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Abstract

The SSA-form uses a notational abstractions called φ-functions. These instructions have no analogous
in actual machine instruction sets, and they must be replaced by ordinary instructions at some point
of the compilation path. This process is called SSA elimination. Compilers usually performs SSA
elimination before register allocation. But the order could as well be the opposite: our puzzle based
register allocator performs SSA elimination after register allocation. SSA elimination before register
allocation is straightforward and standard, while the state-of-the-art approaches to SSA elimination
after register allocation have several shortcomings. In this report we present spill-free SSA elimination,
a simple and efficient algorithm for SSA elimination after register allocation that avoids increasing the
number of spilled variables. We also present three optimizations that enhance the quality of the code
produced by the core algorithm. Our experiments show that spill-free SSA elimination takes less than
five percent of the total compilation time of a JIT compiler. Our optimizations reduce the number of
memory accesses by more than 9% and improve the program execution time by more than 1.8%.

1 Introduction

One of the main advantages of SSA based register allocation is the separation of phases between spilling and
register assignment. The two-phase approach works because the number of registers needed for a program in
SSA-form equals the maximum of the number of registers needed at any given program point. Thus spilling
reduces to the problem of ensuring that for each program point, the needed number of registers is no more
than the total number of registers. The register assignment phase can then proceed without additional spills.
The next figure illustrates the phases of SSA-based register allocation.
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SSA elimination before register allocation is easier than after register allocation. The reason is that after
register allocation when some variables have been spilled to memory, SSA elimination may need to copy data
from one memory location to another. The need for such copies is a problem for many computer architectures,
including x86, that do not provide memory-to-memory copy or swap instructions. The problem is that at the
point where it is necessary to transfer data from one memory location to another, all the registers may be in
use! In that case, no register is available as a temporary location for performing a two-instruction sequence of
a load followed by a store. One solution would be to permanently reserve a register to implement memory-to-
memory transfers. We have evaluated that solution by reducing the number of available x86 integer registers
from seven to six, and we observed an increase of 5.2% in the lines of spill code (load and store instructions)
that LLVM [12] inserts in SPEC CPU 2000.

Brisk [4, Ch.13] has presented a flexible solution that spills a variable on demand during SSA elimination,
uses the newly vacant register to implement memory transfers, and later reloads the spilled variable when
a register is available. We are unaware of any implementation of Brisk’s approach, but have gauged its
potential quality by counting the minimal number of basic blocks where spilling would have to happen
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during SSA elimination in LLVM, independent on the assignment of physical locations to variables. For x86,
such a basic block contains thirteen or more φ-functions. We found that for SPEC CPU 2000, memory-to-
memory transfers are required for all benchmarks except 181.mcf - the smallest program in the set. We
also found that the lines of spill code must increase by at least 0.2% for SPEC CPU 2000, and we speculate
that an implementation of Brisk’s algorithm would reveal a substantially higher number. In our view, the
main problem with Brisk’s approach is that its second spilling phase substantially complicates the design of
a register allocator.

This report describes an algorithm that improves on these two previous techniques. We will present spill-
free SSA elimination, a simple and efficient algorithm for SSA elimination after register allocation. Spill-free
SSA elimination never needs an extra register, entirely eliminates the need for memory-to-memory transfers,
and avoids increasing the number of spilled variables. The next figure summarizes the three approaches to
SSA elimination.

Accommodates optimal Avoids spilling
register assignment during SSA elimination

Spare register No Yes
On-demand spilling [4] Yes No

Spill-free SSA elimination Yes Yes

The starting point for our approach to SSA-based register allocation is Conventional SSA (CSSA)-
form [18] rather than the SSA form from the original paper [7] (and text books [2]). CSSA form ensures that
variables in the same φ-function do not interfere. We show how CSSA-form simplifies the task of replacing
φ-functions with copy or swap instructions. We also assume that the CSSA-form program contains no critical
edges. A critical edge is a control-flow edge from a basic block with multiple successors to a basic block with
multiple predecessors. Algorithms for removing critical edges are standard [2].

This report also discusses three optimizations that are implemented on top of the core SSA elimination
algorithm. We have implemented our SSA elimination framework in the puzzle-based register allocator
introduced by Pereira and Palsberg [13]. We convert the source program to CSSA-form before the spilling
phase. Our experiments show that our approach to SSA elimination takes less than five percent of the total
compilation time of LLVM. Our optimizations reduce the number of memory accesses by more than 9% and
improve the program execution time by more than 1.8%.

Our SSA elimination framework works for any SSA-based register allocator such as [10], but the imple-
mentation of φ-functions in SSA-based register allocators is not the only use of parallel copies in register
allocation. The framework described in this report can also be used to insert the fixing code required by
register allocators that follow the bin-packing model. Koes et al. [11], Traub et al. [19], Sarkar et al. [17] and
Pereira et al. [13] are examples of such allocators. Bin-packing allocators allow variables to reside in different
registers at different program points. A variable may move between registers due to two main factors: to
avoid interferences with pre-colored registers and due to high register pressure. The price of this flexibility
is the necessity of inserting fixing code at basic block boundaries. The insertion of fixing code follows the
same principles that rule the implementation of φ-functions in SSA-based register allocators.

