D〉 that leads greedy
coloring to produce an aligned 1-2-coloring with five colors: A = 0, B = 1, C =
2, D = {4, 5}. If we drop the alignment restriction, greedy coloring again pro-
duces a 1-2-coloring with five colors: A = 0, B = 1, C = 2, D = {3, 4}. However,
in both the aligned and unaligned cases, there exists an optimal assignment using
just four colors: A = 0, B = 2, C = 1, D = {2, 3}.

We might try an algorithm that first applies greedy coloring to the inter-
vals of weight one and then proceeds to color the intervals of weight two. That
does not necessarily lead to an optimal 1-2-coloring. For example, Figure 2(b)
shows a graph for which we have already studied the perfect elimination ordering
〈A,B,C,D〉 in which all the intervals of weight one come before the intervals of
weight two. So, we will get the same suboptimal colorings as above.

Alternatively, we might try to first apply greedy coloring to the intervals of
weight two, and then proceed to color the intervals of weight one. That method
is not optimal either. For example, Figure 2(c) shows a graph for which the
“weight-two-first” method produces the 1-2-coloring A = {0, 1}, B = {2, 3}, C =
{4, 5}, D = {0, 1}, E = 6. Notice that the 1-2-coloring is also an aligned 1-2-
coloring. However, in both the aligned and unaligned cases, an optimal assign-
ment uses just six colors: A = {0, 1}, B = {2, 3}, C = {4, 5}, D = {2, 3}, E = 0.

None of the simple methods work because the aligned and unaligned 1-2-
coloring problems are NP-complete.

4 Simple Graphs, Straight Cuts, and Colored Flows

Following Cormen et al. [6], we define a network (V,E,Source,Sink , c) to be a
directed graph with vertex set V , edge set E, distinguished vertices Source and
Sink , and a capacity function c : E → Nat where Nat denotes the nonnegative
natural numbers, such that every vertex is on some path from Source to Sink .
A cut (S, T ) of a network (V,E,Source,Sink , c) is a partition of V into S and
T = V \ S such that Source ∈ S and Sink ∈ T . The capacity of a cut (S, T ),
written c(S, T ), is given by the formula:

c(S, T ) = Σ(u,v)∈E,u∈S,v∈T c(u, v)

which says that the capacity of the cut is the sum of the capacities of the edges
that cross the cut from S to T .
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Fig. 3. (a) Simple graph; (b) colored flow.

For an acyclic network (V,E,Source,Sink , c), a straight cut (S, T ) is a cut for
which S = {v1, v2, . . . , vi}, T = {vi+1, vi+2, . . . vn}, and v1, . . . , vn is a topological
ordering of V . A simple graph is an acyclic network for which all straight cuts
have the same capacity.

Figure 3 (a) shows a simple graph. Each dashed line marks a straight cut.
Each unlabeled edge has unit capacity while each remaining edge is marked with
a small bar and its capacity.

Lemma 2. Let G = (V,E,Source,Sink , c) be an acyclic network. All straight
cuts of G have the same capacity if and only if ∀v ∈ V \ {Source,Sink} :∑

(u,v)∈E c(u, v) =
∑

(v,w)∈E c(v, w).

Proof. ⇒) Suppose all straight cuts of G have the same capacity. Let v1, . . . , vn
be a topological ordering of V . Notice that v1 = Source and vn = Sink . Let
i ∈ 2..n− 1. We need to show

∑
(u,vi)∈E c(u, vi) =

∑
(vi,w)∈E c(vi, w). Define

S1 = {v1, . . . , vi−1} T1 = {vi, . . . , vn}
S2 = {v1, . . . , vi} T2 = {vi+1, . . . , vn}.

The edges that cross the cut from S1 to T1 but not from S2 to T2 are the set
of edges of the form (u, vi). The edges that cross the cut from S2 to T2 but
not from S1 to T1 are the set of edges of the form (vi, w). We have that the two
straight cuts (S1, T1) and (S2, T2) have the same capacity so

∑
(u,vi)∈E c(u, vi) =∑

(vi,w)∈E c(vi, w), as desired.
⇐) Suppose ∀v ∈ V \ {Source,Sink} :

∑
(u,v)∈E c(u, v) =

∑
(v,w)∈E c(v, w).

We will show that for every straight cut (S, T ), we have c(S, T ) = c({Source}, V \
{Source}). Let (S, T ) be a straight cut and let v1, . . . , vn be a topological ordering
of V such that S = {v1, v2, . . . , vi′} and T = {vi′+1, vi′+2, . . . vn}. For every
i ∈ 1..n−1, define Si = {v1, v2, . . . , vi}, Ti = {vi+1, vi+2, . . . vn}. Notice that, for
every i ∈ 1..n− 1, (Si, Ti) is a straight cut. Notice also that (S, T ) = (Si′ , Ti′).

Let us show by induction that for every i ∈ 1..n − 1, c(Si, Ti) = c(S1, T1).
In the case of i = 1, the property is immediate. In the induction step, we
assume c(Si, Ti) = c(S1, T1), and by reasoning similar to what we used on



two straight cuts in the other half of the proof of the lemma, we have that
c(Si, Ti) = c(Si+1, Ti+1). From transitivity, we conclude that c(Si+1, Ti+1) =
c(Si, Ti) = c(S1, T1).

