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Abstract

Register allocation is the problem of mapping program variables to either machine registers or memory
addresses. A good compiler should strive to allocate as many variables in registers as possible, as they
provide faster access time; however, registers exist in limited number, as some variables might have to
be sent to memory. These are called spilled variables. Register allocation is one of the most important
problems in compiler optimization, as a good allocator can improve a naive algorithm in over 250%. It
is also one of the most studied problems in compiler theory, and a vast number of different algorithms
exist to solve it. In this survey we describe different strategies that compilers use to perform register
allocation, and we study the different tradeoffs involved in each algorithm. The first half of the survey
touches register allocation from a general perspective, whereas the second half gives special attention to
the recent breakthroughs in the field of SSA-based register allocation.

1 Introduction

Computer architectures rely on a memory hierarchy to store the data that is manipulated by programs.
Figure 1 shows the storage pyramid that is typically observed on a ordinary computer. At the very top of
the pyramid we have registers, which provide to the CPU the fastest access to data. Operations of reading
and writing to registers in a modern computer take no more than one cycle of the CPU clock. All this
velocity comes with a cost: the register file is very small. For instance, the 32-bit x86 chip contains only
eight general purpose registers, the 16-bit x86 chip contains 16 and the ARM and the PowerPC chips contain
only 32 integer registers. In comparison, its is fairly common to find 200G hard disks in current computers
- a difference of almost 33 orders of magnitude!

Because registers are so fast and so few, one of the greatest challenges of compiler writers is to design
algorithms that keep the most used program variables in registers, while relegating the least used variables
to memory if necessary. Register allocation is thus the problem of mapping variables to registers or memory.
This is one of the most important compiler optimizations. As an example, experiments show that an optimal
allocator can produce code that is over 250% faster than the code produced by a naive algorithm that maps
all the variables to memory. We will be using the program in Figure 2 to illustrate the main concepts related
to register allocation.

A program can be described by its control flow graph. The control flow graph is formed by basic blocks.
Each basic block has a unique label, and a list of instructions. Instructions are the primary constituents of
programs. Each instruction may apply an operation on some variables, which are called the used variables.
An instruction may define one or more variables; these are called defined variables. Different computer
architectures, e.g x86, PowerPC, ARM, etc, provide different sets of instructions, but all these sets are
Turing Complete. The program in Figure 2 contains four basic blocks and 14 instructions. For simplicity
we will be dealing with only four types of instructions: assignments, branches, jumps and joins. The first
instruction of basic block L2 is an assignment that uses the variable a and defines the variable c. We use
assignments to abstract instructions that use or define variables. The actual operation that the instruction
applies on its operands is not important for our purposes, and if the instruction has no operand on either
the left or right side, we will represent this with a • symbol. The other kinds of instructions model the shape
of the control flow graph. Branches finish basic blocks with multiple successors. Jumps finish basic blocks
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Figure 1: Memory hierarchy in a typical computer architecture.

with a single successor and joins start basic blocks with multiple predecessors. The only operands of these
instructions are basic block labels.

We call a program point the point between two consecutive instructions. The program in Figure 2 contains
16 program points named p1 to p16. We say that a variable v is alive at a program point p if there is a
path from p to an instruction that uses v where v is not re-defined by any instruction. The collection of
program points where a variable is alive is called its live range. For instance, the live range of variable B
is {p2, p3, p4, p9}, whereas the live range of variable a includes all the program points but p11, p12 and p16.
Notice that a is not alive at program points p11 and p12 because this variable is redefined by the instruction
a = f , and its old value is not necessary after the instruction f = a. A simple algorithm to compute liveness
information is given by Appel and Palsberg [3, p.206].

We say that two variables interfere if the intersection between their live ranges is non-empty. In this case,
we also say that their live ranges overlap. For instance, variables c and d interfere, because their live ranges
overlap at program point p5; however, variables c and E do not intefere. This concept is very important for
register allocation, because two variables that do not interfere can be stored in the same register.

1.1 Irregular Architectures

Modern computer architectures present irregular register banks. The two most common sources of irregu-
larities are pre-colored registers and aliasing [42, 60, 61].

1.2 Pre-coloring

Pre-coloring is a very common phenomenon that forces some variables to be assigned to particular machine
registers. A typical example is parameter passing in function calls. Architectures such as PowerPC and
StrongARM use registers to pass arguments to functions. For instance, a two argument function call in
PowerPC is written in assembly in a way similar to the code strip below:
r0 = arg0 ; the first argument must be passed in r0
r1 = arg1 ; the second argument must be passed in r1
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      a = •
p1:
      B = •
p2: 
      branch L2, L3

      c = a
p4:
      d = B
p5:
      E = c
p6:
      • = d
p7:
      jump L4

   AL = B
p10:
       f = a
p11:
       E = AL
p12:
       a = f
p13:
      jump L4

       join L2, L3
p15:
       • = a, E
p16:
       jump Lend

p3:

p14:p8:

p9:

L1

L2 L3

L4

Figure 2: An example program.

bl foo ; branch and link, e.g, calls the function foo
The variables arg0 and arg1 can be stored in any register, but the variables r0 and r1 cannot: they are
already allocated to registers r0 and r1. Many other common examples of pre-coloring are found in x86.
For instance, in that architecture, the results of a division operation must be placed in the registers edx
and eax. As a convention, we name a pre-colored variable with the name of its pre-coloring register. For
instance, the variable AL in block L3 of Figure 2 is pre-colored with register AL.