2 Example

We now present an example that illustrates the main difficulty of doing SSA elimination after register
allocation. Figure 1 (a) contains a program that continually reads values from the input and prints these
values. We built the loop using a somehow artificial arrangement of the variables a, b and t in order to show
how compiler optimizations might change the SSA representation of a program in a way that complicates
the elimination of φ-functions. Figure 1 (b) shows the control flow graph of the example program, this time
converted to SSA form. The program in Figure 1 (b) presents an interesting property: variables in the
same φ-function, such as a, a1 and a2 never interfere. Programs that have this property are said to be in
Conventional Static Single Assignment (CSSA)-form; this representation is formally defined in Section 3.
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int a = 0;
int b = 0;
while(true) {
  t = a;
  a = b;
  print(t);
  b = read();
}

a1 = •
b1 = •

a
b

a1   a2
b1   b2

=Φ

t = a
a2 = b
• = t
b2 = •

a1 = •
b1 = •

a
b

a1   a2
b1   b2

=Φ

a2 = b
• = a
b2 = •

(a) (b) (c)

Figure 1: (a) Example program in high level language. (b) Control flow of program converted to SSA-form.
(c) Program after constant propagation.

SSA elimination is very simple for programs in conventional SSA-form, as we will show in the remainder
of this report, but not every SSA-form program has the conventional property. The original SSA construction
algorithm proposed by Cytron et al. [7] always builds CSSA-form programs; however, compiler optimizations
might break the conventional representation. Figure 1 (c) shows the same program after it underwent a pass
of copy propagation. This optimization replaced the use of variable t with a use of variable a, and removed
the copy t = a. After this optimization, our example program is no longer in CSSA-form, because the
variables a and a2, which are part of the same φ-function, interfere.

We will be performing SSA elimination after register allocation. This means that each of our program
variables will be bound to a physical location that can be either a machine register or a memory address. We
call a program with such bindings a colored program. Figure 2 (a) shows a possible colored representation
of our example program, assuming a target architecture with only one register r.

As we will see in Section 3, each φ-matrix encodes one parallel copy per column. Thus, in order to
perform SSA elimination on colored programs we must implement the parallel copies between physical
locations. Figure 2 (b) shows the two parallel copies that we must implement in our running example: if
control reaches block B2 coming from block B1, then the parallel copy (r, m) := (r, m), which is a no-op,
must be implemented, otherwise the parallel copy (r, m) := (r, m2) must be implemented. SSA elimination
algorithms normally replace these parallel copies by inserting sequential instructions in the program points
where the parallel copies are defined. Notice that this is the most natural approach to SSA elimination;
however, the replacement code could be inserted anywhere inside the source program, as long as it maintains
the program’s semantics.

Figure 2 (c) shows our example program after SSA elimination with on-demand spilling. Notice that one
of the parallel copies has been replaced with four instructions that implement a copy from m2 to m. The
need for that copy happens at a program point where the only register r is occupied by b2. So we must first
spill r to mb, then we can copy from m2 to m via the register r, and finally we can load mb back into r.

Now we go on to illustrate that spill-free SSA elimination can do better. Figure 3 (a) shows the same
program as in Figure 2 (a), but this time in CSSA-form. To convert the source program into CSSA-form
we had to split the live range of variable a2; this was done by inserting a new copy instruction a3 = a2,
followed by renaming uses of a2 past the new copy. Figure 3(b) shows the program after spilling and register
assignment, and Figure 3(c) shows the program after spill-free SSA elimination. Notice how, in Figure 3(b),
CSSA makes a difference by requiring the extra instruction that copies from a2 to a3. We now do register
allocation and assign each of a, a1, and a3 the same memory location m because those variables do not
interfere. In Figure 3(b), the value of a2 arrives in memory location m2, and is then copied to memory
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(a1,r) = •
m = r
(b1,r) = •
(m, r) := (m, r)

(a2,r) = (b,r)
m2 = r
r  = m
• = (a,r)
(b2,r) =  •
(m,r) := (m2,r)

(a1,r) = •
m = r
(b1,r) = •

(a,m)
(b,r)

(a1,m)   (a2,m2)
(b1,r)     (b2,r)

=Φ

(a2,r) = (b,r)
m2 = r
r  = m
• = (a,r)
(b2,r) =  •

(a) (b)

B1

B2

B1

B2

(a1,r) = •
m = r
(b1,r) = •

(a2,r) = (b,r)
m2 = r
r  = m
• = (a,r)
(b2,r) =  •
mb = r
r = m2
m = r
r = mb

(c)

Figure 2: (a) A possible colored representation of the example program. (b) SSA elimination seen as the
implementation of parallel copies. (c) SSA elimination with on-demand spilling.

a1 = •
b1 = •

a
b

a1   a3
b1   b2

=Φ

a2 = b
• = a
a3 = a2
b2 = •

(a1,r) = •
m = r
(b1,r) = •

(a,m)
(b,r)

(a1,m)   (a3,m)
(b1,r)     (b2,r)

=Φ

(a2,r) = (b,r)
m2 = r
r  = m
• = (a,r)
r  = m2
m = r
(b2,r) =  •

(a) (b)

(a2,r) = (b,r)
m2 = r
r  = m
• = (a,r)
r  = m2
m = r
(b2,r) =  •

(a1,r) = •
m = r
(b1,r) = •

(c)

Figure 3: SSA-based register allocation and spill-free SSA elimination.

location m via the register r. The point of the copy is to let both elements of the first row of the φ-matrix be
represented in m, just like both elements of the second row of the φ-matrix are represented in r. We finally
arrive at Figure 3(c) without any further spills.

3 Our SSA Elimination Framework

We now show that for programs in CSSA-form, the problem of replacing each φ-function with copy and
swap instructions is significantly simpler than for programs in SSA-form (Theorem 2). Along the way, we
will define all the concepts and notations that we use.