Finally we have (S1, T1) = ({Source}, V \{Source}) so every straight cut has
a capacity equal to the capacity of ({Source}, V \ {Source}), so all straight cuts
have the same capacity. �

For a network (V,E,Source,Sink , c), a flow is a function f : E → Nat , such
that

∀(u, v) ∈ E : f(u, v) ≤ c(u, v) (Capacity)
∀v ∈ V \ {Source,Sink} : Σ(u,v)∈Ef(u, v) = Σ(v,w)∈Ef(v, w) (Conservation)

For a simple graph, the capacity function is a flow. To see that, notice that the
capacity function trivially satisfies the Capacity constraint and that Lemma 2
guarantees that the capacity function satisfies the Conservation constraint.

We say that an element of 0..K−1 is a color. For a function h : E → 20..K−1,
the set of colors used to color edges across a cut (S, T ), written h(S, T ), is given
by the formula:

h(S, T ) =
⋃

(u,v)∈E,u∈S,v∈T

h(u, v).

We define a colored flow for a simple graph (V,E,Source,Sink , c) with every
straight cut of capacity K as a function h : E → 20..K−1 such that for every
straight cut (S, T ), we have h(S, T ) = 0..K−1. Thus, for any straight cut, every
color is used exactly once in the coloring of the edges that cross the cut. Every
colored flow h satisfies that for all e ∈ E, |h(e)| = c(e). To see that, notice
that every edge e crosses some straight cut (S, T ) and that |h(S, T )| = c(S, T ).
Figure 3 (b) shows an example of a colored flow.

Lemma 3. Let G = (V,E,Source,Sink , c) be a simple graph with every straight
cut of capacity K. A function h : E → 20..K−1 is a colored flow if and only if
∀v ∈ V \ {Source,Sink} : ∪(u,v)∈Eh(u, v) = ∪(v,w)∈Eh(v, w), and there exists a
straight cut (S, T ) such that h(S, T ) = 0..K − 1.

Proof. ⇒) Suppose h is a colored flow. First, let us show that ∀v ∈ V \{Source,Sink} :
∪(u,v)∈Eh(u, v) = ∪(v,w)∈Eh(v, w). Let v1, . . . , vn be a topological ordering of V .
Notice that v1 = Source and vn = Sink . Let i ∈ 2..n − 1. We need to show
∪(u,vi)∈Eh(u, vi) = ∪(vi,w)∈Eh(vi, w). Define

S1 = {v1, . . . , vi−1} T1 = {vi, . . . , vn}
S2 = {v1, . . . , vi} T2 = {vi+1, . . . , vn}.

The edges that cross the cut from S1 to T1 but not from S2 to T2 are the set
of edges of the form (u, vi). The edges that cross the cut from S2 to T2 but not
from S1 to T1 are the set of edges of the form (vi, w). From h being a colored
flow we have that the same set of colors is used to color both the edges that cross



(S1, T1) and the edge that cross (S2, T2). So, the set of colors used for edges of
the form (u, vi) must be the same set of colors used for edges of the form (vi, w).

Second, for the straight cut ({Source}, V \ {Source}) we have from h being
a colored flow that every color is used exactly once in the coloring of edges that
cross the cut.
⇐) Suppose h is a function such that ∀v ∈ V \{Source,Sink} : ∪(u,v)∈Eh(u, v) =

∪(v,w)∈Eh(v, w), and there exists a straight cut (S, T ) such that h(S, T ) = 0..K−
1. We must show that for any straight cut (S, T ), we have h(S, T ) = 0..K − 1.
It is sufficient to show that for every straight cut (S, T ), we have h(S, T ) =
h({Source}, V \ {Source}). Let (S, T ) be a straight cut and let v1, . . . , vn be a
topological ordering of V such that S = {v1, v2, . . . , vi′} and T = {vi′+1, vi′+2, . . . vn}.
For every i ∈ 1..n− 1, define Si = {v1, v2, . . . , vi}, Ti = {vi+1, vi+2, . . . vn}. No-
tice that, for every i ∈ 1..n − 1, (Si, Ti) is a straight cut. Notice also that
(S, T ) = (Si′ , Ti′).

Let us show by induction that for every i ∈ 1..n − 1, h(Si, Ti) = h(S1, T1).
In the case of i = 1, the property is immediate. In the induction step, we
assume h(Si, Ti) = h(S1, T1), and by reasoning similar to what we used on
two straight cuts in the other half of the proof of the lemma, we have that
h(Si, Ti) = h(Si+1, Ti+1). From transitivity, we conclude that h(Si+1, Ti+1) =
h(Si, Ti) = h(S1, T1).

Finally we have (S1, T1) = ({Source}, V \ {Source}) so the set of colors used
for the edges across any given straight cut is the set same used for the edges
across ({Source}, V \ {Source}). �

Aligned colored flow. Suppose we have a simple graph (V,E,Source,Sink , c)
with all straight cuts of capacity 2K. We define an aligned colored flow to be
a colored flow h such that for every e ∈ E, if 2 ≤ c(e), then ∃i : 0 ≤ i ≤
K − 1∧ {2i, 2i+ 1} ⊆ h(e). Intuitively, an edge e with a capacity of at least two
requires h to assign e aligned colors 2i and 2i+ 1, among others.

For a natural number B, a network (V,E,Source,Sink , c) is B-bounded if for
all e ∈ E : c(e) ≤ B.

Aligned colored flow (ACFlow):

Instance: a 6-bounded simple graph G.
Question: does G have an aligned colored flow?

It is straightforward to see that ACFlow is in NP. Our reduction from
3-SAT to ACFlow (Section 6) produces a 6-bounded simple graph.

