
Adding Discretionary Access to Remote Method Invocation

Fernando Magno Quintão Pereira

August 14, 2005

Abstract

This paper describes the implementation of an object oriented middleware that allows the applica-
tion developer to regulate the use of individual remote methods by means of access control lists. Such
platform has been implemented as an instance of Arcademis, a framework for middleware development.
The objective of this case study is twofold. Firstly, to demonstrate how frameworks and design pat-
terns can be synergistically combined in order to facilitate the implementation of distributed software.
Secondly, to point similarities between the architecture of object oriented middleware, such as Java
RMI, and distributed authentication systems, such as Kerberos, in order to argue that discretionary
access control can be added to the commercial middleware platforms as a natural extension of the
remote method invocation paradigm.

1 Introduction

Remote method invocation is an extremely useful abstraction technique because it hides the application
developer from the idiosyncrasies typical from the distributed environment, such as data representation,
and object location. In these systems, the programmer has the illusion that all the objects of his interest
are located in the same address space, although they may actually be distributed across different processes,
or even different computers.

Since the pioneering concept of distributed objects introduced by Modula 3 [1], several different
platforms have emerged in order to provide application developers with increasingly more expressive
abstraction capabilities. Three systems, however, constitute a standard in this area [4]: CORBA [10],
Java RMI [19], and Microsoft .NET Remoting [9]. Despite presenting several differences, these platforms
follow the same general model according to which client objects can remotely invoke methods of server
objects, also called service providers. In order to allow the location of service providers, these middleware
use centralized directories of names, whose location is well know.

The previously cited middleware systems provide security mechanisms as optional features; thus, secu-
rity policies must be customized, or even implemented, by the software engineer at the application level.
This is a complex and error prone task, due to the inherent difficulties that permeate the computational
security area. Therefore, in order to implement more robust and efficient security protocols, this paper
defends that fundamental services, such as authentication and confidentiality, should be guaranteed by
the core of the middleware system, instead of being provided by the application developer. Relying on
this objective, we describe the experience acquired during the development of SaMi 1, a remote method
invocation platform in which every network object is bound to an access control list.

SaMi has been implemented as an instance of Arcademis, a framework for middleware development [12].
A framework is a set of cooperating classes and interfaces constituting a semi-complete application, which
can be customized by programmers [6]. Libraries and frameworks are similar concepts, because both are
formed by sets of components; however, while in a framework these components cooperate to describe

1SaMi is a word coined from the initials of Secure Access in Method Invocation

1

the skeleton of an application, in a library they are relatively autonomous. Microsoft Foundation Classes,
and Java Swing are examples of frameworks. The use of frameworks in middleware development has
been advocated in recent years [11, 17, 18]. Examples of platforms built from collections of reusable
components are ACE TAO [14] and Open ORB [3].

Arcademis has been used in the instantiation of middleware platforms targeting different sets of re-
quirements. Examples of Arcademis’ instances are RME [12] and Aries [13]. The later platform allows the
application developer to specify different tactics during remote method invocation. The former provides
the CLDC configuration of Java 2 Micro Edition with a remote method invocation system. Although the
framework defines primitives for protecting distributed data, none of these middleware make use of them.
SaMi, on the other hand, makes extensive use of such primitives in order to provide certification and au-
thentication to the application developer. Moreover, SaMi is the only instance of Arcademis that makes
use of computational reflection, which allows the user to customize security polices during execution time.

During the development of SaMi, we perceived similarities between distributed authentication systems
and remote method invocation. In order to outline such similarities, Section 2 presents a general overview
of remote method invocation systems, and Section 3 summarizes basic principles of a simple authentica-
tion protocol. In order to demonstrate how the Arcademis framework can facilitate the development of
middleware platforms, Section 4 outlines some aspects of its architectures, and gives further details about
SaMi’s implementation. Section 5 discusses the adopted authentication protocol. Section 6 introduces
an example application that can benefit from the functionalities provided by SaMi. Related works are
presented in Section 7. Finally, Section 8 concludes this document.

