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Abstract. A state-of-the-art register allocator is among the most com-
plicated parts of a compiler, partly because register allocation is NP-
complete in general. Surprisingly, Bouchez, Brisk et al., and Hack inde-
pendently discovered in 2005 that if a program is in single static assign-
ment (SSA) form, then a core register allocation problem can be solved
in polynomial time. This result enables what we call SSA-based register
allocation. In this report we present the first design and implementation
of an SSA-based register allocator, integrated into LLVM. Compared to
state of the art, our register allocator is much simpler and generates code
of equivalent quality. We show the new static analyses we use for phi-
lifting, spilling, and coalescing, and we explain that the choice of those
analyses influence how we must do SSA deconstruction.

1 Introduction

Register allocation is the process of mapping a program that uses an unbounded
number of virtual variables into a program that uses a fixed number of physical
registers, in such a way that virtuals with overlapping live ranges are assigned
different registers. If the number of registers is not enough to accommodate all
the virtuals alive at some point in the control flow graph, some of these variables
must be mapped into memory. These are called spilled virtuals.

The Static Single Assignment (SSA) form is an intermediate representation
in which each variable is defined at most once in the program code [9, 19]. Prior
work [3] has conjectured that the use of SSA Form could be beneficial to register
allocation due to live range splitting; however, it was only in 2005 and 2006 that
several research groups [2,5,13] have shown that interference graphs for regular
programs ' are chordal, and can be efficiently colored in polynomial time. This
result is particularly surprising, given that Chaitin et al. [7] have shown that
register allocation is NP-complete for general programs.

Most of the work on SSA-based register allocation remains purely theoretical.
This paper presents what we believe is the first complete SSA-based register
allocator. We describe the many phases that constitute the register allocation
process, from the assignment of physical registers to variables to the generation
of running code. We compare the proposed algorithm, and some of its variations,

L A regular program [6] is a program in SSA form with the additional property that each
variable is defined before its first use.



against the state-of-the-art register allocator of LLVM [15], an industrial strength
compiler. We have been able to compile and run a large range of benchmarks,
such as SPEC2000, MediaBench, FreeBench, etc. In addition to the execution
time of the compiled benchmarks, we give static metrics such as the number of
loads and stores inserted by each allocator.

This paper also describes a collection of methods that we use in order to
improve the quality of the code produced by our algorithm. These techniques
include: (i- Sec. 4.5) heuristics for performing local and global register coalescing;
(ii - Sec. 4.2) a transformation of the control flow graph that simplifies the
register allocation process and (iii - Sec. 4.4) an aggressive static analysis that
maps many spilled variables to the same memory address, thus reducing the
number of loads, stores and the size of the stack frame in the generated code.
Techniques (i) and (iii) can be added/removed from the algorithm in a very
modular way, and, even without them, our implementation is very competitive
with other register allocators.

2 Some Intuition on SSA-based Register Allocation

This section illustrates the simplicity and elegance of SSA-based allocation. The
program in Figure 1 was taken from [17]. Figure 1 (b) is the same program,
after the SSA elimination phase. Figure 1 (c) shows the sequence of assignments
that would be performed by a traditional linear scan algorithm. This algorithm
would traverse blocks 1, 2, 3 and finally block 4. When allocating registers in
block 3, the allocator has to deal with temporaries C and E, which have already
been assigned machine registers in block 2: a self imposed conflict. The graph in
Figure 1 (¢) cannot be colored with two colors. Its chromatic number is 3.

Figure 1 (d) outlines the dominance tree of our example program. Our alloca-
tor traverses the dominance tree in pre-order, assigning registers to temporaries.
Because each variable in a SSA-form program is defined only once, self-imposed
conflicts do not occur in SSA-based register allocation. That is, when the allo-
cator first meets with the definition of a variable v, v cannot have been assigned
a register. For a formal proof, see [14]. Figure 1 (e) shows the allocation pro-
cess. The interference graph of the SSA-form program can be compiled with two
registers: one register less than the minimum necessary in the program after
SSA-elimination! Figure 1 (f) shows the final program. Notice that we use three
xor instructions to transfer the values of C1 and E1 into C and E. This example
is not a coincidence: the demand of registers in the SSA-form program is never
greater than in the original program [13]. Furthermore, a greedy allocator that
traverses the dominance tree in pre-order always finds an optimal coloring, if
there is no aliasing of registers and no pre-colored registers.