5 From aligned colored flow to aligned 1-2-coloring

In this section we present a reduction of the aligned colored flow problem to
aligned 1-2-coloring of weighted interval graphs.

Lemma 4. ACFlow ≤P A12wig.



Proof. Let G = (V,E,Source,Sink , c) be an instance of ACFlow, and let 2K
be the capacity of all straight cuts of G. From G we construct a weighted interval
graph wig(G) in the following way. Let v1, . . . , vn be a topological ordering of V .
The intervals of wig(G) are defined as follows. For each (vi, vj) ∈ E such that
2 ≤ c(vi, vj), we create one interval [i, j[ of weight two, and we create c(vi, vj)−2
intervals [i, j[ of weight one. For each (vi, vj) ∈ E such that c(vi, vj) = 1, we
create one interval [i, j[ of weight one.

From G we can construct the instance (wig(G), 2K) of A12wig. We can
construct the topological ordering of V in O(|V |+|E|) time and we can construct
the intervals of wig(G) in O(|E|) time, so we can construct (wig(G), 2K) in
O(|V |+ |E|) time.

We will show that G has an aligned colored flow if and only if wig(G) has an
aligned 1-2-coloring with 2K colors.
⇒) Suppose G has an aligned colored flow h. We can then define a mapping

κ that assigns colors to each vertex of wig(G) as follows. For each (vi, vj) ∈ E
such that 2 ≤ c(vi, vj), we have that h(vi, vj) contains two aligned colors; assign
those two colors to the interval of weight two created from (vi, vj), and assign
each of the rest of the colors in h(vi, vj) to each of the intervals of weight one
created from (vi, vj). For each (vi, vj) ∈ E such that c(vi, vj) = 1, assign the one
color in h(vi, vj) to the interval of weight one created from (vi, vj). We need to
show that adjacent vertices in wig(G) have colors that are all different. Suppose
we have two adjacent intervals I1, I2 in wig(G), that is, they have a nonempty
intersection. Since all the intervals are half-open, the intersection consists of
more than one point. Choose a point p in the intersection which is not the start
or end point of any interval in wig(G). Define S = { vi ∈ V | i < p } and define
T = { vi ∈ V | i > p }. We have that (S, T ) is a straight cut. We also have that
I1, I2 both cross the cut. For every straight cut, every color is used exactly once,
so I1, I2 have colors that are all different.
⇐) Suppose wig(G) has an aligned 1-2-coloring κ. We can then define a

mapping h : E → 20..2K−1 as follows. For each (vi, vj) ∈ E, let h(vi, vj) be the
union of the colors assigned by κ to the intervals in wig(G) created from (vi, vj).
We need to show that h is an aligned colored flow.

Let us first show that h is a colored flow. From Lemma 3 we have that we
must show that (1) ∀v ∈ V \ {Source,Sink} : ∪(u,v)∈Eh(u, v) = ∪(v,w)∈Eh(v, w),
and (2) there exists a straight cut (S, T ) such that ∪(u,v)∈E,u∈S,v∈Th(u, v) =
0..2K − 1.

To prove (1), let vj be a vertex in V \ {Source,Sink}. We have that

C1 = ({ vi | i < j }, { vk | j ≤ k })
C2 = ({ vi | i ≤ j }, { vk | j < k })

are straight cuts of G and hence both of capacity 2K. Next define E1 to be the
set of edges in E of the form (vi, vj), and define E2 to be the set of edges in E
of the form (vj , vk). From Lemma 2 we have that Σe∈E1c(e) = Σe∈E2c(e). We
can find a subset E′ ⊆ E such that E′ ∩ E1 = ∅, E′ ∩ E2 = ∅, the edges that
cross C1 can be written E1 ∪ E′, and the edges that cross C2 can be written



E2 ∪ E′. We conclude that ∪e∈E1h(e) = ∪e∈E2h(e), as required. To prove (2),
let us examine the edges that traverse the straight cut ({Source}, V \ {Source}),
which by assumption has capacity 2K. From those edges, we create intervals in
wig(G) that all overlap and hence get all different colors by κ.

Finally, we have that h is aligned because the construction of wig(G) ensures
that for any e for which we have 2 ≤ c(e), one vertex of weight two is created;
the construction of h then ensures that the aligned colors assigned by κ to that
interval will be two of the colors assigned by h to e. �

6 From 3-SAT to aligned colored flow

The 3-SAT problem is to decide whether a given Boolean formula in conjunctive
normal form (CNF) is satisfiable. In this section we present a reduction of 3-SAT

to the aligned colored flow problem. Let

F = ∧mj=1cj

cj = lj1 ∨ lj2 ∨ lj3

be a formula with n Boolean variables x1, . . . , xn and m clauses c1, . . . , cm; each
literal, lj1 or lj2 or lj3, is either a variable or the negation of a variable, and in
each clause the three literals are distinct. Let pi be the number of occurrences
of xi, and let qi be the number of occurrences of x̄i. For convenience, we define
p0 = 0 and q0 = 0.

From a Boolean formula F in CNF we construct a simple graph sg(F ) =
(V,E,Source,Sink , c). The graph is akin to the graph used by Even, Itai and
Shamir [7, Section 4] in their proof of NP-completeness for the multicommodity
flow problem. The vertices of sg(F ) are:

V = {Source,Sink , Q,R } ∪
{ cj | 1 ≤ j ≤ m } ∪
{ ai, bi | 1 ≤ i ≤ n } ∪
{ si0, siy, si(pi+1), xiy, xi(pi+1) | 1 ≤ i ≤ n ∧ 1 ≤ y ≤ pi } ∪
{ s̄iz, s̄i(qi+1), x̄iz, x̄i(qi+1) | 1 ≤ i ≤ n ∧ 1 ≤ z ≤ qi }

For convenience, we will some times use the alias an+1 for R. Figure 4 shows a
listing of the edges in E and their capacities. Figure 4 also shows a set of colors
for each edge, using the abbreviations in Figure 5(a); we will need that later.