φ-functions SSA form uses φ-functions to join the live ranges of different names that represent the same
value. We will describe the syntax and semantics of φ-functions using the matrix notation introduced by
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v1

v2

vn

…

v11 v12 … v1m

v21 v22 … v2m

vn1 vn2 … vnm

… … … …

Φ-function v1 =Φ (v11, v12, …, v1m)

parallel copy (v1, v2, …, vm) :=(v11, v12, …, v1m)

=Φ

Figure 4: The φ-matrix.

Hack et al. [9]. An equation such as V = φM , where V is a n-dimensional vector, and M is a n×m matrix,
contains n φ-functions and m parallel copies, as outlined in Figure 4. Columns in the matrix correspond to
control flow paths. The φ symbol works as a multiplexer. It will assign to each element vi of V an element
vij of M , where j is determined by the actual path taken during the program’s execution. The semantics of
φ-functions have been nicely described in [1]. The parameters of a φ-function are evaluated simultaneously,
at the beginning of the basic block where the φ-function is defined. Thus, a φ-equation V = φM , where M
has n columns encodes n parallel copies. If the path leading to column j is taken during program execution,
all the elements in that column are copied to V in parallel.

Conventional Static Single Assignment Form The CSSA representation was first described by Sreed-
har et al. [18] who used it to facilitate register coalescing. In order to define CSSA-form, we first define an
equivalence relation ≡ over the set of variables used in a program. We define ≡ to be the smallest equivalence
relation such that for every set of φ-functions V = φM , where V is a vector of length n with entries vi, and
M is an n×m matrix with entries vij , we have

for each i ∈ 1..n : vi ≡ vi1 ≡ vi2 ≡ . . . ≡ vim.

Sreedhar et al. use φ-congruence classes to denote the equivalence classes of ≡.

Definition 1 A program is in CSSA-form if and only if for every pair of variables v1, v2 that occur in the
same φ-function, we have that if v1 ≡ v2, then v1 and v2 do not interfere.

Figure 5(a) shows an example of a control flow graph containing three φ-functions, and one equivalence
class of φ-related virtuals: {v1, v2, v3, v4, v5, v6, v7}. The program in Figure 5(a) is not in conventional SSA-
form for two reasons. First because the parameters of the φ-function in block 6 interfere with each other.
This type of φ-function is created, for instance, by select instructions, used by some compilers to implement
assignments such as x += cond ? 1 : -1. Second, v3 and v4 are φ-related, because both are related to
v1; however, they are simultaneously alive in block 2. This situation, in which φ-functions in the same basic
block share a parameter, is due to a compiler optimization called copy folding, which is described extensively
by Briggs et al. [3].

A SSA-form program can be converted to CSSA-form via a very simple algorithm, called the “Method
I” or “naive algorithm” by Sreedhar et al. [18]. This algorithm splits the live ranges of each variable that
is used or defined in a φ-function. Sreedhar et al. have shown that this live range splitting is sufficient
to convert a SSA-form program to a program in conventional-SSA-form. Therefore, the control flow graph
transformed by the naive method has the following property: if v1 and v2 are two φ-related virtuals, then
their live ranges do not overlap. The transformed control flow graph contains one φ-related equivalence class
for each φ-function, and one equivalence class for each virtual v that does not participate in any φ-function.
Following our example, Figure 5(b) outlines the result of applying the naive method on the control flow
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v1 =

=Φ
v2
v3

v1  v4
v1  v5

v4 = v2
v5 = v3
v6 =

=Φv7 v5  v6

    = v7

v1

v5 v6

v5 v6

v4,v5

v4,v5

1

2

3

4 5

6

v1 =
v8 = v1
v9 = v1

=Φ
v10
v11

v8  v12
v9  v13

v2 = v10
v3 = v11
v4 = v2
v5 = v3
v6 =

=Φv16 v14  v15

v7 = v16
     = v7

v14 = v5 v15 = v6

v1

v5 v6

v5 v6

v12 = v4
v13 = v5

v4,v5

v4,v5

1

2

3

4 5

6

v1 =
v8 = v1

=Φ
v2
v3

v8  v4
v1  v5

v4 = v2
v5 = v3
v6 =

=Φv7 v5  v15

     = v7

v15 = v6

v1

v5 v6

v5 v15

v4,v5

v4,v5

1

2

3

4 5

6

(a) (b) (c)

Figure 5: (a) Control flow graph (non-conventional SSA-form). (b) Program transformed by Sreedhar’s
“Method I” [18]. (c) Program transformed by Budimlic’s coalescing technique [5].

graph given in Figure 5(a). The transformed program contains 11 equivalence classes: {v1}, {v2}, {v3},
{v4}, {v5}, {v6}, {v7}, {v8, v10, v12}, {v9, v11, v13} and {v14, v15, v16}.

Although the naive algorithm produces correct programs, it is excessively conservative: two virtuals are
φ-related if, and only if, they are used in the same φ-function. If a copy inserted by the naive method can be
removed without creating interferences between φ-related variables, we call it redundant. Budimlic et al. [5]
gave a fast algorithm to remove redundant copies. Following with the example, Figure 5(c) also illustrates a
program in CSSA-form, but in this case, the program contains much fewer copy instructions: the redundant
copies have been removed.

Frugal register allocators and Spartan parallel copies A register allocator for a CSSA-form program
can assign the same location to all the variables vi, vi1, . . . , vim, for each i ∈ 1..n, because none of those
variables interfere. We say that register allocation is frugal if it uses at most one memory location together
with any number of registers as locations for vi, vi1, . . . , vim, for each i ∈ 1..n.