1.3 Aliasing

We say that an architecture contains aliasing when an assignment to one register name can affect the value
of another [61]. For example, Figure 3 shows the set of general purpose registers used in the x86 architecture.
The x86 architecture has four general purpose 16-bit registers that can also be used as eight 8-bit registers.
Each 8-bit register is called a low address or a high address. The initial bits of a 16-bit register must be aligned
with the initial bits of a low-address 8-bit register. The x86 architecture allows the combination of two 8-bit
registers into one 16 bit register. Another example of aliased registers is the combination of two aligned
single precision floating-point registers to form one double-precision register. Examples of architectures with
such aliased registers include early versions of HP PA-RISC, the Sun SPARC, and the ARM processors. For
a different kind of architecture, Scholz and Eckstein [60] describe experiments with the Carmel 20xxDSP
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Core, which has six 40 bit accumulators that can also be used as six 32-bit registers or as twelve 16-bit
aligned registers. As a convention, along this dissertation we will use lower case names to denote values that
fit in one single register, and upper case names to denote values that must fit in one register pair. Thus, in
Figure 2 variables a, c and d fit in one register, whereas variables B and E fit in a register pair.
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Figure 3: General purpose registers from the x86 architecture. This Figure was taken from [55].

1.4 Some Register Allocatin Jargon

Spilling Because registers exist in limited number, they may not be enough to store all the variables in
the source program. If that is the case, then some variables must be mapped to memory. The act of storing
a variable into memory is called spilling. Spill is normally undesirable because it forces the register allocator
to insert special instructions, that we will call spill code, in the target program to access values stored in
memory. An instruction that copies a value from a register to a memory address is called a store. The
opposite instruction, which copies a value from memory into a register, is called a load. These instructions
tend to be slow compared to operations that do not access memory; thus, one of the objectives of a register
allocator is to avoid inserting such instructions in the code that it produces.

Coalescing If two variables v1 and v2 do not interfere, and they are related by a copy instruction, that
is, the source program contains an instruction such as v1 = v2, then it is desirable that these variables be
allocated into the same register r. In this case, we will have the copy instruction r = r, which is redundant
and can safely be removed from the target program. Coalescing is the act of mapping two non-interfering
variables that are related by a copy instruction to the same register. For instance, in the program in Figure 2,
the instructions f = a and a = f can be eliminated from the program if variables a and f are assigned to
the same register. Therefore, a good register allocator should not only assign different registers to interfering
variables, but also try to assign the same register to variables related by copies.

Live Range Splitting This concept is the inverse of coalescing. Whereas coalescing join the live ranges of
variables by removing copies from the source program, live range splitting divides the live range of variables
by adding copies to the program and renaming variables. The splitting of live ranges tends to reduce
the interferences between variables; thus, it might minimize the number of registers required by programs.
Figure 4 shows an example of live range splitting.

2 Different Register Allocation Approaches

Register allocation is possibly the compilation problem with the greatest number of different algorithms
already described in the literature. In the remainder of this section we will be describing several approaches
to register allocation, using the program in Figure 2 as a running example.

2.1 Register Allocation via Graph Coloring

Graph coloring is the most used approach to solve register allocation. The Interference Graph of a program
is the intersection graph of the live ranges of the variables in the program. That is, given a program P ,
its interference graph G = (V,E) contains a vertex for each variable v of P . An edge (u, v) is in E if the
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Figure 4: (a) Example program. (b) Live ranges represented as intervals. (c) Program after live range of
variable a is split. (d) New interval representation.

intersection of the live ranges of variables v and u is non-empty. Figure 5 shows the interference graph for
the Program in Figure 2, as well as a valid register assignment using three x86 registers: AX, BX and CX.

The problem of assigning registers to variables can thus be approximated by coloring the interference
graph of the source program. Each color corresponds to a register, and interfering variables will be given
different colors, given that they are adjacent on the interference graph. One of the first and most celebrated
graph coloring based register allocators was described by Chaitin et al. [15, 16]. The algorithm described in
[15] laid the foundations of practically all the graph coloring based register allocators that were introduced
later. The core of Chaitin’s algorithm is Kempe’s coloring scheme [39]. Basically, a node v in the interference
graph G can be colored if it has less than K neighbors, where K is the number of colors available. In this
case, the node v can be safely removed from G, and placed on a stack of nodes that are guaranteed to be
colorable. This process, called simplification, iterates until there is no more nodes to remove from G.