Figure 6 illustrates the graph constructed from the formula (x1 ∨ x2 ∨ x3) ∧
(x̄1 ∨ x2 ∨ x̄3). We use c1 to denote (x1 ∨ x2 ∨ x3) and we use c2 to denote
(x̄1 ∨ x2 ∨ x̄3). Let us now give an intuitive explanation of the construction of
the graph. For each variable xi, we construct a lobe. First we add the edges
(xiy

1→ xi(y+1)) to form an upper path and we add the edges (x̄iz
1→ x̄i(z+1)) to

form a lower path. Then we connect theses paths to ai and bi to form the lobe
by adding the edges (ai

1→ xi1), (ai
1→ x̄i1), (xi(pi+1)

1→ bi), and (x̄i(qi+1)
1→ bi).



Next we are going to make several edges that have alignment requirements.
For each siy, we create an edge (Source 2→ siy) with a capacity two. Likewise
for all the si0 and the s̄ih vertices. For each si(pi+1) and s̄i(qi+1) we add the
edges (Source 2→ si(pi+1)) and (Source 2→ s̄i(qi+1)) each with capacity two. Next
we will add an edge (Source 2→ Q) also with capacity of two. In total we have
made a capacity of 2(3m+ 3n+ 1) leaving the source. We want to make sg(F )
simple, so there must be capacities of two leaving each of these vertices and
eventually reaching the Sink. We will create some more aligned edges which will
now connect certain vertices to Sink. For each of the cj vertices, we create the
edges (cj

6→ Sink) with a capacity of six and finally we add (R 2→ Sink) with a
capacity of two. Now all that remains to make the graph simple is to connect
the Q, siy, si(pi+1), s̄iz and s̄i(qi+1) vertices to R, cj , and Sink.

We will first add edges to send the current excess capacity at Q to R. We will
add a direct edge (Q 1→ R) to get one unit of capacity to R. To get the other
unit to R, we will connect the lobes serially, by adding the edges (bi

1→ ai+1).
Finally, we add (Q 1→ a1), resulting in a path to send the other unit of capacity
to R and two units of capacity reaching Sink.

The ai and bi vertices still have an imbalance of capacity and must have
edges to supply capacity or drain it. To correct for these imbalances, we add the
edges (si0

1→ Sink), (si0
1→ ai), and (bi

1→ Sink). This results in a current total
of 2n + 2 units of capacity reaching Sink, and that the vertices on the lobe are
balanced.

We will now connect the remaining siy, si(pi+1), s̄iz and s̄i(qi+1) vertices to the
cj vertices and Sink. We add the edges (siy

1→ xiy), (si(pi+1)
1→ xi(pi+1)), (s̄iz

1→
xiz) and (s̄i(qi+1)

1→ x̄ih) which will send one unit of capacity from each of
these vertices to the corresponding vertices on the lobe. The other units from
the siy and s̄iz vertices will be sent to some cj vertex while those of si(pi+1)

and s̄i(pi+1) will be sent directly to Sink. We add the edges (si(pi+1)
1→ Sink)

and (s̄i(qi+1)
1→ Sink), which now results in an additional 2n units of capacity

reaching Sink for a running total of 4n + 2. For the remaining vertices, we add
an edge (siy

1→ cj) if the yth occurrence of xi appears in cj . For the s̄iz vertices,
we add similar edges. From these edges we get 3m units of capacity reaching
Sink, because each of these edges corresponds to a clause, and each clause has
exactly three literals in it. All that remains is to drain the single unit of capacity
currently residing at the xiy, xi(pi+1), x̄iz and x̄i(qi+1) vertices and we will have
a simple graph. We add the edges (xi(y+1)

1→ cj) if the yth appearance of xi
occurs in cj as well as (xi(z+1)

1→ cj) if the zth appearance of x̄i occurs in cj .
This results in another 3m units of capacity reaching Sink. Finally, the last 2n
units will be supplied by the edges (xi1

1→ Sink) and (x̄i1
1→ Sink).



Edge Color Edge Color

1 xiy
1→ xi(y+1) ψ(xi) ? α(i, y) : θ 18 si0

1→ Sink γ(i)

2 x̄iz
1→ x̄i(z+1) ψ(xi) ? θ : β(i, z) 19 si0

1→ ai γ(i)

3 ai
1→ xi1 ψ(xi) ? γ(i) : θ 20 bi

1→ Sink ψ(xi) ? δ(i) : η(i)

4 ai
1→ x̄i1 ψ(xi) ? θ : γ(i) 21 siy

1→ xiy α(i, y)

5 xi(pi+1)
1→ bi ψ(xi) ? δ(i) : θ 22 si(pi+1)

1→ xi(pi+1) δ(i)

6 x̄i(qi+1)
1→ bi ψ(xi) ? θ : η(i) 23 s̄iz

1→ x̄iz β(i, z)