2 Overview on Remote Method Invocation

There exist different types of middleware platforms, for instance, message oriented, or tuple space ori-
ented; however, the object oriented paradigm seems to be the dominating model in the software industry.
According to this model, a client object uses intermediate components in order to invoke methods on
remote objects. Two of these components are the stub, that exist on the client side of a distributed
application, and the skeleton, that is located on the server side. The stub acts as a local proxy for the
remote object, and its function is to forward to the server all the remote calls made by the client. The
skeleton represents the invoking client to the remote object, acting as an adapter. It receives messages
containing information about remote invocations and determines what method of the server should be
executed. Although application developers have the illusion that the methods are being locally processed,
each remote call is actually transmitted by the stub to the skeleton and then to the implementation of
the remote object. The results of remote invocations are transmitted across the opposite path.

Another essential part of a remote method invocation system is the lookup service. Object oriented
middleware can be described as service-oriented architectures. In this model there exist three different
actors: service providers, service requesters and discovery agencies. Service providers are represented
by remote objects, whereas requesters are represented by clients in general. The third actor, also called
lookup service, or name service, allows clients to find the objects in which they are interested. In general,
service providers register themselves using a publish operation, while clients look for distributed objects
by means of a find operation. A schematic view of a remote call is shown in Figure 1.

3 A Glance at Authentication Systems

The distributed environment presents several characteristics that make reliable communication a chal-
lenging activity. Some examples of such characteristics are sharing of resources, unknown perimeter,
anonymity of users and the existence of many potential points of attack. In a large network, where new

2

client address space service provider address space

Client Discovery Agency sc: service
provider

lookup(sc)

send stub: s

Invoke remote method: m

return value: r

s: Stub

send(m)

send(r)

Skeleton

m
r

Figure 1: Interactions between stub and skeleton in a remote method invocation system.

users appear all the time, authentication is a central issue. The main objective of an authentication
system is to assure the identity of a remote user.

Cryptography is one of the basic mechanisms of authentication. Cryptographic algorithms are used
to assure the secrecy of information, and to guarantee the authenticity of its provider. The cryptographic
protocols can rely on private or public keys. The later strategy is adopted in SaMi. In a classical public
key system, each user has two keys: a secret key (D), and a publicly available key (E). As an assumption,
messages encoded with the private key can only be recovered with its public counterpart, and vice-versa.

One of the main problems of this cryptographic scheme is how to publish the public key, and how to
guarantee the identity of the publisher. A solution normally adopted is to delegate this task to a central
authority. The role of such entity is to issue certificates that testify the authenticity of the owner of a
key. Every time a specific user needs to proof its identity, he asks the central authority for a certificate,
and sends it to the interested party. Figure 2 gives a general overview of this protocol. Further details
are given in Section 5.

Alice Certifying Authority Bob

asks for certificate

sends certificate

sends certificate

acknowledge

Figure 2: Authentication via certifying authority: Alice tries to proof her identity to Bob.

It is possible to trace an analogy between the authentication system just described, and the service-
oriented architecture presented in Section 2. In both models, there exists the concept of a central entity
that can be consulted by marginal users. In the authentication system, such entity is the certifying
authority. In the service-oriented paradigm, it is the discovery agency. Therefore, in order to expand the
security capabilities of an object oriented middleware, it is natural to ascribe to the discovery agency the
capacity of issuing certificates that clients can use to proof their identity to service providers. Relying on
this design, the discovery agency used in the implementation of SaMi is both an authentication authority,

3

Discovery
Agency

Client
Application

Remote
Object

find publish

remote
method
invocation

Certifying
Authority

Client
Application

Remote
Object

get certificate

send
certificate

(a) (b)

Figure 3: A comparison between the (a) service oriented architecture, and (b) a authentication system.

and a directory of names. Every time the client executes a search operation, it obtains, when the query
is successful, the stub referencing the remote object, and a certificate that it can use to prove its identity
to the service provider.