Two aspects of the register allocation problem complicate this technique: spilling and coalescing. Spilling
is the act of mapping a variable to memory because there is no more registers available to hold its value.
Coalescing is the act of mapping two non-interfering variables that are related by a copy instruction to the
same register. For instance, in the program in Figure 2, the instructions f = a and a = f can be eliminated
from the program if variables a and f are assigned to the same register. Therefore, a good graph coloring
based register allocator should not only assign different colors to interfering variables, but also try to assign
the same color to variables related by copies. Due to spilling and coalescing, Chaitin et al. proposed an
iterative algorithm, illustrated in Figure 6. This algorithm has the following phases:

1. Renumber: discover live range information in the source program.

2. Build: build the interference graph.

3. Coalesce: merge the live ranges of non-interfering variables related by copy instructions.

4. Spill cost: compute the spill cost of each variable. That is a measure of the impact of mapping a
variable to memory on the speed of the final program.

5. Simplify: Kempe’s coloring method.

6. Spill Code: insert spill instructions, i.e loads and stores to commute values between registers and
memory.
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B => AX
a => BL
c => BH
E => AX
d => CL
f => BL

Figure 5: Interference graph for the Program in Figure 2.

build coalesce

select

renumber spill cost

simplifyspill code

Figure 6: Chaitin et al.’s iterative graph coloring based register allocator. This Figure was taken from [11].

7. Select: assign a register to each variable.

One of the early achievements of Chaitin et al. [16] was to show that spill free register allocation is a
NP-complete problem. Basically, Chaitin et al. proved that any graph is the interference graph of some
program. For instance, to represent C4, the cycle with four nodes, the NP-completeness proof would produce
the program in Figure 7. The minimal coloring of such graph can be trivially mapped to a minimal coloring
of C4, by simply deleting node x. The NP-completeness result comes from the fact that finding a minimal
coloring to a graph is NP-complete, as shown by Richard Karp in its seminal work [38].

Chaitin’s algorithm had a few deficiencies that were improved by later works. One of the problems of
that allocator was the aggressive coalescing policy. Merging live ranges of variables has the undesirable
effect of increasing the degree of vertices in the interference graph, and thus it might cause spilling. In order
to solve this omission, Briggs et al. [11] introduced the concept of conservative coalescing. This is an extra
criterion to decide when two live ranges can be merged. Thus, in addition of the non-interfering requirement,
two variables can only be coalesced if their merging will not cause further spilling in the interference graph.
Another improvement brought up by Briggs et al. was biased coloring: the select phase tries to assign the
same color to variables that are copy related. Briggs et al. point that the combination of conservative
coalescing and biased coloring could remove most of the copy instructions in the original program before
register allocation. Finally, Briggs et al. introduced the concept of optimistic coloring: instead of spilling
away variables that could not be simplified using Kempe’s technique, Briggs et al. defer this decision to the
simplification phase. Many times two or more of the neighbors of a vertex v will be assigned the same color,
and v will be colorable even if it has a number of neighbors that is larger than the number of available colors.
The modified version of Chaitin’s algorithm, as described by Briggs et al. [11], is illustrated in Figure 8.

A criticism of Briggs allocator is that it is too conservative with regard to the coalescing policy, and thus
it misses some copy instructions that could be removed. The coalescing criterion used by Briggs et al. [11]
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a = 1
b = 2
x = a + b

b = 1
c = 2
x = b + c

c = 1
d = 2
x = c + d

a = 1
d = 2
x = a + d

switch()

return a+xreturn b+x return c+x return d+x

a

b c

d

x

Figure 7: Chaitin et al.’s program to represent C4. This example was taken from [54].

build coalesce
(conservative)

select
(optimistic)

renumber spill
cost

simplify
(biased coloring)

spill code

Figure 8: Briggs et al. graph coloring based register allocator.

is described as follows: nodes a and b can be coalesced if the node that results from their merging has less
than K neighbors of significant degree, where a node has significant degree if it has K or more neighbors.
Subsequently, George and Appel [30] showed that this criterion could be relaxed to allow more aggressive
coalescing without introducing extra spilling. They proposed Iterated Register Coalescing, a graph coloring
based register allocator [30] that remains today, almost 15 years after its first release, the base algorithm
taught in many compiler courses [3] and used as baseline in many research projects. Figure 9 illustrates the
several phases of this algorithm.

An important addition of Iterated Register Coalescing over the previous allocators was a Freeze phase.
If neither simplify nor coalesce could remove any node from the interference graph, the freeze step would
mark a copy related node, so that it would no longer be considered for coalescing.

2.1.1 A Taxonomy of Coalescing Approaches

One quarter century after Chaitin’s seminal paper, coalescing has been one of the main forces pushing
new variations in graph coloring register allocation. Bouchez et al. [9] summarizes some of the best known
approaches for performing register coalescing:
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build simplify coalesce freeze potential
spill select actual

spill

Figure 9: Iterated Register Coalescing. This Figure was taken from [3].

• Aggressive Coalescing [16, 15]: merge move-related vertices, regardless of the colorability of the inter-
ference graph after the merging.

• Conservative Coalescing [11]: merge moves if, and only if, it does not compromise the colorability of
the interference graph.

• Optimistic Coalescing [51, 52]: coalesce moves aggressively, and if it compromises the colorability of
the graph, then give up as few moves as possible.