7 Source 2→ siy α(i, y), α(i, y) 24 s̄i(qi+1)
1→ x̄i(qi+1) η(i)

8 Source 2→ si(pi+1) δ(i), δ(i) 25 si(pi+1)
1→ Sink δ(i)

9 Source 2→ s̄iz β(i, z), β(i, z) 26 s̄i(qi+1)
1→ Sink η(i)

10 Source 2→ s̄i(qi+1) η(i), η(i) 27 siy
1→ cj α(i, y)

if occ(y, xi, cj)

11 Source 2→ si0 γ(i), γ(i) 28 s̄iz
1→ cj β(i, z)

if occ(z, x̄i, cj)

12 Source 2→ Q θ, θ 29 xi(y+1)
1→ cj ψ(xi) ? α(i, y) : α(i, y + 1)

if occ(y, xi, cj), (y 6= pi)

13 cj
6→ Sink See Figure 5(b) 30 xi(pi+1)

1→ cj ψ(xi) ? α(i, pi) : δ(i)
if occ(pi, xi, cj)

14 R 2→ Sink θ, θ̄ 31 x̄i(z+1)
1→ cj ψ(xi) ? β(i, z + 1) : β(i, z)

if occ(z, x̄i, cj), (z 6= qi)

15 Q 1→ R θ̄ 32 x̄i(qi+1)
1→ cj ψ(xi) ? η(i) : β(i, qi)

if occ(qi, x̄i, cj)

16 bi
1→ ai+1 θ 33 xi1

1→ Sink ψ(xi) ? γ(i) : α(i, 1)

17 Q 1→ a1 θ 34 x̄i1
1→ Sink ψ(xi) ? β(i, 1) : γ(i)

Fig. 4. The edges of sg(F ). We have 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ y ≤ pi, 1 ≤ z ≤ qi. The
notation ψ(xi)?dT : dF denotes that if ψ(xi) = true then the assigned color is dT , and
if ψ(xi) = false then the assigned color is dF . An expression occ(y, xi, cj) means that
the yth occurrence of xi appears in cj .

α(i, y) = 2(Σi
j=1pj−1 + y − 1)

β(i, z) = 2(Σn
j=1pj +Σi

j=1qj−1

+z − 1)

γ(i) = 2(3m+ i− 1)

δ(i) = 2(3m+ n+ i− 1)

η(i) = 2(3m+ 2n+ i− 1)

θ = 2(3m+ 3n)

Condition Colors

i occ(y, xi, cj) ∧ ψ(xi) = true α(i, y), α(i, y)

ii occ(y, xi, cj) ∧ ψ(xi) = false ∧ y 6= pi α(i, y + 1), α(i, y)

iii occ(pi, xi, cj) ∧ ψ(xi) = false δ(i), α(i, pi)

iv occ(z, x̄i, cj) ∧ ψ(xi) = false β(i, z), β(i, z)

v occ(z, x̄i, cj) ∧ ψ(xi) = true ∧ z 6= qi β(i, z + 1), β(i, z)

vi occ(qi, x̄i, cj) ∧ ψ(xi) = true η(i), β(i, qi)

Fig. 5. (a) Abbreviations. (b) For each literal in cj , the two colors in h(cj
6→ Sink).
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Lemma 5. 3-SAT ≤P ACFlow.

Proof. From an instance F of 3-SAT with n variables and m clauses, we can
construct the instance sg(F ) of ACFlow. The graph sg(F ) has 7m + 7n + 4
vertices and 16m + 17n + 4 edges and we can construct sg(F ) in polynomial
time. It is straightforward to check that sg(F ) is a 6-bounded acyclic net-
work. We must also show that all straight cuts of sg(F ) have the same ca-
pacity. From Lemma 2 we have that we must show ∀v ∈ V \ {Source,Sink} :∑

(u,v)∈E c(u, v) =
∑

(v,w)∈E c(v, w). We will use the terminology that for a
vertex v ∈ V \ {Source,Sink}, the in-capacity of v is

∑
(u,v)∈E c(u, v), and

the out-capacity of v is
∑

(v,w)∈E c(v, w). We will examine each vertex in V \
{Source,Sink} in turn. From Figure 4 we see that, for 1 ≤ i ≤ n, 1 ≤ j ≤ m,
1 ≤ y ≤ pi, 1 ≤ z ≤ qi:

Node in-capacity using rules out-capacity using rules
Q 2 12 2 15, 17
R 2 15, 16 2 14
cj 6 27–32 6 13
ai 2 16, 17, 19 2 3, 4
bi 2 5, 6 2 16, 20
si0 2 11 2 18, 19
siy 2 7 2 21, 27

si(pi+1) 2 8 2 22, 25
xiy 2 1, 3, 21 2 1, 29, 33

xi(pi+1) 2 1, 22 2 5, 30
s̄iz 2 9 2 23, 28

s̄i(qi+1) 2 10 2 24, 26
x̄iz 2 1, 2, 23 2 2, 31, 34

x̄i(qi+1) 2 2, 24 2 6, 32

So, sg(F ) is a simple graph.
We will show that F is satisfiable if and only if sg(F ) has an aligned colored

flow.
Define K = 3m+ 3n+ 1.
⇒) Suppose we have a Boolean assignment ψ for the variables in F which

satisfies F . Let h : E → 20..2K−1 be defined by mapping each edge to the set
of colors given in Figure 4, using the abbreviations in Figure 5(a). We need to
show that h is an aligned colored flow.

From Lemma 3 we have that we can show that h is a colored flow by showing
that: (1) ∀v ∈ V \ {Source,Sink} : ∪(u,v)∈Eh(u, v) = ∪(v,w)∈Eh(v, w), and (2)
there exists a straight cut (S, T ) such that ∪(u,v)∈E,u∈S,v∈Th(u, v) = 0..2K − 1.