4 The Arcademis/SaMi Architecture

SaMi has been build as an extension of RME [12], which is an instance of Arcademis targeting the CLDC
configuration of J2ME. A distributed system built on top of Arcademis is structured on three abstraction
levels. The first of these levels is composed of the framework components. Essentially these are abstract
classes and interfaces, although Arcademis also provides concrete components that can be used without
further extensions. The second level is represented by the concrete middleware platform, obtained as an
instance of Arcademis. The framework defers to this level decisions such as the communication protocol
and the serialization strategy that will be adopted. Finally, the third programming level comprises all
the components that provide services to end users. These components constitute what is normally called
a distributed application. SaMi constitutes the second level of an Arcademis based system.

Each instance of Arcademis has a central component called ORB. This element is implemented as
a Singleton, a design pattern that limits the maximum number of instances of a given class to exactly
one [5]. The ORB can also be characterized as a set of Object Factories. An Object Factory is another
design pattern that is used to create instances of objects. The main advantage of this pattern is to make
it easier to change a component’s implementation without interfering in other modules of the system. For
example, in Arcademis, all communication channels are created by an Object Factory. In order to modify
the transport protocol used by the middleware, for instance, from TCP to UDP, it is sufficient to change
the channel factory bound to the ORB. Because the factory preserves the channel interface, the other
components of the platform need not to be changed.

The first action that must be performed by every application based on Arcademis is to configure the
ORB, which means to define the set of factories that will be used during the middleware execution. It is
the configuration of the ORB that will define all the behaviors of the middleware system. The framework
does not requires that an implementation for all of its factories be provided by its instances. Indeed, the
programming philosophy adopted in Arcademis advocates a minimal use of components, that is, each
middleware platform must use only the elements that will be necessary for its correct execution. For
instance, while the framework defines 17 object factories, the server implementation of RME uses 14,
and the implementation of SaMi uses 15. The client version of RME has been designed for a cell phone,
and cannot handle incoming connections. Because of this simple design, its implementation uses only 9

4

factories.
Besides stubs, skeletons, and lookup service, discussed in Section 2, Arcademis defines several other

components that collaborate to outline the middleware architecture and to support customizations. The
most important of these elements are represented in Figure 4. In this figure, the arrows indicate the flow
of data during a remote call. The invoker is responsible for emitting remote calls, whereas its server
counterpart, the dispatcher, is in charge of receiving and passing them to the skeleton. The Scheduler
is used whenever necessary to order remote calls according to their priorities. The network layer, in
Arcademis, is represented by a set of components that constitute the transport protocol, serialization
protocol and middleware protocol. Connections are established by two components: the Connector and
the acceptor. Request senders and receivers determine the reliability level the middleware provide to
distributed applications. Finally, the Activator determines how an object is made ready for receiving
remote calls.

Client
Application

Discovery
Agency

Remote
Object

Remote
Object

Representation
Stub

Chain of
Invokers

Request
Sender/

Response
Receiver

Middleware
Protocol

Serialization
Protocol

Transport
Protocol

Request
Receiver/
Response

Sender Chain of
Dispatchers

Scheduler

Skeleton
Activator

Application layer

Middleware layer

find publish

Figure 4: Representation of the main components of Arcademis. Double arrows indicate the flow of data
during a remote method invocation.

Arcademis makes extensive use of design patterns. For instance, object factorY and singleton [5]
are used in the ORB implementation. The acceptor-connector pattern [15] is used to handle remote
connections. Stubs are implemented as proxies, and skeletons as adapters [5]. The service providers
have been designed according to the Active object [16] pattern, and messages are implemented according
to the Command pattern [5]. However, object decorator [5] is the most used pattern in the Arcademis
architecture. A decorator allows to aggregate extra functionalities to an object while preserving its type.
The same object can be encapsulated by different decorator, each one further enhancing the set of available
functionalities. In Arcademis, Invokers, Dispatchers and Channels support decorators. Therefore, it is
more appropriate to talk call such components chains of objects. A chain is determined by the basic
component and all its decorators.

The component called dispatcher has particular importance in SaMi design. In Arcademis, the imple-
mentation of this component determines, for example, if remote calls are passed directly to the skeleton or
to other components, such as a scheduler. In SaMi, every dispatcher is augmented with an access control
list, which is implemented by means of a Dispatcher decorator: the SecureDispatcher. This decorator
contains operations to verify certificates, and to manipulate the list of access privileges.