• Incremental Conservative Coalescing [30]: remove one particular move instruction, while keeping the
colorability of the graph.

Bouchez et al. [7, 9] have shown, by means of an ingenious sequence of reductions, that all these different
realizations of the register coalescing problem are NP-complete for general interference graphs.

2.2 Linear Scan Register Allocation

Graph coloring is the most popular approach for register allocation, but it is not the only one, and it has
been losing ground to a different, simpler approach called Linear Scan. Variations of this technique are
adopted in many modern compilers, including LLVM [24] and the Java HotSpot client compiler [65]. In this
section we describe Linear Scan and some of its more important variations.

Linear scan is a greedy algorithm introduced by Poletto and Sarkar on the late nineties [56]. It simplifies
register allocation by reducing it to the problem of assigning colors to an ordered sequence of intervals. It
is well know that ordered intervals can be colored optimally by a simple greedy algorithm [28]. However,
linear scan is not optimal: it uses the optimal algorithm as an approximation to solve the register allocation
problem. The algorithm starts by linearizing the basic blocks of the source program, that is, arranging
these blocks in a linear sequence; the exact ordering chosen is not important and will not compromise the
correctness of the results. Given this linearization, linear scan replaces the live range of each variable with
a contiguous interval, called the variable lifeline, and then proceeds to color these intervals. Figure 10
illustrates this algorithm being applied on the program in Figure 2. In this case, register allocation amounts
to coloring the seven intervals defined by variables a,B, c, d, E, f and AL.

The main appeal of linear scan is the allocation speed. This fact makes linear scan an attractive option
to Just in Time (JIT) compilers, like Java HotSpot and LLVM. Timing comparisons between graph coloring
and linear scan span a wide spectrum [55]. The original linear scan paper [56] suggests that graph coloring
is about twice as slow as linear scan. These numbers are corroborated by Sagonas and Stenman [58]. Traub
et al. [64] gives an slowdown of up to 3.5x for large programs, and Sarkar and Barik [59] suggest a 20x
slowdown. On the other hand, this speed pays a price in terms of quality of the code produced. Going back
to our example in Figure 10, the original linear scan algorithm [56] would not be able to allocate variables
B and E into the same register, even though these variables do not interfere, because their lifelines overlap.
This omission is due to the original algorithm not handling holes in the live ranges of variables.

Later improvements on linear scan are able to handle holes in the live ranges of variables. An important
extension is due to Traub et al. [64]. Traub’s algorithm introduces the binpacking model: the machine
registers are viewed as bins into which variable lifetimes can be packed. Thus, linear scan can assign two
non-overlapping lifetimes to the same bin, or it can assign two lifetimes into the same bin if the live range
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      a = •
      B = •
      branch L2, L3

      c = a
      d = B
      E = c
      • = d
      jump L4

   AL = B
       f = a
       E = AL
       a = f
      jump L4

       join L2, L3
       • = a, E
       jump Lend

L1

L2

L3

L4

a B c d E f AL

a => AH
B => BX

c => AL
d => CL
E => DX

f => BL
AL => AL

Figure 10: Linear Scan register allocation.

that constitutes one of the lifetimes is completely contained in holes in the live range that constitutes the
other lifetime. This model was later used by Mössenböck and Pfeiffer [47] in an algorithm that performs
register allocation in programs in Static Single Assignment form.

Wimmer and Mössenböck have introduced several optimizations to linear scan [65]. Their algorithm
handles holes in live ranges, but their most innovative extensions are optimal split positions, register hints
and spill store elimination. Optimal split position is a technique to minimize the effects of spill code in the
final program produced after register allocation. This optimization allows to move loads outside loops, for
instance. Register hint is a simplified coalescing approach for linear scan. It is similar to biased coloring [11]
in the sense that, when choosing a color to an interval i1, if i1 is connected to another interval i2 via a
move instruction, then the allocator attempts to assign to i1 the color previously assigned to i2. Spill store
elimination is an optimization used to remove from the target program some store instructions that can be
proved statically to be useless. A common example is multiple stores of a variable that is only defined once.
In this case, all the store instructions can be replaced with a single store after the definition point of the
variable.

The most recent addition to the family of linear scan algorithms is Sarkar and Barik [59] new method,
called Extended Linear Scan. By inserting copy and swap instructions along the source program, this version
of linear scan guarantees to use the minimal number of registers necessary to compile the source program.
Sarkar’s algorithm diverges from previous implementations because it has a preference towards inserting
extra move instructions to avoid inserting spill code.

2.3 Register allocation via Integer Linear Programming

Quoting Dasgupta et al. [18], linear programming, together with dynamic programming, are the two sledge-
hammers of the algorithm craft. The linear programming framework fits a vast number of different optimiza-
tion problems, and a subclass of this model, the 0-1 integer programming, has been used to solve register
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allocation. The basic idea of this approach is to model the interactions between registers and variables as
constraints in a system of integer linear equations. For instance, given a register AX we define the following
variables:

• AXr(v, p) is one if variable v reaches and leaves program point p allocated to register AX and is zero
otherwise.