The problem of doing SSA-elimination consists of implementing one parallel copy for each column in each
φ-matrix. We can implement each parallel copy independently of the others. We will use the notation

(l1, . . . , ln) := (l′1, . . . , l
′
n)

for a single parallel copy, in which li, l
′
i, i ∈ 1..n, range over R ∪M , where R = {r1, r2, . . . , rk} is a set of

registers, and M = {m1,m2, . . .} is a set of memory locations. We say that a parallel copy is well defined if
all the locations on its left side are pairwise distinct. We will use ρ to denote a store that maps elements
of R ∪ M to values. If ρ is a store in which l′1, . . . , l

′
n are defined, then the meaning of a parallel copy

(l1, . . . , ln) = (l′1, . . . , l
′
n) is ρ[l1 ← ρ(l′1), . . . ln ← ρ(l′n)].

We say that a well-defined parallel copy (l1, . . . , ln) = (l′1, . . . , l
′
n) is spartan if

1. for all l′a, l′b, if l′a = l′b, then a = b;

2. for all la, l′b such that la and l′b are memory locations, we have la = l′b if and only if a = b.

Informally, condition (1) says that the locations on the right-hand side are pairwise distinct, and condition
(2) says that a memory location appears on both sides of a parallel copy if and only if it appears at the same
index.
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l1
l2
l3
l4

l2   l3   l4
l3   l3   l1
l2   l4   l2
l3   l5   l3

=Φ
l2 l3

l4l1
l1l2

l3
l4 l5 l2 l3

l4l1

First
Column

Second
Column

Third
ColumnΦ-matrix

Figure 6: A φ-matrix and its representation as three location transfer graphs.

Theorem 2 After frugal register allocation, the φ-functions used in a program in CSSA-form can be imple-
mented using spartan parallel copies.

Proof. We must show that the parallel copies that we derive from a CSSA-form program after frugal register
allocation meet the two properties that define spartan parallel copies:

1. The CSSA-form is a subset of SSA-form; thus, every variable is defined at most once. This implies
that all the parallel copies must be well defined.

2. Given a set of φ-functions V = φM , a frugal register allocator assigns the same memory slot to spilled
variables in row i of M , and in index i of V . If a variable in row j, j 6= i is spilled, it must be allocated
to a memory spot different than the one reserved for variables in the i-th row, as variables in the same
column interfere. The same is true for variables in V .

�

4 From windmills to cycles and paths

We now show that a spartan parallel copy can be represented using a particularly simple form of graph that
we call a spartan graph (Theorem 4).

We will represent each parallel copy by a location transfer graph.

Definition 3 Location Transfer Graph. Given a well-defined parallel copy (l1, . . . , ln) := (l′1, . . . , l
′
n),

the corresponding location transfer graph G = (V,E) is directed graph where V = {l1, . . . , ln, l′1, . . . , l
′
n}, and

E = {(l′a, la) | a ∈ 1..n}.

Figure 6 contains a φ-matrix and its representation as three location transfer graphs. The location
transfer graphs that represent well-defined parallel copies form a family of graphs known as windmills [15].
This name is due to the shape of the graphs: each connected component has a central cycle from which
sprout trees, like the blades of a windmill.

The location transfer graphs that represent spartan parallel copies form a family of graphs that is signif-
icantly smaller than windmills. We say that a location transfer graph G is spartan if

• the connected components of G are cycles and paths;

• if a connected component of G is a cycle, then either all its nodes are in R, or it is a self loop (m,m);

• if a connected component of G is a path, then only its first and/or last nodes can be in M ; and

• if (m1,m2) is an edge in G, then m1 = m2.

7



Notice that the first and second graphs in Figure 6 are not spartan because they contain nodes with out-
degree 2. In contrast, the third graph in Figure 6 is spartan (if l1, l2, l3, l4 are registers): it is a cycle.

Theorem 4 A spartan parallel copy has a spartan location transfer graph.

Proof. It is straightforward to prove the following properties:

1. the in-degree of any node is at most 1;

2. the out-degree of any node is at most 1; and

3. if a node is a memory location m then:

(a) the sum of its out-degree and in-degree is at most 1, or

(b) G contains an edge (m,m).

The result is immediate from (1)–(3). �

5 SSA elimination

Our goal is to implement spartan parallel copies in the language Seq that contains just four types of instruc-
tions: register-to-register moves r1 := r2, loads r := m, stores m := r, and register swaps r1 ⊕ r2. Notice
that Seq does not contain instructions to swap or copy the contents of memory locations in one step. We use
ι to range over instructions. A Seq program is a sequence I of instructions that modify a store ρ according
to the following rules:

〈ι, ρ〉 → ρ′

〈ι; I, ρ〉 → 〈I, ρ′〉
〈l1 := l2, ρ〉 → ρ[l1 ← ρ(l2)]

〈r1 ⊕ r2, ρ〉 → ρ[r1 ← ρ(r2), r2 ← ρ(r1)]

The problem of implementing a parallel copy can now be stated as follows.

Implementation of a Spartan Parallel Copy
Instance: a spartan parallel copy (l1, . . . , ln) = (l′1, . . . , l

′
n).

Problem: find a Seq program I such that for all stores ρ,

〈I, ρ〉 →∗ ρ[l1 ← ρ(l′1), . . . ln ← ρ(l′n)].

Our algorithm ImplementSpartan uses a subroutine ImplementComponent that works on each
connected component of a spartan location transfer graph and is entirely standard.