Several of the Arcademis/RME components were reused in the implementation of SaMi. Arcademis

5

defines 79 basic components, and RME defines 56. Most of RME classes are implementations of decorators
and messages that comprise the middleware protocol. SaMi redefines 33 of the Arcademis classes, and uses
14 other classes to implement cryptographic routines. All the RME components related to serialization
of objects, and transmission of data have been reused in SaMi without modifications.

4.1 The Reflective Interface

The access control lists are implemented at the middleware layer; therefore, they are not visible in
the application level. However, the distributed scenario is a dynamic environment, and sometimes the
knowledge necessary to configure the security parameters of a service provider are only available at
runtime. SaMi allows such dynamic modifications by means of Reification. To reify a software means
to expose to the user details of its implementation. In SaMi, reification is used to allow the application
developer to change the access control list of a remote object. A component called Reificator allows the
application developer to inspect and alter internal properties of the middleware. For instance, the reificator
can scan the chain of dispatchers looking for an object of type arcademis.security.SecureDispatcher.
The search uses Java computational reflection to discover the dynamic type of the dispatchers. The
reification interface provides the following list of operations to the application developer to customize
security parameters:

• getRemoteMethodList(RemoteObject o): this method allows the application developer to get a
list of all the remote methods implemented by a service provider (o). Each method has an index,
which is used to change the method’s access policy.

• setLookupServicePublicKey(Key k, RemoteObject o): this method gives to the dispatcher of
the remote object access to the discovery agency’s public key. The dispatcher needs the public key
in order to authenticate the certificates it receives.

• grantPermission(int m, string c, RemoteObject o): this operation grants to the client c ac-
cess to the method of index m.

• revokeAllPermissions(int m, RemoteObject o): this method revokes all the permissions asso-
ciated to method m.

• revokeAllPermissions(RemoteObject o): this method revokes all the entries in the access control
list of the remote object.

• grantFreeAccess(RemoteObject o): this method makes all the remote methods of the service
provider publicly available.

• grantFreeAccess(String c, RemoteObject o): this method grants the client free access to all
the remote methods of the service provider.

• grantFreeAccess(int m, RemoteObject o): this method makes the operation of index m publicly
available.

5 The Cryptographic Protocol

In SaMi, each remote method is protected by an access control list. In order to use a remote method, a
client needs a certificate, which is generated by cryptographic algorithms. The implementation of SaMi
uses the gnu cryptographic framework [8] to encrypt messages. The encrypting algorithm is RSA, with
keys of 1024 bits. In the implementation of SaMi, a service provider does not authenticate itself to the

6

client. That is, while the service provider can be sure about the identity of the client, reciprocity does not
hold: the client is not able to assure the server’s identity. This approach was chosen because it simplifies
the implementation of the system. If necessary, it is possible to extend SaMi’s protocol to allow server
authentication.

In order to be able to obtain certificates, the client must register its public key in the discovery agency.
This operation is called key’s debut. Once the client announces its key, it can receive certificates from the
discovery agency. The general representation of a certificate is C = {name ‖ Ec ‖ T}DNS . Certificates
are encrypted with the private key of the name server (DNS), and contain three basic fields: the client’s
name (name), the client’s public key (Ec), and a time stamp T . Every time a client executes a lookup
operation, in addition to the stub of the remote object, it receives also a new certificate. The lookup
operation is represented in Figure 5.

c: Client ns: discovery agency

lookup || client name || server name

Stub || {{Ec||name||T}DNS}Ec

Figure 5: The lookup operation.

SaMi’s certificates are valid for at most one day. The discovery agency updates its key in regular
periods of 24 hours. The time stamp embedded in every certificate informs the service provider until what
moment that certificate should be accepted. This policy makes difficult to break the encryption scheme
by brute force attacks. However, it may deny access to an authentic client, if she is not using a updated
certificate. Another problem with this approach is the necessity of synchronized clocks. Synchronization
in a distributed environment is a hard problem, and, in order to mitigate it, the discovery agency provides
a clock service that can be remotely invoked.