To prove (1), we first note that it is straightforward to check that the sets
of edges and colors defined in Figure 4 are the same as the sets of edges and
colors shown in Figures 8, 9, and 10 in the Appendix. Then, for each vertex
v ∈ V \ {Source,Sink}, we examine the corresponding illustration in one of the
figures Figures 8, 9, and 10, and in each case it is straightforward to check that
∪(u,v)∈Eh(u, v) = ∪(v,w)∈Eh(v, w).



To prove (2), we will focus on the straight cut (Source, V \Source) and show
that ∪(u,v)∈E,u∈Source,v∈V \Sourceh(u, v) = 0..2K − 1. From Figure 4, rules 7–12,
we can see that six forms of edges cross the straight cut. Notice that

∑n
i=1 pi +∑n

i=1 qi = 3m. From that observation and the abbreviations in Figure 5(a), it is
straightforward to see that the colors of those edges are:⋃

{ α(i, y), α(i, y) | 1 ≤ i ≤ n ∧ 1 ≤ y ≤ pi } = (0 .. 2(Σn
i=1pi)− 1)⋃

{ β(i, z), β(i, z) | 1 ≤ i ≤ n ∧ 1 ≤ z ≤ qi } = (2(Σn
i=1pi) .. 6m− 1)⋃

{ γ(i), γ(i) | 1 ≤ i ≤ n } = (6m .. 6m+ 2n− 1)⋃
{ δ(i), δ(i) | 1 ≤ i ≤ n } = (6m+ 2n .. 6m+ 4n− 1)⋃
{ η(i), η(i) | 1 ≤ i ≤ n } = (6m+ 4n .. 6m+ 6n− 1)

{ δ, δ } = (6m+ 6n .. 6m+ 6n+ 1)

We conclude that the colors of the edges that cross the straight cut (Source, V \
Source) form the interval 0 .. 6m+ 6n+ 1 = 0 .. 2K − 1.

Finally we must show that h is an aligned colored flow, that is, we must show
that for every edge e, if 2 ≤ c(e), then ∃i : 0 ≤ i ≤ K − 1 ∧ {2i, 2i + 1} ⊆ h(e).
We can easily verify that by inspection of Figure 4.
⇐) Suppose sg(F ) has an aligned colored flow h : E → 20..2K−1. We can

then define a Boolean assignment ψ for the variables of F :

for all i ∈ 1..n : ψ(xi) =

{
true if h(Source 2→ Q) = h(Q 1→ R) ∪ h(ai

1→ x̄i1)
false otherwise

Let j ∈ 1..m. We will show that ψ satisfies cj . Let us first prove a property of h:

– Claim 1: Either there exists i, y such that h(Source 2→ siy) ⊆ h(cj
6→ Sink),

or there exists i, z such that h(Source 2→ s̄iz) ⊆ h(cj
6→ Sink).

Proof of Claim 1. The set h(cj
6→ Sink) contains two aligned colors d, d̄. The

edges crossing the straight cut ({Source}, V \ {Source}) are of the six forms: (i)
Source 2→ Q, (ii) Source 2→ si0, (iii) Source 2→ si(pi+1), (iv) Source 2→ s̄i(qi+1),
(v) Source 2→ siy, (vi) Source 2→ s̄iz. Because every color is used exactly once
across a straight cut, one of those edges must have the colors d, d̄. We must
rule out cases (i)–(iv). Consider first case (i). From Lemma 3 and the edges
Source 2→ Q 1→ R 2→ Sink , we have h(Source 2→ Q) = h(R 2→ Sink). The
straight cut (V \ {Sink}, {Sink}) is crossed by the edges R 2→ Sink and cj

6→
Sink , hence those edges must have colors that are all different. We conclude
h(Source 2→ Q) 6⊆ h(cj

6→ Sink). Consider then case (ii). The straight cut
(V \ {Sink}, {Sink}) is crossed by the edges si0

1→ Sink and cj
6→ Sink , hence

those edges must have colors that are all different. From the edges Source 2→
si0

1→ Sink and Lemma 3 we have that h(si0
1→ Sink) ⊆ h(Source 2→ si0). We

conclude h(Source 2→ si0) 6⊆ h(cj
6→ Sink). Consider then cases (iii)–(iv): the

proofs are similar to the proof of (ii), we omit the details.



From Claim 1 we have two cases. We will consider each case in turn.
First suppose there exists i, y such that h(Source 2→ siy) ⊆ h(cj

6→ Sink).
We begin by proving three properties of h:

– Claim 2: xi appears in cj .
– Claim 3: h(Source 2→ Q) = h(Q 1→ R) ∪ h(bi

1→ ai+1).
– Claim 4: h(xiy

1→ xi(y+1)) ⊆ h(Source 2→ siy).

Proof of Claim 2. The kth occurrence of xi is in cr for some r, and sg(F )
contains the edges siy

1→ cr and xi(y+1)
1→ cr. We must show j = r. Suppose

j 6= r. The straight cut (V \ {cr,Sink}, {cr,Sink}) is crossed by the edges cj
6→

Sink and siy
1→ cr, hence those edges must have colors that are all different.

However, from Lemma 3 and h(Source 2→ siy) ⊆ h(cj
6→ Sink), we have that

h(siy
1→ cr) ⊆ h(Source 2→ siy) ⊆ h(cj

6→ Sink), a contradiction. We conclude
j = r.