2.1 A Note on the Representation of ¢-functions

Following the notation established by Hack et al. [14], we represent the ¢-
functions existent in the beginning of a basic block as a matrix equation (see,
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Fig. 1. (a) Example control flow graph in SSA-form [17]. (b) Program after the SSA
elimination phase. (c) Interference graph and sequence of register assignments. (d)
Dominance tree of the example program. (e) Interference graph of the SSA-form pro-
gram, and assignment sequence. (f) Final program after SSA-based register allocation.

for instance, Figure 1 (a)). An equation such as V = ¢M, where V is a n-
dimensional vector, and M is a n X m matrix, contains n ¢-functions such as
a; «— &(a;1,a42,...a;,). Each possible execution path has a corresponding col-
umn in the ¢-matrix, and adds one parameter to each ¢-function. The ¢ symbol
works as a multiplexer. It will assign to each element a; of V' an element a;;
of M, where j is determined by the actual path taken during the program’s
execution. This notation makes more explicit the fact that (i) ¢-functions in a
block are considered to execute in parallel and (ii) the use of two variables as
arguments in a ¢-function does not cause an interference between them.

3 Related Work

Many industrial compilers use the SSA form as an intermediate representation:
Gee 4.0 [12], Sun’s HotSpot JVM [22], IBM’s Jikes RVM [23] and LLVM [15].
However, these compilers do not perform register allocation on SSA-form pro-
grams: instead, they require a SSA elimination pass that replaces ¢-functions
with copy instructions before register allocation. The only SSA-based register
allocator that has been described so far is a theoretical algorithm due to Hack
et al. [14]. Some differences between our algorithm and Hack et al.’s are (i) the



global register coalescing heuristics, (ii) the handling of pre-colored variables,
(iii) the spilling heuristics. However, the main difference is that we allow virtu-
als in ¢-functions to be mapped to memory; what happens due to spilling. In
Hack’s case, if a parameter of a ¢-function « is spilled, and it is not possible
to re-load it in the basic block from where it flows into «, all other parame-
ters and the variable defined by a must also be spilled. Our approach gives the
compiler extra freedom to choose values to spill, but requires a more complex
¢-deconstruction algorithm. Once a valid register assignment has been found,
neither algorithm requires further spilling during the SSA-deconstruction phase.

The name Linear Scan designates a number of register allocation algorithms
based on the work of Poletto and Sarkar [18]. The main objective of the original
algorithm is to be fast. Subsequence versions attempt to produce code of bet-
ter quality without seriously compromising the short compilation time. Traub
et al.’s [24] and Wimmer et al.’s [25] versions handle holes in the live ranges
of virtuals and split intervals to decrease spilling. Evlogimenos’ [10] extensions
coalesce move instructions and fold memory operands into instructions to save
loads and stores. A key feature in this last work is the backtracking in face of
spilling. Finally, the algorithm proposed by Sarkar et al. [20] gives another poly-
nomial time exact solution to the register allocation problem. This technique
does not rely on the SSA transformation to find an optimal register assignment.
Instead, it uses copies and swaps to split the live ranges of variables whenever
necessary. Sarkar’s method and SSA-based register allocation require the same
number of registers, which equals the size of the maximum number of live-ranges
that cross any point of the control flow graph. The main difference between all
these versions of linear scan and our SSA-based allocator is that, in the former
case, register assignment occurs after ¢-functions have been removed from the
target code, whereas in the latter, it happens before.

The algorithm described by Cytron et al. [9] produces programs in Conven-
tional Single Static Assignment Form (CSSA). In this flavor of SSA-form, the
live ranges of virtuals that are part of the same ¢-function do not overlap. If
this is not the case, the program is said to be in Transformed SSA form (TSSA).
The transformation techniques described in Sections 4.2 and 4.4 are similar to
the analysis proposed by Sreedhar et al [21] to convert a program from TSSA
to CSSA. In both cases copy instructions are used to split the live range of vari-
ables. The main difference is that Sreedhar et al.’s method incrementally inserts
non-redundant copy instructions in the control flow graph, whereas we start with
a completely partitioned program, and then proceed to the removal of redundant
copy instructions until no redundancy remains. Furthermore, Sreedhar’s trans-
formation splits the live ranges of any variable v defined by a ¢-function. In our
case, this only happens if v is also used by some ¢-function.