In addition of updating its own key, the name server also revokes the registration of clients after 24
hours. This obliges clients to be constantly renewing their cryptographic keys. The update of a key is
not a trivial operation, because the discovery agency must confirm the client’s identity before revoking
the old key and registering the new one. Such confirmation is made by means of callbacks. Given two
remote objects, A and B, a callback happens if A invokes method mB on B, and in mB’s code, B invokes
a method mA on A. The second call, i.e. B → A.mA is called a callback. When a client has to update
its key, it passes to the discovery agency a remote object, the validator, which is used by the name server
to confirm the client’s identity. The validator is a remote object, and the name server uses it to check
if the client really wants to update its key. In the updating message, the client sends a random number
RA to the server. The server generates a new random number (RB), and sends both, encrypted with
the client’s public key to the client. Only the actual client can recover these numbers. After deciphering
the validation message, the client sends to the server RB − 1, encrypted with the server’s public key.
This verification step avoids the risk of man-in-the-middle and replay attacks. The updating protocol is
depicted in Figure 6.

Like the key’s update, a remote method invocation is also performed in four steps. This protocol
allows the server to confirm the identity of the client, although it does not permit the opposite: the
client cannot confirm the server’s identity. Service providers have access to the public key of the discovery
agencies in which they are bound. Upon receiving a remote call, the service provider extracts the contents
of the certificate, using the discovery agency’s public key, and, by consulting the access control list of
the invoked method, it determines if the client has permission to execute it. If the permission is not
granted, the server reports an exception to the client; otherwise, it starts a confirmation process similar

7

c: Client ns: discovery agency

{name}Dc || name || RA || E'c

return value

v: Validator

check({RA, RB}Ec)

{RA, RB}Ec

{RB - 1}Dc

report validation

Discover agency
address space

Figure 6: Updating of client’s key.

to that used in the update of keys. However, in this case, the validator is not necessary, because the
confirmation protocol has been implemented at the network level, by the request sender and request
receiver (Figure 4). Because the directory of public keys is not available to the network components, the
protocol of key update demands a second connection between discovery agency and clients.

c: Client s: Service Provider

{Ec||name||T}DNS||RA||params

{RA, RB}Ec

{RB - 1}Dc

Return value

Figure 7: The remote invocation protocol.

The protocol just described presents a number of properties that allow it to withstand some attacks
in the distributed environment:

• Private keys are never communicated on the network. In order to emphasize this property, the
object that implements private keys can not be serialized. That is, they cannot be changed into a
sequence of bytes, and recovered later.

• Protection against spoofing. Every service provider uses the public key of the discovery agency to
assure the authenticity of certificates. Therefore, only the central lookup service can grant clients
access to protected remote services.

• Limited period of validity. Certificates contain time stamps that can be verified by the service
provider. This aims to neutralize brute force attacks on intercepted messages. In addition, clients
are obliged to change their keys in regular time intervals.

• Client confirmation to prevent replay attacks. After gaining access to the service provider, the client
must pass thru an extra confirmation step in which encrypted random numbers are exchanged. This
avoids that a third entity intercepts messages from the client and use them to cause any action in
the service provider.

8

6 An Example Application

In this section we will discuss a hypothetical software application that can take benefit from the security
mechanisms provided by SaMi. This software is intended to support a review committee, in which members
can post, update, and write evaluations about articles. Every article is represented by a single distributed
object, which provides four different methods: getAbstract(), getPDF(), sendReview(), and update().
The first operation simply returns a string of characters containing the paper’s abstract. The second gives
the caller a full PDF version of the article. The third method attaches a review to the paper, and the last
operation updates the complete text. Figure 8 shows the implementation of this interface. The syntax
provided by SaMi is similar to the one adopted in Java RMI. Remote interfaces must extend the Remote
type, and remote methods must throw ArcademisException.

import java.arcademis.*;

public interface Paper

extends Remote {

public String getAbstract()

throws ArcademisException;

public File getPDF()

throws ArcademisException;

public void sendReview(String s)

throws ArcademisException;

public void update(File pdf)

throws ArcademisException;

}

Figure 8: The interface for an object that represents an article electronically available.