Proof of Claim 3. From Lemma 3, h(Source 2→ Q) = h(Q 1→ R)∪h(Q 1→ a1).
The color in h(Q 1→ a1) takes a path from Q to R that contains the edge
bi

1→ ai+1. From Lemma 3 we have that h(Q 1→ a1) = h(bi
1→ ai+1). From

h(Source 2→ Q) = h(Q 1→ R) ∪ h(Q 1→ a1) and h(Q 1→ a1) = h(bi
1→ ai+1) we

have h(Source 2→ Q) = h(Q 1→ R) ∪ h(bi
1→ ai+1).

Proof of Claim 4. From Claim 2 we have that xi appears in cj . From Lemma 3
we have that we can find a color d such that h(Source 2→ siy) = {d, d̄} and
h(siy

1→ cj) = {d}. We have that the literals in clause cj are distinct so when
we consider the edges xiy

1→ cr and xi(y+1)
1→ cj , we have that r 6= j. From

h(Source 2→ siy) ⊆ h(cj
6→ Sink) we have that d̄ is a color of some edge to

cj and hence not a color of any edge to cr. The vertex xiy has two outgoing
edges xiy

1→ xi(y+1) and xiy
1→ cr, so h(xiy

1→ xi(y+1)) = {d̄}. So we have
h(xiy

1→ xi(y+1)) ⊆ h(Source 2→ siy).

Finally, we will show that ψ satisfies cj . From Claim 4 we have h(xiy
1→

xi(y+1)) ⊆ h(Source 2→ siy). The edges Source 2→ Q and Source 2→ siy both
cross the straight cut ({Source}, V \ {Source}) and hence have colors that are
all different. We thus have that h(xiy

1→ xi(y+1)) 6⊆ h(Source 2→ Q). From
h(xiy

1→ xi(y+1)) 6⊆ h(Source 2→ Q) and Claim 3 we have that h(xiy
1→ xi(y+1)) 6=

h(bi
1→ ai+1). Notice that bi has just two incoming edges, and that from ai to

bi we have two paths: one path consists of vertices ai, xi1,. . . ,xi(pi+1), bi; the
other of vertices ai, x̄i1,. . . ,x̄i(qi+1), bi. From Lemma 3 we have that the color
of h(bi

1→ ai+1) must be assigned to all edges on exactly one of these paths. We
have already established h(xiy

1→ xi(y+1)) 6= h(bi
1→ ai+1), so h(ai

1→ x̄i1) =
h(bi

1→ ai+1). From h(ai
1→ x̄i1) = h(bi

1→ ai+1) and Claim 3 we conclude
ψ(xi) = true. From Claim 2 we have that xi appears in cj . From ψ(xi) = true
and that xi appears in cj , we conclude that ψ satisfies cj .

Second suppose there exists i, h such that h(Source 2→ s̄ih) ⊆ h(cj
6→ Sink).

The proof is similar to the proof of the first case, we omit the details. �



7 Main result

Theorem 1. For straight-line programs, the core aliased register allocation prob-
lem with alignment restrictions is NP-complete.

Proof. First, the problem is in NP because a register assignment can be verified
in polynomial time. Second, the problem is NP-hard because Lemmas 5, 4, and
1 give a chain of reductions 3-SAT ≤P ACFlow ≤P A12wig ≤P Caraar.

�

Corollary 1. ACFlow and A12wig are NP-complete.

8 A Proof of Stockmeyer’s Theorem

Stockmeyer proved a result closely related to ours, namely that the shipbuilding
problem is NP-complete [10, Application 9.1, p.204]. The shipbuilding problem
for intervals with weights one or two is:

1-2-coloring of weighted interval graphs (12wig):

Instance: a weighted interval graph G and a number 2K.
Question: does G have a 1-2-coloring with 2K colors?

Stockmeyer proved that 12wig is NP-complete [10, Remark 1, p.204]. As far
as we are aware, our proof below (Theorem 2) is the first publicly available proof
of Stockmeyer’s theorem.

Figure 2(a) shows a graph that has a 1-2-coloring with 4 colors but no aligned
1-2-coloring with 4 colors. Hence, we have a case of a graph and a number of
colors for which A12wig is unsolvable while 12wig is solvable.

We will reduce A12wig to 12wig. From an instance (G, 2K) of A12wig,
we define a weighted interval graph uag(G, 2K) in the following way. Let s be
the minimum of the start points of all intervals in G and let e be the maximum
of the end points of all intervals in G. The graph uag(G, 2K) consists of all the
intervals in G and for each i, 0 ≤ i < K, the following intervals:

weight two: δ2i = [e, e+ 2K + i[
weight two: δ2i+1 = [s, e+ 3K + i[
weight one: γ4i = [e+ 2K + i, e+ 5K[
weight one: γ4i+1 = [e+ 2K + i, e+ 4K + i[
weight one: γ4i+2 = [e+ 3K + i, e+ 4K + i[
weight one: γ4i+3 = [e+ 3K + i, e+ 5K[
weight two: βi = [e+ 4K + i, e+ 5K[

Notice that for all p, e ≤ p < e + 5K, the total weight of the intervals that
contain p is 4K.

Lemma 6. A12wig ≤P 12wig.
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Proof. Let H denote the weighted interval graph with no intervals. From an in-
stance (G, 2K) of A12wig where G has q intervals, if 2K > q, then we construct
the instance (H, 1) of 12wig, otherwise, if 2K ≤ q, we construct the instance
(uag(G, 2K), 4K) of 12wig. The graph (uag(G, 2K) has q+7K ≤ q+3.5q = 4.5q
intervals and we can construct both (H, 1) and (uag(G, 2K), 4K) in polynomial
time.