4 The Proposed Algorithm

Figure 2 outlines the main phases of our register allocation algorithm. Each of
these phases is further detailed in this section. The grey boxes describe optional



extensions, which may improve the quality of the code produced, but may cause
a degradation in compilation time. Figure 2 shows the SSA deconstruction phase
preceding the insertion of spill code; however, swapping the order of these two
phases is also possible.
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Fig. 2. Overview of the proposed algorithm. Grey boxes are optional extensions.

4.1 Interval analysis

This analysis is used in linear scan allocators in order to represent the live ranges
of variables as a collection of ordered integer intervals. The interval representa-
tion allows to implement the algorithms in Sections 4.2 and 4.4 efficiently. Our
interval representation ensures that ¢-functions are treated as parallel copies.
Given a ¢-equation V = ¢ M, all the virtuals in the vector V are marked as alive
in the beginning of the basic block where they are defined. Let S be the set of
virtuals from a column of the matrix M, and assume that these virtuals are fed
into the ¢-matrix from block B. All the virtuals in S are marked as alive at the
end of B, but not beyond. For example, Figure 5 (d) shows the live ranges of
variables alive in blocks 1 and 2 of the program in Figure 3 (c).

4.2 ¢-Lifting: Static transformation of the control flow graph

Our algorithm allows the partial spilling of ¢-functions, that is, some parameters
of a ¢-function can be mapped to memory, whereas others are located in registers.
A question that must be addressed in this case is how to eliminate a ¢-function
whose definition vgy and at least one parameter v, are stored in memory. A
memory transfer would be necessary if the addresses of vy and v, were different.
However, if these addresses are the same, no additional instruction is necessary:
a store at the definition point of v, provides also the correct value of vg! In
order to implement this variation of register coalescing, we ensure that if the



parameter and the definition of a ¢-function are located in memory, then they
are given the same memory address.

In order to facilitate our exposition, we define the equivalence class of ¢-
related virtuals ? as follows: (i - reflexivity) any virtual v is ¢-related to itself;
(ii - symmetry) if virtual v is ¢-related to virtual u, then u is ¢-related to v;
(iii - transitivity) if vy is ¢-related to vg, and vs is ¢-related to vz, then vy is ¢-
related to vs. (iv) given a ¢-function such as v; = ¢(vi1, via, - - - , Vim ), the virtuals
Vi, Vi1, V2, - - -, Uim are ¢-related; Notice that the set of all the ¢-related equiv-
alence classes completely partition the set of virtuals in a SSA-form program.
For instance, Figure 3 (a) shows an example control flow graph containing 6 ¢-
function, and three equivalence classes of ¢-related virtuals: {vy, vs, vy, s, V6, V7, V9 },
{UQ,US} and {U1070117U12,U13,U14}-

