Distributed Algorithm – CS280D – Spring 2005

Final written assignment

Fernando M Q Pereira

This report summarizes the presentation of the paper:

James Aspens, Randomized Protocols for Asynchronous Consensus, Distributed Computing, (16)

165 - 175, 2003.

The consensus problem can be stated as follows: given a group of n processes, they must agree on a value. Any solution for consensus must fill three requirements: agreement, termination and validity. The first requirement says that all the process that decide have to choose the same value. The second says that all non-faulty processes eventually decide, and the third says that the common output value is an input value of some process. A well know result in the distributed algorithms field, called the FLP impossibility result, states that there is no deterministic protocol that satisfies the agreement, termination, and non-triviality conditions for an asynchronous message passing system in which any single process can fail undetectably. Another similar result, due to Loui and Abu-Amara, states the same impossibility when the distributed model is an asynchronous shared-memory system.

There are different alternatives to circumvent the FLP result. For instance, the use of timers approximates the asynchronous system to a synchronous environment. Additionally, failure detectors can remove crashed processors. It is also possible to guarantee consensus by using strong primitives such as test-and-set, or move-and-swap. Finally, in his paper, James Aspnes presents three different algorithms that use randomization in order to circumvent the FLP result. One of these algorithms is for the shared memory model. The other two are for the message-passing paradigm.

In a randomized algorithm, agreement and validity are as in the deterministic model, but termination is slightly different: the algorithm always terminates with probability 1 as long as it has enough time to be executed. In order to increase the computational power of the distributed system, randomized algorithms use an operation that allows processes to generate random numbers. In this model there is the concept of adversary: a sequence of executions that attempts to crash the algorithm. There are two types of adversaries. The first type is called the strong adversary, and it can see all the internal state of the memory and the outcome of coin flips before choosing the next process to execute. Its counterpart, the so called weak adversary, can only chose the next process to execute.

The first algorithm presented by Aspnes is the Ben-Or's Consensus protocol. This was the First protocol to achieve consensus with probabilistic termination in a model with a strong adversary (1983). It tolerates t < n/2 crash failures, and may require exponential expected time to converge in the worst case. The algorithm operates in rounds, each round having two phases. The first phase is called the suggestion step. In this stage, each process transmits its value, and waits to hear from other processors. The second phase is called the decision step. In this stage, if the majority value is found, the processes take this value; otherwise, they flip a coin to decide a new local value.

The basic idea of this algorithm is not to wait for messages from all the process in order to take decisions, because some of them may fail. If enough processes detect the majority, then decide for this value. If it is know that a process has detected the majority, every other process that has such information must switch to the majority's value. The algorithm eventually terminates because all the process will flip the same value of the coin, given a huge number of attempts. A sketch of the algorithm is shown below:

	Input: Boolean initial consensus value

Output: Boolean final consensus value

Data: Boolean preference, integer round
begin

preference := input

round := 1

 while true do

 send (1, round, preference) to all processes

 wait to receive n – t (1, round, *) messages

 if received more than n / 2 (1, round, v) messages

 then send (2, round, v, ratify) to all processes

 else send (2, round, ?) to all processes

 end

 wait to receive n – t (2, round, *) messages

 If received a (2, round, v, ratify) message

 then preference = v

 if received more than t (2, round, v, ratify) messages

 then output = v

 end
 else preference = CoinFlip()

 end

 round = round + 1

 end

end

The algorithm always terminates, even in face of a strong adversary, because the probability of disagreement for an infinite time is 0. (It is equal to the probability that every turn there will be one 1 and one 0 forever). But it may be the case that the algorithm presents exponential complexity in the worse case, considering that, if half the process fail, the chance of all the random coins to output the same value is 2-n, where n is the total number of processes.

The next algorithm presented by Aspnes is the Chor-Israeil-Li Protocol. Its core idea is based on a race between processes. Each process writes in the shared memory its turn and its preference. If there is a process far enough ahead, the other processes take its value. Each process flips a coin to choose if to advance a turn or not, with chance of 1/2n to advance. Probabilistic results assure that, after the expected time of n rounds, there will be a leader enough ahead. The algorithm is as follows:

	Input: Initial preference

Output: consensus value

Local data: preference, round, maxround
Shared data: one single-writer multi-reader register for each process.

begin

preference := Initial preference;

round := 1;

while true do

 write (preference, round)

 read all registers R

 maxround := maxR R.round

 if for all R where R.round >= maxround - 1, R.preference = v

 then return v

 else if exists v such that for all R where R.round = maxround, R.preference = v

 then preference := v

 end

 end

 with probability 1/2n do

round := round(round + 1, maxround - 2)

 end
end

The Chor-Israeil-Li Protocol provides weak consensus, because a weak adversary can delay particular processes, but cannot identify in which phase each process is. However, this protocol fails to defeat a strong adversary. The winning strategy for a strong adversary is to stop a process that incremented its value, until all other processes have also done it.