• AXl(v, p) is one if variable v reaches program point p in memory, but leaves it allocated to register
AX. It is zero otherwise. The letter l indicates a load.

• AXs(v, p) is one if variable v reaches program point p allocated to register AX, but leaves it in memory.
It is zero otherwise. The letter s indicates a store.

The constraints must guarantee that only one variable will be allocated into register AX at any time; thus,
we add to the linear system the constraint:

∀(v, p),
∑

(AXr(v, p) + AXs(v, p) + AXl(v, p)) ≤ 1

Goodwin and Wilken [32] gave the first formulation of register allocation as a 0-1-integer programming
problem. Their constraint set could handle several facets of register allocation, such as coalescing, spilling,
rematerialization [10] and aliasing. Goodwin’s register allocator produces code of very good quality; however,
as integer linear programming is NP-complete [38], it presents a worst case exponential running time, and
can take hours to find an optimal solution.

Two years after Goodwin’s work, Kong and Wilken described a constraint set broad enough to encompass
all the irregularities of the x86 architecture [42]. Posteriorly, Appel and George [2] introduced a different
approach for IP-based register allocation: the separation of phases between spilling and register assignment.
The constraint solver is responsible for defining which variables stay in registers and which variables are
spilled. The non-spilled variables are mapped to registers in the next phase. This approach is faster than the
previous IP-based algorithms; however, it may produce an undesirably large number of move instructions
transferring values between registers. Appel and George use a variation of the optimistic coalescing of Park
and Moon [52], which is not optimal, to remove redundant copies.

Finally, Fu and Wilken [27] presented a new IP formulation that keeps the optimal guarantees of the
initial algorithm, e.g [32], but is 150 times faster. It is important to point that this “fast” algorithm is still
much slower than traditional allocators such as linear scan, and even graph coloring. Therefore, IP-based
register allocation has not yet seen use in industrial strength compilers. Nevertheless, it has been successfully
used in research in embedded systems [48, 50], and in bit-width aware register allocation [4].

2.4 Register allocation via Partitioned Quadratic Programming

The Partitioned Boolean Quadratic Problem (PBQP) is a kind of Quadratic Assignment Problem (QAP) [14].
PBQP is NP-complete; however, a subclass of these problems can be solved in polynomial time. Quoting
Hames and Scholtz [36], the input for PBQP is a set of discrete variables X = {x1, . . . , xn} and their
finite domains {D1, . . . , Dn}, where mi = |Di|. A solution of PBQP is a function h : X → D, where
D = D1 ∪D2 ∪ . . .∪Dn. For each variable xi, h finds an element di ∈ Di. The challenge of PBQP is to find
a function h of minimal cost, where the cost c is controlled by two sets of terms:

• the cost of assigning variable xi to di. This cost is measured by a local cost function l(xi, di);

• the cost given by the interactions between two variables. This is the cost of assigning variable xi to di

and assigning variable xj to dj . This cost is measured by a related cost function r(xi, xj , di, dj).

Thus, the total cost of an assignment is:

c =
∑

1≤i≤n

l(xi, h(xi)) +
∑

1≤i<j≤n

r(xi, xj , h(xi), h(xj))
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Figure 11: Some example cost matrices for the program in Figure 2.

Although PBQP is NP-complete in general, there is a class of assignments that can be solved in polynomial
time. The algorithm introduced in [60] is able to identify these problems, and solve them in O(nm3), where
n is the number of variables and m is the maximum size of any domain.

PBQP has seen use in two different compiler related problems: instruction selection [20, 22, 21] and
register allocation [36, 37, 60]. For register allocation, the solver introduced by Scholz et al. [60] associates a
cost matrix C to each edge of the interference graph of the source program. Each cost matrix Cuv describes
the tradeoffs of assigning different registers to variables u and v. As an example, lets build the cost matrix
for variables a and B in the program of Figure 2, assuming a bank of registers with two registers only, AX
and BX. We assume that each of these two registers have two disjoint aliases, in the same configuration
found in x86, that is, AX alias AH and AL, and BX alias BH and BL. Figure 11 shows the cost matrix.

The complexity of PBQP for register allocation is O(|V |K3), where |V | is the number of variables in
the source program, and K is the number of registers in the target architecture. Experiments performed
by Hames et al. [36] showed that their implementation of a PBQP solver could find the optimal register
allocation in 97.4% of the functions in SPEC CPU 2000. For the cases that no solution could be proved to
be optimal, a branch-and-bound heuristics was used to find a satisfactory register mapping.

2.5 Register allocation via Multi-Flow of Commodities

An interesting way to see register allocation is as a Multi-Flow of Commodities (MFC) problem. This idea
was introduced by Koes and Goldstein [40] in order to perform local register allocation. Local allocation
is the version of register allocation that is restricted to basic blocks only, in contrast to global register
allocation, that is concerned about the whole program. The same authors later extended their previous
work to incorporate global allocation into the initial model [41]. Multi-flow of commodities has a close
relation with register allocation. For instance, it was the starting point of Lee et al.’s proof that aliasing
register allocation is NP-complete [44]. MCF is a NP-complete problem, as shown by Even et al. [23], but
it is possible to find solutions that, although non-optimal, are satisfactory enough, via heuristics. Koes
and Goldstein have refined the heuristic approach with a progressive algorithm: their allocator uses a simple
heuristics to find an initial allocation, and, if it is given extra time, it can improve this solution until reaching
the optimal.