Although all the remote methods are declared in the same interface, they target different actors. In
order to better illustrate this fact, assume that all the papers are part of the proceedings of a conference.
With this assumption in mind, only the paper’s author should be allowed to update his article. Further-
more, just members of the program committee should be able to write reviews about the text, and only
people registered in the conference should be allowed to get the full PDF version of the article. Assume
also that, according to the conference’s policy, any person is able to get the abstract of a publication.

It is not simple to implement this set of constraints in traditional Java RMI, CORBA, or .NET
Remoting. This application demands an access control list in which different sets of methods could be
assigned to different actors by the remote object creator. Upon creation, the access control list of the
distributed object is configured, and the object’s name is registered in the discovery agency. If a client
attempts to execute a method whose access it has not acquired, it will receive an exception instead of
the expected return value. The access control list of a remote object must be configured by the service
provider. In Figure 9 there is an example code in which different privileges are defined. The user “Rhyme”
can access all the remote methods, whereas the user “Ann” can only get the abstract and PDF versions
of the paper.

In Figure 9, ConcretePaper is an implementation of the interface shown in Figure 8. The code in lines
8, 9, and 10 defines the middleware configuration that will be used. To configure an instance of Arcademis
means to define the set of factories associated to the ORB (Section 4). In line 14 the remote object is
being bound to the name ‘‘P23’’ in the discovery agency. When no host name is given, the lookup
interface seeks for a discovery agency in the local host. Client applications will have to look for ‘‘P23’’
in order to invoke the remote methods of object p. In lines 17, 18, and 19 the public key used by the
discovery agency is sent to the dispatcher assigned to p, so it can verify certificates. The remaining lines
define the access policy adopted by the service provider. Methods are discriminated by integer indexes.
In SaMi remote methods are indexed, and in order to know the mapping between indexes and methods,
the Reificator provides the operation getRemoteMethodList.

In order to illustrate the impact of the security protocol in the communication middleware, Table 1
compares the performance of SaMi, Java RMI, and RME (described in Section 1). SaMi is tested with
two different cryptographic algorithms. The first is based on a simple XOR mask, and its running time

9

1. import rme.SNService.*;

2. import rme.security.*;

4. import arcademis.security.Key;

6. public class Server {

7. public static void main(String a[]) {

8. SecureConfigurator c =

9. new SecureConfigurator();

10. c.configure();

12. ConcretePaper p=new ConcretePaper();

13. p.loadArticle("article.tex");

14. SecureLookupService.bind("P23", p);

15. p.activate();

17. String h = "localhost";

18. Key k=SecureLookupService.getPublicKey(h);

19. Reificator.setLookupServicePublicKey(k, p);

21. // no one access this remote object

22. Reificator.revokeAllPermissions(p);

24. // Rhyme can access all the methods.

25. Reificator.grantFreeAccess("Rhyme", p);

27. // each one can access the method getAbstract

28. Reificator.grantFreeAccess(0, p);

29. // Fernando can access getAbstract, getPDF

30. Reificator.grantPermission(1, "Ann", p);

32. // Sandy can access almost everything

33. Reificator.grantPermission(1, "Sandy", p);

34. Reificator.grantPermission(2, "Sandy", p);

35. }

36.}

Figure 9: The server code, where the access list is configured.

reflects the impact of the extra messages in the communication protocol. The second algorithm is based
on the RSA public key system. The increased running time is due to the cryptographic computations.
Table 1 also shows the size of messages exchanged between clients, server and discovery agencies during
service registration, service lookup and remote call. The running time has been obtained by invoking the
methods getAbstract and getPDF defined in Figure 8 1000 times. The message size refers to a single
invocation. In this experiment, service provider and client are been executed in two PowerPC 1.25GHz
with 1GH DDR SDRAM, connected by a 10Mb/s LAN. The four sizes of a remote method calls do not
include the size of the return value.