Algorithm 1 – ImplementComponent: Input: G, Output: I

Require: G is a cycle or a path
Ensure: I is a Seq program.
1: if G is a path (l1, r2), . . . , (rn−2, rn−1), (rn−1, ln) then
2: I = (ln := rn−1; rn−1 := rn−2; . . . ; r2 := l1)
3: else if G is a cycle (r1, r2), . . . , (rn−1, rn), (rn, r1) then
4: I = (ln ⊕ ln−1; ln−1 ⊕ ln−2; . . . ; l2 ⊕ l1)
5: end if

Theorem 5 (Correctness) For a spartan location transfer graph G, ImplementSpartan(G) is a correct
implementation of G.
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Algorithm 2 – ImplementSpartan: Input: G, Output: program I

Require: G is a spartan location transfer graph.
Require: G has connected components C1, . . . , Cm.
Ensure: I is a Seq program.
1: I = ImplementComponent(C1); . . . ; ImplementComponent(Cm);

Proof. See Appendix A. �

Once we have implemented each spartan parallel copy, all that remains to complete spill-free SSA elimi-
nation is to replace the φ-functions with the generated code. As illustrated in Figure 3, the generated code
for a parallel copy must be inserted at the end of the basic block that leads to the parallel copy.

5.1 SSA Elimination and Critical Edges

Critical edges are edges that connect a basic block with multiple successors to a basic block with multiple
predecessors. Briggs et al. [3] have shown that the existence of critical edges in the source program might
lead to the production of incorrect code during the replacement of φ-functions by copy instructions. As
demonstrated by Sreedhar et al [18], the CSSA form allows to handle the problems pointed by Briggs et al.
without requiring the elimination of critical edges from the source program. Nonetheless, when performing
SSA-elimination after register allocation, the absence of critical edges is still necessary for correctness even
if the source program is in colored-CSSA form, as the example in Figure 7 shows. In this example, the
elimination of the φ-function (a2, r2) = φ[(a1, r1), . . .] requires the contents of register r1 to be moved into
register r2 in the control-flow path connecting blocks 1 and 4. However, such transfer cannot be inserted at
the end of block 1, or it would overwrite the value of b, nor at the beginning of block 4, or it would overwrite
the value of a3.

(a1, r1) = •

(b, r2) = •

=Φ(a2, r2) (a1, r1) (a3, r2)

• = (a2, r2)

(a1, r1)

1 2

• = (b, r2)

(b, r2)

3

(a3, r2) = •

4

Figure 7: The presence of critical edges leads to incorrect code.

Another problem of critical edges is that they may cause an increase in the register pressure of the source
program, even if φ-functions are eliminated before register allocation. The register pressure at any program
point is the difference between the number of variables alive at that point and the number of registers
available to accommodate them [8]. The total number of registers necessary to allocate all the variables
in a SSA-form program P equals the maximum register pressure at any point of P [10]. For example, the
program in Figure 8 (a) illustrates the swap-problem, pointed by Briggs et al. [3], and Figure 8 (b) shows
the same program, converted into CSSA-form. The interference graph of the latter program has chromatic
number 3, whereas the graph of the former program has chromatic number 2. Figure 8 (c) shows the same
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program, after the critical edge forming the loop has been removed. The interference graph of this program
has chromatic number 2.

x1 = •
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x2”
x2

(a) (b) (c)

Figure 8: Example where the presence of critical edges can increase the register pressure. The interference
graph is shown below each program.

On the other hand, if the source SSA-form program has no critical edges, then its register pressure is
guaranteed to remain the same after the convertion into CSSA-form, as we show in Theorem 6.

Theorem 6 (Register Pressure) Let P be a program whose control flow graph does not contain critical
edges. Sreedhar’s “Method I” does not increase the global register pressure in P .

Proof. See Appendix B. �

6 Optimizations

We will present three optimizations of the ImplementSpartan algorithm. Each optimization (1) has little
impact on compilation time, (2) has a significant positive impact on the quality of the generated code, (3)
can be implemented as constant-time checks, and (4) must be accompanied by a small change to the register
allocator.

6.1 Store hoisting

Each variable name is defined only once in an SSA-form program; therefore, the register allocator needs to
insert only one store instruction per spilled variable. However, algorithm ImplementSpartan inserts a store
instruction for each edge (r, m) in the location transfer graph. We can change ImplementComponent to
avoid inserting store instructions:
1: if G is a path (l1, r2), . . . , (rn−2, rn−1), (rn−1,m) then
2: I = (rn−1 := rn−2; . . . ; r2 := l1)
3: . . .
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• = v

Allocate v
into r1
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dashed path

(a) (b) (c)

L1

L4

L5

L2

Spill v due to high
register pressure

(v, r1) = •
(v,m) = (v, r1)

[r1] = Φ [r1  m]

[r2] = Φ [r1  m]
• = (v, r2)

L7

L3

L6

(v, r1) = •
(v,m) = (v, r1)

(v,r1)=(v,m)

•=(v, r2)

(v,r2)=(v,r1)

(v,r1)=(v,m)

(v,r2)=(v,m)
• = (v, r2)

(d)

(v, r1) = •
(v,m) = (v, r1)

Figure 9: (a) Example program (b) Program augmented with mock φ-functions. (c) SSA elimination without
load-lowering. (d) Load-lowering in action.

4: end if
For this to work, we must change the register allocator to explicitly insert a store instruction after the

definition point of each spilled variable. On the average, store hoisting removes 12% of the store instructions
in SPEC CPU 2000.