In the MCF approach, a program is seem as a collection of K pipes, thru which the allocator must
pass a number of indivisible commodities. Each pipe corresponds to a physical location, either register or
memory, and each commodity corresponds to a variable. Thus, a flow of a commodity represents the detailed
allocation of the variable that the commodity encodes. The multi-commodite network flow naturally models
several aspected of register allocation, including live-range splitting, rematerialization [10] and pre-colored
registers, although it is unclear how this technique would model register banks with aliasing. Koes and
Goldstein have optimized their progressive allocator to reduce the size of the target programs, and they have
shown that this method is consistently able to produce code of smaller size than a graph coloring based
allocator [41].
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3 SSA based register allocation

An important breakthrough in register allocation happened in 2005, when three different research groups [7,
13, 35] proved independently that the interference graphs of programs in Static Single Assignment (SSA)
form are chordal. This result is important because chordal graphs can be colored in polynomial time [28].
In this section we describe the main developments in the area of SSA-based register allocation.

SSA form. The Static Single Assignment (SSA) form is an intermediate representation in which each
variable is defined at most once in the program code [17, 57]. Many industrial compilers use the SSA form
as an intermediate representation: Gcc 4.0 [33], Sun’s HotSpot JVM [62], IBM’s Java Jikes RVM [63] and
LLVM [43]. However, these compilers perform register allocation in Post-SSA programs, that is, programs
in which φ-functions have been replaced with copy instructions, as shown in Figure 12(a). In SSA-based
register allocators [7, 12, 35, 55] we observe an inversion of phases: φ-functions are replaced after registers
have been assigned to variables, as illustrated in Figure 12(b). We will use colored-SSA-form to denote the
variation of SSA-form in which each variable is associated with a physical location, which can be a register or
a memory address. Figure 13 shows an SSA-form program and a corresponding colored-SSA-form program.

(a) Source
Program

SSA-form
Program

post-SSA
Program

Executable
Program

SSA
Convertion

SSA
elimination

Register
Allocation

(b) Source
Program

SSA-form
Program

colored
SSA-form
program

Executable
Program

SSA
Convertion

SSA
elimination

Register
Allocation

Figure 12: (a) Traditional register allocation, (b) SSA-based register allocation.

φ-functions SSA form uses φ-functions to join the live ranges of different names that represent the same
value. We will describe the syntax and semantics of φ-functions using the matrix notation introduced by
Hack et al. [35]. Figure 13 (a) outlines a φ-matrix. An equation such as V = φM , where V is a n-dimensional
vector, and M is a n × m matrix, contains n φ-functions and m parallel copies, as outlined in Figure 14.
Columns in the matrix correspond to control flow paths. The φ symbol works as a multiplexer. It will assign
to each element vi of V an element vij of M , where j is determined by the actual path taken during the
program’s execution. The semantics of φ-functions have been nicely described in [1]. The parameters of a
φ-function are evaluated simultaneously, at the beginning of the basic block where the φ-function is defined.
Thus, a φ-equation V = φM , where M has n columns encodes n parallel copies. If the path leading to
column j is taken during program execution, all the elements in that column are copied to V in parallel.

Chordal Graphs A graph is chordal if every cycle with four or more edges has a chord, that is, an
edge which is not part of the cycle but which connects two vertices on the cycle. (Chordal graphs are also
known as ‘triangulated’, ‘rigid-circuit’, ‘monotone transitive’, and ‘perfect elimination’ graphs.) The graph
in Figure 15(a) is chordal because the edge ac is a chord in the cycle abcda. The graph in Figure 15(b) is
non-chordal because the cycle abcda is chordless. Finally, the graph in Figure 15(c) is non-chordal because
the cycle abcda is chordless, just like in Figure 15(b).

Chordal graphs have several useful properties. Problems such as minimum coloring, maximum clique,
maximum independent set and minimum covering by cliques, which are NP-complete in general, can be solved
in polynomial time for chordal graphs [28]. In particular, optimal coloring of a chordal graph G = (V,E)
can be done in O(|E|+ |V |) time.