VT = =
1 v15 = vl le— @ vi=

vie = vl 1|vz =

v17 = v2 vie = vl

v1,v2 T
18,v19,v2
vis,vie,vi7  ViE Vi, v20

2 l \ v1,v2,v16 v5,v8,v18
w0 T, v 2 ¥ Jer—= 2
_ 9 V15, v1 %] oT, T
v3|= ®|vi, vs v5 = v9 _
v 2. v v3|= ®|vie, vio e - va v3|= o fvie,vs
D1l = e v8 v17,v20 v19 = v5 v8 v2, v8
vil = _ vil =
- v20 = v8
vi2 vi2 = vi2 = v8,v9
7
v8,v9 / v3,v1l \ Removed
v3,vlil v3,v12 v3,vil  v3,vi2  v8,v9 v3,vi2 Instructions:
4 4 A 4 5 vIvEVIT
5 [veT =viT] [v2z =vizZ) V22 = vi2 | ivl7 = v2 |
1v19 = v5 |
v3,vll v3,vi2 v3,v21  v3,v22 v3,v1l v3,v22 1v20 = v8 !
6 R} r's tv2l = vll |
V10 = ®(v21,v22) V10 = ®(vil,v22) iv24 = v10 |
V10 = ®(vll,v12) 6 |vas - v3 v23 = v3 {v25 = v7
v3,v10 v3,v7,v14 vas = vio A iv26 = vid
) v3,v25,v23 v3,v10, v
- I, 7 y ‘/vs,>4,v25 7 L N\
lvl}J:"’I_vlo,vMJ o e [25 V20 o o[22V v3,v7,vl4
-3 3 v13 v24,v26 v13 vio, vid4
vl = v6 =v3 =v3 8
vld = vi3 vl = vé vl = v
T v14 = v13 v14 = v13 N
Vlf v3,v7,v14 By v3,v7,v14 vl’4 v3,v7,v14
9
@ ’ ® ®
(a) (b) (c)

Fig. 3. (a) Control flow graph in TSSA-form. (b) Program transformed by PhiLifting
(CSSA-form). (c) Program transformed by PhiMemCoalesce (CSSA-form).

Ideally, we would like to assign the same memory address to all the ¢-related
virtuals that have been spilled. However, this may introduce errors in a TSSA-
form program, because the live ranges of ¢-related virtuals might overlap. Inter-
ferences between the live ranges of ¢-related virtuals are introduced by compiler
optimizations such as global code motion [21] and copy folding during SSA con-
struction [4]. For instance, assume that virtuals vz and vg have been spilled in

2 ¢-related equivalence classes are called ¢-congruence classes in [21]



the program shown in Figure 3 (a). Although they are ¢-related, it is not correct
to store them in the same memory cell because their live ranges overlap in block
7. On the other hand, this problem does not exist if vy and vg are spilled, be-
cause they are never simultaneously alive. In order to convert the target program
to CSSA-form, and so ensure that the live ranges of ¢-related variables do not
overlap, we resort to the PhiLifting  algorithm given in Figure 4.

PhiLifting
(a; = ¢(ai1 : B1,as2 : Ba,...,aim : Bm)) PhiMemCoalesce(S; = {1, I2,..., 14},
Create new virtual v; So ={Q1,Q2,...,Q+})
Add copy instruction I = (a; := v;) For each instruction I = (v;; := a;;) € Sy,
at the end of block B; Sy =S\ {I}
Replace a; by v; in ¢ Let Qv be the equivalence class of v;;
For each virtual a;; € ¢, Let Qq be the equivalence class of a;;
Create new virtual v;; FQuNQu="0
Add copy instruction I = (v;; = a;;) Sq = S \ {Qv}
at the end of block Bj Sq == S0\ {Qa}
Replace a;; by v;; in ¢ Sq = SqQU{QaUQyv}

Fig. 4. The algorithms PhiLifting and PhiMemCoalesce

Notice that if v;; is a virtual created by the PhiLifting algorithm, then
v;; is alive only at the end of the block B; that feeds it to its ¢-function. Be-
cause each parameter of a ¢-function comes from a different basic block, the
control flow graph transformed by the PhiLifting algorithm has the follow-
ing property: if v1 and vy are two ¢-related virtuals, then their live ranges do
not overlap. The transformed control flow graph contains one ¢-related equiva-
lence class for each ¢-function, and one equivalence class for each virtual v that
does not participate in any ¢-function. Following with our example, Figure 3 (b)
outlines the result of applying PhiLifting on the control flow graph given in Fig-
ure 3 (b). The transformed program contains 14 equivalence classes: {v1}, {v2},
{va}, {vs}, {vr}, {vinhs {viz}s {via}, {ve, vis, vis}, {vs, vie, v10}, {vs, V17, v20},
{v10, V21, v22}, {vg, Va3, v25} and {v13, vag, vag }. It is important to notice that the
extra variables created by PhiLifting do not increase the minimal number of
registers necessary to compile the target program, as stated in Theorem 1 (For
a proof, see this paper’s companion technical report [16]).