In order to solve the strong adversary consensus in a shared memory system with better complexity than exponential worse case, Aspnes presents the concept of shared coin. This protocol returns a bit, 0 or 1, to each process that takes part on it. The probability that the same value is returned to all invoking processes is at least some fixed parameter 'e'. Additionally, the probability that the protocol returns 1 to all processes equals the probability that the protocol returns 0 to all of them. Finally, this protocol is wait-free.

Aspnes and Herlihy presented a protocol that uses the weak shared coin to defeat a strong adversary. This protocol consists of multiple executions of the weak shared coin in a framework that detects when all processors agree. Since probability of success is constant (e > 0), then the expectation of the number of rounds before agreement is reached is constant, e.g. O(1/e). Therefore, the overall complexity is dominated by weak shared coin's complexity. The algorithm is given below:

	Input: Initial preference value

Output: Consensus value
Local data:

Boolean preference p;

Integer round r;

Boolean new preference p’;

Shared data:

Boolean mark[b][i], b in {0, 1}, i in Z+, mark[0][0] = mark[1][0] = true; all other mark[][] are false.

Subprotocol: SharedCoinr, r = 0, 1…

begin

p = input

r = 1

 while true do

 mark[p][r] = true

 if mark[1-p][r+1]

 then p’=1-p

 else if mark[1-p][r]

 then p’=SharedCoin(r)

 else if mark [1-p][r-1]

 then p’=p

 else return p

 end

 if mark[p][r+1] = false

 then p=p’

 end

 r = r +1

 end
end

This algorithm presents similar characteristics to that of Chor-Israeil-Li. Processors race for leadership, where "leaders" are the processors which are the farthest ahead. If leaders agree on a value, that value will be selected; otherwise, leaders use weak shared coin to decide a value. Eventually the weak shared coin will return the same value to all the leaders. As data structure, the processes use a double array of Boolean values that can be written by any of them. If some process has decided p, then in positions r+1, r, r-1 there are no processes that think 1-p. Therefore, even if a process is going to write 1-p in r-1, it will discover p in r and change its value to that value. Therefore, if some process decides a value, all processes decide that value.

In Aspnes/Herlihy protocol, each round takes O(1) * O(SharedCoin()). The expected number of rounds is constant, because the probability of agreement 'e' is a constant > 0. Therefore, the number of expected rounds before agreement is O(1/e). Observe that this is not an exponential worst case.

In order to implement the weak shared coin, the protocol uses the algorithm designed by Bracha and Rachman. This algorithm is based on a distributed voting protocol. Each process casts together many votes. The strong adversary can stop up to n-1 votes from being written, but if the number of votes is big enough, the n-1 votes cannot interfere in the majority. In Bracha/Rachman algorithm, votes are divided in three different categories. The first category is composed by the common votes: votes that all the process read. The second one is constituted by votes that not all process can read. These are called extra votes. These votes have been written after some processes finished reading the pool. Finally, there are the hidden votes, which are the (at most) n-1 votes killed by the adversary.

A major question in Bracha/Rachman protocol is how to divide the votes in order to maximize the probability of a common decision able to defeat the strong adversary. There are n2 common votes, which are seen by all the processes. The adversary can delete up to n-1 of the votes, and the number of extra votes is n2/ logn. The reason the protocol works is that we can argue that the common votes have at least a constant probability of giving a majority large enough that neither the random drift of the extra votes, nor the selective pressure of the hidden votes is likely to change the apparent outcome of the election. The algorithm is as follows:

	Input: none

Output: Boolean value

Local data: Boolean preference p; integer round r; utility variables c, total, and ones

Shared data: single-writer register r[p] for each process p, each of which holds a pair of integers (flips, ones), initially (0,0)

begin

 repeat

 for i = 1 to n / log n do

 c = CoinFlip()

 r[p] = (r[p].flips + 1, r[p].ones + c)

 end

 read all registers r[p]

 total = sum(r[p].flips)

 until total > n2
 read all registers r[p]

 total = sum(r[p].flips)

 ones = sum(r[p].ones)

 if total/ones > 1/2

 then return 0

 else return 1

end

In Bracha/Rachman algorithm, each process votes several times, until the total of votes equals n2. In order to reduce the complexity of the algorithm, each time a processor votes, it delivers n/logn votes. The internal loop may run up to n * logn times (in case a single processor casts all the votes). Each loop requires reading n registers, hence, the entire cost in time complexity will be n2 * logn. The amortized voting police is the biggest contribution of Bracha and Rachman. Because the extra votes are not biased by the adversary, it is possible to tolerate more of them. That is why processors write n/logn votes each time. If each processor wrote one vote per turn, the algorithm could carry out n3 operations.