The Dominator Tree A basic block Li dominates another basic block Lj if very path from the start
of the program to Lj goes through Li [3, p.379]. A basic block Ld is the immediate dominator of another
block L if Ld dominates L, and for all other basic blocks Li in the program, if Li dominates L, then Li also
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Figure 13: (a) SSA-form program. (b) Register assignment. (c) colored-SSA-form program.

v1

v2

vn

…

v11 v12 … v1m

v21 v22 … v2m

vn1 vn2 … vnm

… … … …

Φ-function v1 =Φ (v11, v12, …, v1m)

parallel copy (v1, v2, …, vm) :=(v11, v12, …, v1m)

=Φ

Figure 14: The φ-matrix.

dominates Ld. Every basic block in a program, except its entry point, has an immediate dominator, and
this immediate dominator is unique. Thus, this relation of immediate dominance allows us to build a tree
T = (V,E) whose vertices are the basic blocks of a program, and an edge (Ls, Lt) is in E if basic block Ls

is the immediate dominator of basic block Lt. This tree is called the Dominator Tree of the program.
The key insight to understand why SSA-form programs have chordal interference graphs lays on a well

known characterization of chordal graphs: these are the intersection graphs of subtrees on a tree, as shown
by Gavril in 1974 [29]. The live ranges of a SSA-form program are subtrees of the dominator tree of the
program. By applying Gavril’s result to the dominator trees of programs, Bouchez et al. [7], Brisk et al. [13]
and Hack et al. [35] proved that the interference graph of a SSA-form program is chordal. The opposite
direction is also true: a chordal graph is the interference graph of some SSA-form program [55].

3.1 The Advantages of SSA-Based Register Allocation

We illustrate the simplicity and elegance of SSA-based register allocation with an example. The program
in Figure 16 was taken from [53]. Figure 16 (b) is the same program in post-SSA form, that is, after φ-
functions have been replaced using the algorithm described by Appel and Palsberg [3]. Figure 16 (c) shows
the sequence of assignments that would be performed by a linear scan algorithm that handles holes in live
ranges of variables [65]. This algorithm would traverse blocks 1, 2, 4(where it executes no action), and finally
block 3. When allocating registers in block 3, the allocator has to deal with temporaries C and E that have
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Figure 15: (a) A chordal graph. (b-c) Two non-chordal graphs.

already been assigned machine registers. The graph in Figure 16 (c) cannot be colored with two colors. Its
chromatic number is 3.
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Figure 16: (a) SSA-form program taken from Pereira and Palsberg [53]. (b) Program after the SSA elimi-
nation phase. (c) Interference graph and sequence of register assignments.

Figure 17 (a) outlines the dominator tree of our example program. Figure 17 (b) shows the allocation
produced by the same algorithm used in Figure 16. The basic blocks are visited in a pre-order traversal of
the dominator tree. This way to assign registers to variables is called tree-scan, to distinguish it from the
linear-scan strategy. The interference graph of the SSA-form program can be compiled with two registers:
one register less than the minimum necessary in the post-SSA-form program. Figure 17 (c) shows the final
program, after one swap sequence has been inserted in order to copy the values of C1 and E1 into C and E.
The ability to swap registers is necessary in order to keep the register pressure low, as described by Bouchez
et al. [8]. In this example, swaps are implemented using three xor operations.

Any of the register allocation models described in Section 2 can be adapted to run on SSA-form programs.
The chordal-based register allocator described by Pereira and Palsberg [53] follows the graph coloring model.
The SSA-based allocator described by Grund et al. [34] uses integer linear programming, and the puzzle
solving algorithm introduced by Pereira and Palsberg [55] is based on the tree-scan model. Register allocators
can benefit from chordality of SSA-form programs in three main ways: (i) lower register pressure; (ii)
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Figure 17: (a) Dominator tree of the example program. (b) Interference graph of the SSA-form program,
and assignment sequence. (c) Final program after SSA-based register allocation.

separation between spilling and register assignment. (iii) simpler register assignment algorithms.
First, the SSA-form program never requires more registers than the original program, and often it will

require less, as we showed in the previous example. The register pressure at any program point is the
difference between the number of variables alive at that point and the number of registers available to
accommodate those variables [26]. The total number of registers necessary to allocate all the variables in a
SSA-form program P equals the maximum register pressure at any point of P [35]. This value is equivalent to
the size of the largest clique in the interference graph of P , and it can be determined in time proportional to
the number of edges of this graph [28]. This relation is valid for register banks with no aliasing. The problem
of determining the maximal register pressure for an architecture with aliased registers is NP-complete for
SSA-form programs [44].

Another advantage of SSA-based register allocators is the potential separation of phases between spilling,
register assignment and coalescing. The register pressure at any point of a SSA-form program is known
locally. This fact allows the register allocator to remove live ranges from the program until the register
pressure equals the number of available registers. Thus, the allocator is able to take spill decisions without
having to actually assign registers to variables. In a subsequent phase, registers are assigned to variables, and
the SSA properties guarantee that no further spilling will happen. Once registers are assigned to variables,
a third phase takes charge of improving the initial register assignment, so that variables related by copies
are given the same register. Figure 18 illustrates a typical SSA-based register allocator. This algorithm has
five phases:

Build builds the interference graph using liveness analysis information.

Spill remove live ranges if the register pressure is greater than the number of available registers.

MCS finds an ordering of the nodes of the graph that can be optimally colored by a greedy algorithm using
the Maximum Cardinality Search algorithm [5].

Color assign registers to variables using a trivial greedy coloring algorithm.

Coalesce exchange registers between variables in order to maximize the number of variables related by copy
instructions that are given the same register.