Theorem 1. Let P be a program whose control flow graph does not contain
critical edges *. PhiLifting does not increase the register pressure in P.

3 occasionally we will denote ¢-functions as a; = ¢(a;1 : B1,as2 : Ba,...,aim : Bm), meaning

that variable a;; comes from block Bj;.
4 A critical edge is defined as an edge between a block with multiple successors and a block
with multiple predecessors [4].



4.3 ¢@-Analysis

The ¢-analysis groups into equivalence classes the virtuals that are related by
some ¢-function. Because of the transformation performed by the PhiLifiting
algorithm, the ¢-analysis has a very efficient implementation: each ¢-function
v =¢@(v1,...,v,) already determines an equivalence class, e.g {v,v1,..., v}

4.4 Aggressive Coalescing of ¢-related virtuals

Although the PhiLifting algorithm produces correct programs, it is too con-
servative, because all the ¢-related virtuals are used in the same ¢-function.
We now describe a coalescing technique that minimizes the number of ¢-related
equivalence classes while still keeping the target program in CSSA-form. In the
algorithm PhiMemCoalesce, given in Figure 4, St is the set of instructions
created by the procedure PhiLifting, and Sg is the set of equivalence classes
of the program transformed by PhiLifting.

In order to perform operations such as @; N Q; efficiently, we rely on the
interval representation of live ranges commonly used in versions of the linear
scan algorithm. Each virtual is represented as a collection of ordered intervals
on the linearized control flow graph. Thus, a set @) of virtuals is a set of ordered
integer intervals. In this way, the intersection of two ¢-equivalence classes Q);
and @; can be found in time linear on the number of disjoint intervals in both
sets. Because a ¢-equivalence class can have O(V) disjoint intervals, the final
complexity of algorithm PhiMemCoalesce is |L;| x V.

Figure 3 (c) illustrates the application of algorithm PhiMemCoalesce on
the program shown in Figure 3 (b). The procedure PhiLifting inserts 12 copy
instructions into the target control flow graph. PhiMemCoalesce removes all
but four of these instructions: (vig = v1), (Vaa = v12), (v1g = v4) and (vag = v3).
If, for example, v; and vig were coalesced, the interfering variables vs and wvg
would be placed in the same ¢-equivalence class.

4.5 The Color Assignment Phase

Live ranges of variables in a SSA-form program are contiguous along any path on
the dominance tree. For instance, Figure 5 (a) shows the dominance tree of the
program given in Figure 3 (c). Figure 5 (b) outlines the live range of vs across
the path formed by the blocks 2, 6 and 7, and Figure 5 (c) depicts the live range
of v15 along the blocks 2 and 5. Due to this continuity, a single, non-iterative
pass can be used to allocate physical registers to virtuals: the dominance tree is
traversed in pre-order and registers are greedily assigned to live ranges. In the
absence of pre-colored registers and aliasing this assignment is optimal [11].

Local Register coalescing Given a move instruction such as vg = vy, it
is desirable that the same physical register be allocated to both vy and wv,.
In this case, the copy instruction can be removed without compromising the
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Fig. 5. (a) Dominance tree of program in Figure 3 (c). (b) Live range of v3 along blocks
2, 6, 7. (c) Live range of v12 along blocks 2 and 5. (d) Live ranges of variables in blocks
1 and 2 of program in Figure 3 (c).

semantics of the program. We perform this assignment if v,, is not alive past the
definition point of vy. This type of coalescing is always safe, given Lemma 1 (for
a proof, see [13]). Moreover, because there are no holes in the joint live range
of v, and vy, it does not compromise the optimality of the color assignment
algorithm. This simple optimization is important because it eliminates most of
the redundant instructions added by the PhiLifting algorithm from Section 4.2,
if the PhiMemCoalesce pass is not used.

Lemma 1. Two virtuals v1 and vs of a regular program interfere if, and only
if, either vy is alive at the definition point of vo, or vice-versa.

Global Register coalescing It is desirable that the parameters and the defi-
nition of ¢-functions be assigned the same physical register, because such assign-
ments reduce the number of instructions necessary to eliminate the ¢-functions.
We say that a virtual v;; is a fized point in a ¢-function such as v; = ¢(...,v45,...)
if v; and v;; are assigned the same physical register during the coloring phase.
The problem of maximizing the number of fixed points in a SSA-form program
is NP-complete [14]. Thus, we use heuristics in order to increase the number of
fixed points in the final register allocated code.