We now have two cases. In the case of 2K > q, we have that both (G, 2K)
and (H, 1) are solvable.

In the case of 2K ≤ q, we will prove that G has an aligned 1-2-coloring with
2K colors if and only if uag(G, 2K) has a 1-2-coloring with 4K colors.
⇒) Let κ be an aligned 1-2-coloring of G with 2K colors. We define a function

m as follows. For 0 ≤ i < K, let m({2i}) = {4i}, let m({2i + 1}) = {4i + 1},



and let m({2i, 2i + 1}) = {4i, 4i + 1}. We define a mapping θ from vertices of
uag(G, 2K) to sets of colors:

θ(α) = m(κ(α)), for each α in G
θ(δ2i) = {4i, 4i+ 1}
θ(δ2i+1) = {4i+ 2, 4i+ 3}
θ(γ4i) = {4i}
θ(γ4i+1) = {4i+ 1}
θ(γ4i+2) = {4i+ 2}
θ(γ4i+3) = {4i+ 3}
θ(βi) = {4i+ 1, 4i+ 2}

It is straightforward to check that θ is a 1-2-coloring of uag(G, 2K) with 4K
colors.
⇐) Let θ be a 1-2-coloring of uag(G, 2K) with 4K colors. We first prove five

properties of θ:

– Claim 1: For each j, 0 ≤ j < 2K, θ(δj) is a set of two aligned colors.
– Claim 2: For each i, 0 ≤ i < K:
• (a) θ(δ2i) = θ(γ4i) ∪ θ(γ4i+1)
• (b) θ(βi) = θ(γ4i+1) ∪ θ(γ4i+2).
• (c) θ(δ2i+1) = θ(γ4i+2) ∪ θ(γ4i+3)

– Claim 3: For each i, 0 ≤ i < K, there exists k, 0 ≤ k < K, such that:

θ(γ4i) = {4k}
θ(γ4i+1) = {4k + 1}
θ(γ4i+2) = {4k + 2}
θ(γ4i+3) = {4k + 3}

– Claim 4: ∪k−1
i=0 θ(δ2i+1) = {4k + 2, 4k + 3 | 0 ≤ k < K}.

– Claim 5: ∪α∈Gθ(α) ⊆ {4k, 4k + 1 | 0 ≤ k < K}.

Proof of Claim 1. The 2K intervals δj , 0 ≤ j < 2K, all overlap. Given that θ
has just 4K colors available, the only way it can assign colors to those intervals
is to assign each of them a set of aligned colors.

Proof of Claim 2. (a) For each i, 0 ≤ i < K, the interval δ2i meets the
intervals γ4i and γ4i+1 in the point e + 2K + i, and no other intervals start or
end at e + 2K + i. Given that the total weight of the intervals that contain
e+ 2K + i is 4K, we have the claimed equation. We can prove (b) and (c) in a
manner similar to the proof of (a); we omit the details.

Proof of Claim 3. From Claims 1+2 we have that for every i, 0 ≤ i < K, θ
assigns a pair of aligned colors to γ4i and γ4i+1, θ assigns a pair of consecutive
colors to γ4i+1 and γ4i+2, and θ assigns a pair of aligned colors to γ4i+2 and
γ4i+3. From those observations, we have the claimed equations.

Proof of Claim 4. We have that all the intervals δ2i+1 overlap, for 0 ≤ i < K,
so θ assigns them disjoint sets of colors. From that observation, Claim 2(c), and
Claim 3 we have the claimed equation.



Proof of Claim 5. Each interval α ∈ G overlaps with all the intervals δ2i+1 so
from Claim 4 we have that only colors of the form 4k and 4k+1, for 0 ≤ k < K,
are available to θ to assign to α.

Let m−1 be the inverse of the function m defined above. Let κ = m−1 ◦ θ,
restricted to G. From the definition of κ and Claim 5 we have that the range of
κ is {j | 0 ≤ j < 2K} and that κ must assign every interval of weight two in
G an aligned pair of colors. We conclude that κ is an aligned 1-2-coloring of G
with 2K colors. �

Theorem 2. 1-2-coloring of weighted interval graphs is NP-complete.

Proof. First, the problem is in NP because a 1-2-coloring can be verified in
polynomial time. Second, the problem is NP-hard because Lemmas 5, 4, and 6
give a chain of reductions 3-SAT ≤P ACFlow ≤P A12wig ≤P 12wig. �

9 Conclusion

We have shown that aliased register allocation with alignment restrictions is
difficult, even for straight-line programs where each variable has at most one
definition point. Our result confirms the need for the heuristics and worst-case
exponential time methods for aliased register allocation that are used today.

In this paper we have considered register allocation as a decision problem.
We can also view register allocation as an optimization problem: minimize the
number of registers. Open problem: give nontrivial upper and lower bounds
on the approximability of our register allocation problem. For example, is our
register allocation problem APX-hard?
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Appendix: Illustrations

In this section we illustrate the edges in sg(F ). The illustrations show the edges
and colors to and from each vertex except Source and Sink. For vertices where
the colors depend on the value of ψ(xi), we use the same figure to show both
the case when ψ(xi) is true and the case when ψ(xi) is false.
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Fig. 8. Four illustrations of edges in sg(F ).
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Fig. 9. Eight illustrations of edges in sg(F ).
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