Figure 18 sheds light on a third advantage of SSA-based register allocation: simplicity. The iterations
between the spilling and the register assignment phases complicate the design of register allocators in general.
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Build MCS
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Color Coalesce

Figure 18: A graph coloring SSA-based register allocator.

This problem is particularly evident in graph coloring based allocators, as a comparison between Figure 18
and Figures 6, 8, 9 would reveal. Because spill decisions are taken independently of assignment decisions in
a SSA-based allocator, the implementation of these algorithms tend to be simpler.

4 NP-complete Results

Spill Free Register Allocation has polynomial time solution for SSA-form programs [7, 13, 35], but it is
NP-complete for programs in general [16]. One point that must be emphasized is that these two problems
are obviously non-equivalent. Any program can be converted into SSA-form via a polynomial time trans-
formation [17]. However, a register assignment for a SSA-form program cannot be converted back to an
optimal register assignment of the original program in polynomial time unless P=NP.

An illustrative analogy is between the coloring of interval graphs and the coloring of circular-arc graphs.
An interval graph is built on the following way: given a number of intervals on a line, assign a vertex to
each interval. If two lines overlap, then connect their corresponding vertices. Circular-arc graphs are defined
in a similar way, but using a circle instead of a line, and arcs on the circle instead of intervals. Finding
the chromatic number of a circular-arc graph is a NP-complete problem [45], whereas the same problem for
interval graphs has polynomial time solution [31]. To close our analogy, lets imagine that we can “cut” the
base circle and all the arcs of a given circular-arc graph Gc on a given point. This cut effectively changes
Gc into an interval graph Gi. We can find the chromatic number of Gi in polynomial time, and this value
will never be larger than the chromatic number of Gc; however, finding the chromatic number of Gc is a
NP-complete problem. Transforming a circular-arc graph to an interval graph in this way is analogous to
converting a program into SSA-form.

Unfortunately, many register allocation related problems are still NP-complete even for SSA-form pro-
grams. Because SSA-form programs are a subset of general programs, these problems are, naturally, also
NP-complete in general. We describe a number of these problems in this section.

Spilling The first of our NP-complete problems is spill minimization. When spills happen, loads and
stores are inserted into the source program to transfer values to and from memory. If we assume that each
load and store has a cost, then the problem of minimizing the total cost added by spill instructions is NP-
complete, even for basic blocks in SSA-form, as shown by Farach and Liberatore [25]. If the cost of loads
and stores is not taken into consideration, then a simplified version of the spilling problem is to determine
the minimum number of variables that must be removed from the source program so that the program can
be allocated with K registers. This problem is equivalent to determining if a graph G has a K-colorable
induced subgraph, which is NP-complete for chordal graphs, but has polynomial time solution for interval
graphs, as demonstrated by Yannakakis and Gavril [66].

Coalescing Coalescing is another part of register allocation that remains NP-complete even for SSA-form
programs [19]. Ferriere et al. have proved that aggressive coalescing is NP-complete for SSA-form programs
when the size of the φ-functions is unbounded [19]. Bouchez et al. [9] took Ferriere’s study to the extreme,
proving that all the best known variations of the coalescing problem, which are described in Section 2.1.1,
are NP-complete. The proofs used in [9] have the extra appeal of relying on bounded structures such as
φ-functions of size at most three.
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Live range splitting SSA-based register allocators rely on the ability to swap the live ranges of variables
without using extra registers to store temporary values. For instance, the live ranges of variables E1 and C1
are swapped in the basic block four of Figure 17 (c). Pereira and Palsberg [54] have proved that if swaps
are not used by the register allocator, then the problem of deciding if a SSA-form program can be compiled
with K registers is NP-complete, although the problem of deciding if a program can be compiled with K− 1
registers has polynomial time solution, as long as the K-th register is used as a temporary storage location.
The proof in [54] considers that live ranges of variables can be split only at the end of basic blocks. Bouchez
et al. [8] later refined this proof to show that the problem remains NP-complete even if live ranges are allowed
to be split at any program point.

Aliasing Another factor that complicates register allocation is aliasing, described in Section 1.1. The
problem of finding an optimal register assignment for a target architecture that allows registers to alias is
NP-complete even for basic blocks in SSA-form as proved by Lee et al.

Pre-coloring Register allocation with pre-coloring is equivalent to the pre-coloring extension problem for
graphs. In this problem we are given a graph G, an integer K and a partial function ϕ that associates some
vertices of G to colors. The challenge is to extend ϕ to a total function ϕ′ such that (1) ϕ′ is a valid coloring
of G and (2) ϕ′ uses less than K colors. Biró et al. [6] have shown that pre-coloring extension is NP-complete
for interval graphs, and thus, register assignment for basic blocks in SSA-form with pre-colored registers is
also NP-complete. Interestingly, pre-coloring extension is NP-complete even for unit interval graphs [46],
that is, interval graphs in which each interval has the same size.

Aliasing and pre-coloring cause SSA-based register allocation to be NP-complete; however, these problems
have polynomial time solution if we use a program form more restrictive than SSA. This format is called
Elementary Form, and it is the subject of our next section.
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