Running Size of Size of Size of
time (s) Registration lookup Method call

message (byte) message (byte) message (byte)
Java RMI 1.066 a a a
RME 1.097 593 592 277
SaMi XOR 1.669 664 4701 1299
SaMi RSA 15.170 664 4701 1299

Table 1: Comparative performance of Java RMI, RME and SaMi

7 Security on Object Oriented Middleware

Commercial middleware systems normally provide primitives for implementing security directives; how-
ever, these are not part of their core architecture. In order to illustrate such fact, this section address
security strategies adopted in .NET Remoting, CORBA, and Java RMI. First considering .NET Remot-
ing, this platform has no built-in support for user authentication or integrity protection [2]. Instead, it
provides a range of technologies that can be used at the application level to enhance security. As a result,
it requires a non-trivial amount of programming work, often resulting in complicated systems. However,
it is expected that a future release of the .NET framework will incorporate cryptographic algorithms in
its TCP channel [2].

The security mechanisms found in Java RMI are an extension of those provided in the standard Java

10

library. By implementing instances of the SecurityManager class, the application developer can define
which classes can be downloaded, and which remote addresses can be reached. These functionalities,
however, are not part of the default services provided by Java RMI. In contrast, JINI, another member
of the Java distributed family, provides several services aiming to guarantee server/client authentication,
integrity and confidentiality. JINI also is a service-oriented architecture, and its implementation uses
Java RMI. In JINI the client must acquire the proxy from the service provider in order to get access
to a specific service. This model gives JINI great flexibility when necessary to define security policies.
For instance, in JINI the application developer can define a set of security requirements, which must be
always satisfied, and a set of preferences that should be attended when possible. Moreover, JINI permits
to assign separate access privileges to each proxy. One of the disadvantages of JINI’s security model is
due to its complexity: the application developer is forced to deal with a number of interfaces and he often
must configure non-trivial security parameters.

The CORBA specification defines a very complete set of security directives, but its implementations
are not obliged to incorporate them. For instance, IONA ORBIX, a commercial implementation of
CORBA, gives the application developer some options to incorporate security. It makes available crypto-
graphic algorithms such as RSA and Diffie Hellman, and their design foresees the use of the Kerberos [7]
authentication system. But these tools are not part of the default implementation of IONA, and must be
configured by the application developer.

In general, the implementation of security mechanisms decrease the performance of distributed sys-
tems. For example, cryptographic algorithms demand memory and processing time. Therefore, one of the
advantages of making the security features optional extensions of the middleware is the greater flexibility:
if the protection layer is not necessary, it is simply not used. However, it is possible to present reasons
that justify the design of platforms such as SaMi, which have security mechanisms implemented at the
middleware level, instead of the application level.

Firstly, as pointed in Section 3, object oriented middleware offer an infrastructure on which security
can be naturally incorporated. Secondly, the implementation of a security layer is a complex and error
prone task, and its frequent delegation to the application developer can result in vulnerable distributed
applications. Furthermore, if the middleware already implements protective functionalities, the software
engineer can focus on the details of the application logic. Finally, by implementing security at the
middleware level, it is possible to improve the utilization of resources, such as bandwidth. For example,
instead of sending public keys in separate messages, they can be transported together with the result of
a lookup query.

8 Validation and Conclusion

This paper described SaMi, a remote method invocation system that implements security policies by
means of a discretionary access control system. SaMi associates to every remote object an access control
list, that describes, for each of its methods, the users that can invoke it. The basic security requirement
guaranteed by SaMi is: in order to invoke a remote method, the client needs the permission of the service
provider that implements it.

The mechanism used to accomplish the proposed policy is based on public key cryptography. In
order to invoke a method, the client needs a certificate. The discovery agency that clients use to locate
remote objects is the central authority responsible for issuing certificates. The adopted cryptographic
protocol makes computationally unfeasible to forge certificates, and avoids replay and man-in-the-middle
attacks. It is important to notice that, although this protocol authenticates clients to service providers,
the opposite path is not guaranteed: clients do no receive any assurance about the identity of the remote
object. However, due to the modular nature of the system, such extension is simple.