6.2 Load Lowering

Load lowering is the dual of store hoisting: it reduces the number of load and copy instructions inserted by
the ImplementSpartan Algorithm. There are situations when it is advantageous to reload a variable right
before it is used, instead of during the elimination of φ-functions. Load lowering is particularly useful in
algorithms that follow the bin-packing model [11, 13, 17, 19]. These allocators allow variables to reside in
different registers at different program points, but they require some fixing code at the basic block boundaries.
The insertion of fixing code obeys the same principles that rule the implementation of φ-functions in SSA-
based register allocators. In Figure 9 we simulate the different locations of variable v by inserting mock
φ-functions at the beginning of basic blocks L2 and L7, as pointed in Figure 9 (b). The fixing code will be
naturally inserted when these φ-functions are eliminated. The load lowering optimization would replace the
instructions used to implement the φ-functions, shown in Figure 9 (c), with a single load before the use of v
at basic block L7, as outlined in Figure 9 (d).

Variables can be lowered according to the nesting depth of basic blocks in loops, or the static number
of instructions that could be saved. The SSA elimination algorithm must remember, for each node l in the
location transfer graph, which variable is allocated into l. During register allocation we mark all the variables
v that would benefit from lowering, and we avoid inserting loads for locations that have been allocated to
v. Instead, the register allocator must insert reloads before each use of v. These reloads may produce
redundant memory transfers, which are eliminated by the memory coalescing pass described in Section 6.3.
The updated elimination algorithm is outlined below:
1: if G is a path (m, r2), . . . , (rn−2, rn−1), (rn−1, ln) then
2: if m is holding a variable marked to be lowered then
3: I = (ln := rn−1; rn−1 := rn−2; . . . ; r3 := r2)
4: else
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5: I = (ln := rn−1; rn−1 := rn−2; . . . ; r2 := m)
6: end if
7: . . .
8: end if

6.3 Memory coalescing

A memory transfer is a sequence of instructions that copies a value from a memory location m1 to another
memory location m2. The transfer is redundant if these locations are the same. The CSSA-form allows us
to coalesce a common occurrence of redundant memory transfers. Consider, for instance, the code that the
compiler would have to produce in case variables v2 and v, in the figure below, are spilled. In order to send
the value of v2 to memory, the value of v would have to be loaded into a spare register r, and then the
contents of r would have to be stored, as illustrated in figure (b). However, v and v2 are mapped to the same
memory location because they are φ-related. The store instruction can always be eliminated, as in figure
(c). Furthermore, if the variable that is the target of the copy - v2 in our example - is dead past the store
instruction, then the whole memory transfer can be completely eliminated, as we show in figure (d) below:

…

v2 = v

…

v …  v2=ϕ (v,m) …  (v2,m)=ϕ

1: (v,r) = (v,m)
2: (v2,r) = (v,r)

3: (v2,m) = (v2,r)

(v,m) …  (v2,m)=ϕ

1: (v2,r) = (v,m)

(v,m) …  (v2,m)=ϕ

…
• = (v2,r)

If v2 is dead after
store, the memory
transfer can be
safely removed

(a) (b) (c) (d)

7 Experimental results

The data presented in this section uses the SSA-based register allocator described by Pereira and Pals-
berg [13], which has the following characteristics:

• the register assignment phase occurs before the SSA-elimination phase;

• registers are assigned to variables in the order in which they are defined, as determined by a pre-order
traversal of the dominator tree of the source program;

• variables related by move instructions are assigned the same register if they belong into the same
φ-equivalence class whenever possible;

• two spilled variables are assigned the same memory address whenever they belong into the same φ-
equivalence class;

• the allocator follows the bin-packing model, so it can change the register assigned to a variable to
avoid spilling. Thus, the same variable may reach a join point in different locations. This situation is
implemented via the mock φ-functions discussed in Section 6.2.

• SSA-elimination is performed by the Algorithm ImplementSpartan augmented with code to handle
register aliasing, plus load-lowering, store hoisting, and elimination of redundant memory transfers.

Our register allocator is implemented in the LLVM compiler framework [12], version 1.9. LLVM is the
JIT compiler used in the openGL stack of Mac OS 10.5. Our tests are executed on a 32-bit x86 Intel(R)
Xeon(TM), with a 3.06GHz cpu clock, 4GB of memory and 512KB L1 cache running Red Hat Linux 3.3.3-7.
Our benchmarks are the C programs from SPEC CPU 2000.
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gcc pbk gap msa vtx twf cfg vpr amp prs gzp bz2 art

#ltg 72.6 40.3 22.1 15.6 15.8 6.8 7.7 4.5 4.0 5.2 .9 .73 .36
%sp 3.3 5.0 9.8 2.3 9.3 6.5 14.9 13.5 7.9 6.5 10.9 22.7 9.2

#edg 586.2 256.3 150.8 96.9 121.5 58.0 124.2 101.7 29.6 35.5 11.1 14.3 2.7
%mt 56.4 41.7 43.5 50.6 47.1 57.3 66.8 75.4 37.4 42.8 63.6 71.8 46.0

Figure 10: #ltg: number of location transfer graphs (in thousands), %sp: percentage of LTG’s that are
potential spills, #edg: number of edges in all the LTG’s (in thousands), %mt: percentage of the edges that
are memory transfers.