For each virtual that participates in a ¢-function, we maintain a preference
list of physical registers, which is computed by the procedure ComputePref-
erence, given in Figure 6. In that figure, we let [(v) be the location of v, which
may be a physical register (), a memory location (m), or an undefined value
(1), if v has not yet been assigned a location by the register allocator. Before
assigning a register to a virtual v, v’s preference list is traversed in decreasing
order, and the first available physical register is chosen.

The worst case complexity of building the preference list of v is O(V + |]),
where |¢| is the number of ¢-functions in the target program and V is the number
of variables. In practice this complexity is O(V), because each virtual tends to
appear in a constant number of ¢ functions. The complexity of performing the
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Fig. 6. The algorithms ComputePreference and ComputeWeight.

ordering is O(R x log R), where R denotes the number of physical registers in
the target program. Given that the maximum size of each cell in the preference
list is V, it can also be ordered in O(V') using the bucket sort method [8].

The Spilling Heuristics If, at any point in the dominance tree, the number
of live ranges is larger than the number of available physical registers, then
some virtual must be spilled. The problem of minimizing the number of registers
sent to memory in an SSA-form program is NP-complete [26]. We decide which
variables should be spilled during the coloring phase based on a simple heuristics.
We use the algorithm in Figure 6 to compute the weight of variables, where L(T)
is the loop nesting depth of the basic block that contains instruction I, and s
is the size of v’s live range, which is given by the number of instructions and
control flow edges that it crosses. The smaller the weight of a variable, the bigger
the chance that it will be spilled. The weight of a variable can change during
the color assignment phase. As we show in Section 4.6, it is beneficial to deduct
from the weight of a variable defined by a ¢-function the contribution of the
parameters that have been already spilled.

Handling Pre-colored Virtual Registers Constraints imposed by the com-
puter architecture and the compiler may require that specific registers be allo-
cated to some virtuals. These virtuals are called pre-colored or fized registers.
The polynomial solution to SSA-based register allocation does not support pre-
colored registers. Indeed, a general pre-coloring of a chordal graph cannot be
extended to a full coloring in polynomial time, unless P = NP [1]°. With the
objective of keeping our implementation simple, we adopt the approach of [10,
25] and avoid assigning to a virtual v any physical register r if the live range of

5 This problem is polynomial if each color appears at most once in the pre-coloring [1]



v overlaps the live range of any other virtual pre-colored with r. We can use the
interval representation of v and r to efficiently determine whether the assignment
is safe.

4.6 The SSA-deconstruction Phase

Traditional instruction sets do not implement ¢-functions. Thus, once every
virtual in the target program has been assigned a location [, which is either a
physical register or a memory slot, ¢-functions must be replaced by concrete
instructions. A ¢ equation V = ¢M, where M is a m x n matrix, represents n
parallel copies (I(a1),l(az2),...,l(am)) = ¢((a1;),1(a2;),-..,l(am;)). The SSA-
elimination problem amounts to how to sequentially transfer the values from
each [(a;;) to its counterpart [(a;) while preserving the semantics of the parallel
copy. This is, in essence, a scheduling problem [4]: the copy (a;) = l(a;;) can be
scheduled safely if any other copy that uses [(a;;) as a destiny has already been
scheduled; we let this operation to be called a safe copy. Safe copies are described
in the table below . We let Qj be theset {ai1j,asj,. .., an;} of parameters coming
from block Bj, and we let Q be the set {a1, as,...,a,} of variables defined by the
¢-equation. After inserting a safe copy at the end of B; to resolve the transference
l(a;) = l(a;;), we remove a; from @ and we remove a;; from Q;. The safe copies
are inserted until no longer possible:

las) | Uaij) pre-condition Operations
1 r m store r in m
2 m r PvecQy,l(v)=r | load r from m
3 Tz Ty Te =Ty do nothing
4 To Ty PveQylv) =1y rx := ry
5 m m do nothing