11

The proposed security model is flexible and general. An recurrent critic made on access control list
based systems is the small number of different access privileges they provide. For example, in the UNIX
operating system, the only operations allowed on files are reading, writing and executing. However, in
SaMi, every remote method constitutes a separate entry in the access control list, and its access police
can be configured independently of other methods.

An important point of the proposed model is the natural matching between a remote method invoca-
tion middleware and a distributed certification system. In both scenarios there is the concept of a central
authority globally accessible. In the middleware’s case, it is the name server, or discovery agency, wheres
in the certification platform it is the certifying authority.

Other interesting features present in SaMi architecture are computational reflection and call backs.
The first mechanism allows service providers to change their security parameters during runtime. The
second is employed in the implementation of the protocol used by clients to update the keys that they
have registered in the discovery agency. Finally, the implementation of SaMi is available at http://com-
pilers.cs.ucla.edu/fernando/projects/

References

[1] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network objects. In 14th Symposium on
Operating Systems Principles (SOSP), pages 217–230. Software–Practice and Experience, 1993.

[2] Keith Brown. The .NET Developer’s Guide to Windows Security. Addison Wesley, 2005.

[3] Geoff Coulson, Gordon S. Blair, Michael Clarke, and Nikos Parlavantzas. The design of a configurable and
reconfigurable middleware platform. Distributed Computing, 15(2):109 – 126, 2002.

[4] Frantisek Plasil and Michael Stal. An Architectural View of Distributed Objects and Components in CORBA,
Java RMI and COM/DCOM. Software - Concepts and Tools, 19(1):14–28, 1998.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, October 1994.

[6] Ralph E. Johnson. Components, frameworks, patterns. In SIGSOFT Symposium on Software Reusability.
ACM, 1997.

[7] J Kohl and C Neumann. Rfc 1510: The kerberos network authentication service v5, 1993.

[8] Casey Marshall and Raif S Naffah. Programming with GNU Crypto. Free Software Foundation, 2003.

[9] Piet Obermeyer and Jonathan Hawkins. Microsoft .net remoting: A technical overview. Technical Report 013,
Microsoft Corporation, July 2001.

[10] OMG. CORBA IIOP 2.3.1 Specification. Technical Report 99-10-07, OMG, 1999.

[11] Nikos Parlavantzas, Geoff Coulson, and Gordon Blair. Applying component frameworks to develop flexible
middleware. In Workshop on Reflective Middleware. ACM Press, 2000.

[12] Fernando M Q Pereira, Marco T O Valente, Roberto S Bigonha, and Mariza A S Bigonha. Arcademis: a
framework for object oriented communication middleware development, 2005. Accepted for publication.

[13] Fernando M Q Pereira, Marco T O Valente, Wagner S Pires, Roberto S Bigonha, and Mariza A S Bigonha.
Tactics for Remote Method Invocation. J-JUCS, 10(7):824–842, 2004.

[14] Doublas Schmidt and Chris Cleeland. Applying Patterns to Develop Extensible and Maintainable ORB Mid-
dleware. IEEE Communications Magazine – Special Issue on Design Patterns, 37(4), 1999.

[15] Douglas Schmidt. Acceptor-Connector: Design Patterns for Initializing Communication Services, chapter 12,
pages 191 – 206. Addison-Wesley, 1997.

[16] Douglas Schmidt and Greg Lavender. Active object – an object behavioral pattern for concurrent programming.
In Second Pattern Languages of Programs conference, September 1995.

12

[17] Douglas C Schmidt and Frank Buschmann. Patterns, frameworks, and middleware:their synergistic relation-
ships. In 25th International Conference on Software Engineering. IEEE, 2003.

[18] Ashish Singhai, Aamod Sane, and Roy H. Campbell. Quarterware for middleware. In 18th International
Conference on Distributed Computing Systems (ICDCS), pages 192 – 201. IEEE, 1998.

[19] A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for the Java system. In 2nd Conference on
Object-Oriented Technologies & Systems, pages 219–232. USENIX, 1996.

13