Impact of our SSA Elimination Method Figure 10 summarizes static data obtained from the compila-
tion of SPEC CPU 2000. Our SSA Elimination algorithm had to implement 197,568 location transfer graphs
when compiling this benchmark suite. These LTGs contain 1,601,110 edges, out of which 855,414, or 53%
are memory transfers. Due to the properties of spartan location transfer graphs, edges representing memory
transfers are always loops, that is, an edge from a node m pointing to itself. Because our memory transfer
edges have source and target pointing to the same address, the SSA Elimination algorithm does not have to
insert any instruction to implement them. Potential spills could have happened in 11,802 location transfer
graphs, or 6% of the total number of graphs, implying that, if we had used a spilling on demand approach
instead of our SSA elimination framework, a second spilling phase would be necessary in all the benchmark
programs. We mark as potential spills the location transfer graphs that contain memory transfers, and in
which the register pressure is maximum, that is, all the physical registers are used in the right side of the
parallel copy.

Time Overhead of SSA-Elimination The charts in Figure 11 show the time required by our compilation
passes. Register allocation accounts for 28% of the total compilation time. This time is similar to the time
required by the standard linear scan register allocator, as reported in previous works [14, 16]. The passes
related to SSA elimination account for about 4.8% of the total compilation time. These passes are: (i)
Sreedhar’s “Method I”, which splits the live ranges of all the variables that are part of φ-functions [18,
pg.199]; (ii) a pass to remove critical edges; (iii) Budimlic’s copy coalescing [5], which reduces the number
of copies inserted by the “Method I”; (iv) our spill-free SSA elimination pass. The amount of time taken by
each of these passes is distributed as follows: (i) 0.2%, (ii) 0.5%, (iii) 1.6% and(iv) 2.5%.

Impact of the Optimizations Figure 12 shows the static reduction of load, store and copy instructions
due to the optimizations described in Section 6. The criterion used to determine if a variable should be
lowered or not is the number of reloads that would be inserted for that variable versus the number of uses
of the variable. Before running the SSA-elimination algorithm we count the number of reloads that would
be inserted for each variable. The time taken to get this measure is negligible compared to the time to
perform SSA-elimination: loads can only be the last edge of a spartan location transfer graph (Theorem 4).
A variable is lowered if its spilling causes the allocator to insert more reloads than the number of uses of
that variable in the source program. Store hoisting (SH) alone eliminates on average about 12% of the total
number of stores in the target program, which represents slightly less than 5% of the lines of spill code
inserted. By plugging in the elimination of redundant memory transfers (RMTE) we remove other 2.6%
lines of spill code. Finally, load lowering (LL), on top of these other two optimizations, eliminates 7.8% more
lines of spill code. Load lowering also removes 5% of the copy instructions from the target programs.

The chart in the bottom part of Figure 12 shows how the optimizations influence the run time of the
benchmarks. On the average, they produce a speed up of 1.9%. Not all the programs benefit from load
lowering. For instance, load lowering increases the run time of 186.crafty in almost 2.5%. This happens
because, for the sake of simplicity, we do not take into consideration the loop nesting depth of basic blocks
when lowering loads. We speculate that more sophisticated criteria would produce more substantial perfor-
mance gains. Yet, these optimizations are being applied on top of a very efficient register allocator, and they
do not incur in any measurable penalty in terms of compilation time.
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Figure 11: Execution time of different compilation passes.

8 Final Remarks

This report has presented spill-free SSA elimination, a simple and efficient algorithm for SSA elimination after
register allocation that avoids increasing the number of spilled variables. Our algorithm runs in polynomial
time and accounts for a small portion of the total compilation time.

Our approach relies on the ability to swap the contents of two registers. For integer registers, architectures
such as x86 provide a swap instruction, while on other architectures one can implement a swap with a sequence
of three xor instructions. In contrast, for floating point registers, most architectures provide neither a swap
instruction nor a xor instruction, so instead compiler writers have to use one of the other approaches to
SSA-elimination, e.g: separate a temporary register or perform spilling on demand.

A Proof of Theorem 5

Theorem 5 was stated as follows:

(Correctness) For a spartan location transfer graph G,
ImplementSpartan(G) is a correct implementation of G.

By Theorem 4, G must be either a cycle or a path; thus, we divide this proof into two parts: Lemma 7
and Lemma 8. The semantics of parallel copies are defined in the obvious way:

〈I, (l1, . . . , ln) := (l′1, . . . , l
′
n)〉 → ρ[l1 ← ρ(l′1), . . . ln ← ρ(l′n)]. (1)

Lemma 7 If µ is a spartan parallel copy and its location transfer graph is a cycle, then there is a sequence
of n− 1 swaps in the language Seq that is semantically equivalent to µ.
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Figure 12: Impact of Load Lowering (LL) and Redundant Memory Transfer Elimination (RMTE) on the
code produced after SSA-elimination. (Up) Code size. (Down) Run-time.

Proof. The proof is by induction on the length of µ. By Theorem 4 all the locations in µ are registers,
because µ is a cycle by hypothesis.

Base case: if µ has lenght two, then by Equation 1 we have that (r1, r2) := (r2, r1) ≡ r1 ⊕ r2.
Induction hypothesis: the theorem is true for parallel copies with up to n− 1 variables on each side.
Induction step: we consider the parallel copy (r1, r2, . . . , rn−1, rn) := (r2, r3, . . . , rn, r1) applied on

the environment ρ, where ρ(ri) = vi. If we apply r1 ⊕ rn on ρ, we get the environment ρ′ = ρ[rn ←
v1][rn ← v1]. Register rn has the location that would be assigned to it by µ. Consider now the parallel
copy µ′ = (r1, r2, . . . , rn−2, rn−1) := (r2, r3, . . . , rn−1, r1). The parallel copy µ′ is similar to µ, except that
r1 sends its value to rn−1, and rn is no longer present. But r1 contains now vn, the value that should be
transfered to rn−1. The result follows by applying induction on µ′, which has size n. �

Lemma 8 If µ is a spartan parallel copy and its location transfer graph is a path, then there is a sequence
of n− 1 swaps in the language Seq that is semantically equivalent to µ.

Proof. The proof is by induction on the length of µ, and it is similar to the proof of Lemma 7. �

The proof of Theorem 5 follows by combining the two previous lemmas, plus the fact that any component
of a lcoation transfer graph is either a cycle or a path.
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B Proof of Theorem 6

In this section we prove Theorem 6, which we re-state as follows:

(Register Pressure) Let P be a program whose control flow graph does not contain critical
edges. The SSA-to-CSSA conversion does not increase the global register pressure in P .

We will assume that P is in strict, pruned SSA-form. A program is in strict SSA form [5] if it is in
SSA form and for each variable x, the single definition of x dominates all its uses. A program is in pruned
SSA-form if none of the variables defined by a φ-function is a dead-definition [6]. We recall the definition of
liveness analysis, as given by Appel and Palsberg [2, p.206], where l is a statement in the program, in[l] is
the set of variables live before l, out[l] is the set of variables live after l, def [l] is the set of variables defined
at l, use[l] is the set of variables used at l, and succ[l] is the set of statements that succeed l.

in[l] = use[l] ∪ (out[l]− def [l])
out[l] =

⋃
s∈succ[l]

in[s] (2)

. . . vi1 . . .

. . . vi2 . . .

. . .
. . .  vin . . .

=ϕ

v1

v2

. . .
vn

define vi1, vi2, . . ., vin

li: last statement of Bi

. . .

Bi

in lϕ

out lϕ

Figure 13: The parallel copy lφ : (v1, v2, . . . , vn) := (vi1, vi2, . . . , vin).

Lemma 9 Let P be a strict program in pruned-CSSA-form with no critical edges. If li and lφ are defined
as in Figure 13, then |out(li)| = |out(lφ)|.

Proof. In order to prove this lemma, we will use the claims listed below, where Xi = {vi1, vi2, . . . , vin}, and
Xφ = {v1, v2, . . . , vn}:

1. out[li] = in[lφ];

2. vij /∈ out[lφ], 1 ≤ j ≤ n;

3. Xi ∩ out[lφ] = ∅;

4. out[li]−Xi = out[lφ]−Xφ;

5. vij 6= vik, 1 ≤ j, k ≤ n and j 6= k;

6. |Xi| = |Xφ|;

7. Xi ⊆ out[li];
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8. Xφ ⊆ out[lφ];

We proof these claims as follows:

• proof of claim 1 This follows from Equation 2, plus the fact that P has no critical edges, so
⋃

s∈succ[li]

=

{lφ}.

• proof of claim 2 If we assume otherwise, vij would interfere with all vj . We have that vj ∈ out[lφ]
because P is pruned. However, vj and vij cannot interfere because P is in CSSA-form, and vij and vj

are φ-related.

• proof of claim 3 Follows as a simple corollary of claim 2.

• proof of claim 4 According to Equation 2:
in[lφ] = use[lφ] ∪ (out[lφ]− def [lφ]) = Xi ∪ (out[lφ]−Xφ)
From claim 1:
out[li] = Xi ∪ (out[lφ]−Xφ)
From claim 3:
out[li]−Xi = out[lφ]−Xφ

• proof of claim 5 by the definition of CSSA-form program.

• proof of claim 6 Follows as a simple corollary of claim 5.

• proof of claim 7 Follows from Equation 2, plus claim 1, e.g: out[li] = in[lφ] = Xi ∪ (. . .).

• proof of claim 8 This claim follows from the fact that we are dealing with a program in pruned-SSA-
form. In this case, none of the variables defined by φ-functions are dead at the definition point.

Finally, to prove our final result, e.g |out(li)| = |out(lφ)|, we combine claims 4, 6, 7 and 8. �

The global register pressure of a program is bounded by the maximum number of variables alive at any
point of the program. A program in SSA-form never requires more registers than its global register pressure.
Theorem 6 shows that the conversion from SSA to CSSA-form preserves the global register pressure of the
source program, that is, if P is a program in pruned-SSA-form that could be compiled with K registers
before being transformed by Sreedhar’s “Method I”, it still can be compiled with K registers after it.

We now prove Theorem 6:

Proof. Given a φ-function such as ai : B = φ(ai1 : B1, ai2 : B2, . . . , aim : Bm), Sreedhar’s “Method I”
changes it in two ways:

1. it splits the live range of the variable defined by the φ-function with an instruction I = 〈ai := vi〉.

2. it splits the live ranges of the variables used in the φ-function with m instructions like Ij = 〈vij := aij〉.

We will show that each transformation preserves the global register pressure of the source program.

1. Because P is a program in pruned-SSA-form, each variable defined by a φ-function is alive past its
definition point. The variable vi inserted by Sreedhar’s “Method I” is alive from the φ-function until
instruction I. Variable ai is alive thereafter.Thus, variable vi does not increase the register pressure in
P , because vi and ai are never simultaneously alive.

2. From Lemma 9 we know that the register pressure at the end of a basic block that feeds a φ-equation
V = φM is bounded by the register pressure at program point lφ, past the definition point of V , and,
from the proof of (1) above, we know that the register pressure at lφ remains constant after the source
program is modified by Sreedhar’s “Method I”.

�
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