If no safe copy can be inserted, the copy operations that remain to be de-
stroyed constitute a perfect permutation [16]. Thus, in the final step of the
algorithm, we need to swap locations to break cycles; safe copies are no longer
inserted after this point. We have implemented swaps of integer registers as
sequences of three xor instructions. A backup register must be used to swap
floating point values, as proposed by Briggs et al. [4]. Figure 7 illustrates our
SSA-elimination algorithm. Notice that there is a permutation of the physical
registers R2, R3, R4 between the definition vector and the column fed by block
X. Such permutation cannot use safe copies, and must be eliminated by a se-
quence of register swaps. The transferring of values between block Y and block
7 can be completely implemented via safe copies.

4.7 Spill Code Placement

During this phase, load and store instructions are inserted into the target code
to handle spilled virtuals used or defined in instructions other than ¢-functions.

6 The ‘do nothing’ operation can be seen as an instance of register coalescing.
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Fig. 7. (a) Five ¢-functions joining two basic blocks. (b) Tail of block X, after ¢-
elimination. (c¢) Tail of block y, after ¢-elimination.

Because of the single assignment property, only one store is necessary to pre-
serve the definition of a spilled variable. We attempt to recycle loads among
different uses of the same spilled register whenever possible. This optimization
is only applicable inside a basic block. Notice that further loads and stores are
inserted during the SSA-elimination phase due to ¢-related virtuals that have
been spilled. Nevertheless, this phase is completely independent of the SSA-
elimination step, and these two stages can be executed in any order. We do not
spare registers for the insertion of spill code, e.g loads and stores. Still during
the coloring phase, if a variable v is spilled, each use of v is replaced by a fresh
virtual v/, which is mapped to the same memory location as v. The register
allocated to v’ will be the target of the load instruction.

5 Experimental Results

We have implemented the proposed algorithm in C++, using the LLVM [15]
platform, version 1.8. Our implementation does not use LLVM’s data struc-
tures directly. Instead, we dump the compilers’ intermediate representation in
our framework, process it, and map the results back into LLVM’s back end.
We opted for this strategy in order to facilitate the development and debug-
ging of our allocator. Our entire framework has about 2,600 lines of uncom-
mented code, including code responsible for implementing liveness analysis, phi-
deconstruction, removal of critical edges and auxiliary data structures (lists,
trees, etc). We have used two collection of benchmarks in our experiments. The
first set of programs comes from SPEC-CPU 2000. The second set is the LLVM’s
test suite: a collection of 214 integer and floating-point applications that include
benchmarks such as Fhourstones, FreeBench, MallocBench, Prolangs-C,
ptrdist, mediabench, CoyoteBench, etc. The LLVM test suite has provided
us with 1,172 .c/.cpp files and 590 .h files, comprising 641,708 lines of C code.
The hardware used for the tests is a Dual 1.25 GHz powerPC G4 with 2MB
L3 cache and 1.25 GB DDR SDRAM running Mac OS X version 10.4.8. We
have compiled and run our benchmarks using seven different register allocators:



(Simple): the naive algorithm, that spills every temporary. (Local): performs
local allocation, that is, it attempts to keep values in registers along the same
basic block, and spills the variables alive at the block boundaries. (LLVM): the
LLVM default algorithm. This is a modern version of linear scan. Before the
register assignment phase, it executes an aggressive coalescing pass. Holes in
the live ranges of variables are filled with other virtuals whenever possible. One
particular characteristic of this algorithm is that it backtracks in the presence of
spills: if a variable v is spilled, the allocation restarts from the beginning of v’s
interval. This optimization avoids reserving registers to insert spill code. As a fur-
ther optimization, the algorithm tries to use spilled values directly from memory
whenever it is possible, in order to minimize the number of loads/stores inserted
due to spilling. For a detailed description of the algorithm, see [10]. (Ch -01)
the plain SSA-based register allocator without any of the optional extensions
shown in Figure 2. (Ch -02) SSA-based register allocation with global register
coalescing. (Ch -03) SSA-based allocator with register coalescing and coalesc-
ing of ¢-related virtuals in memory, as described in Section 4.4. (GCC -02) The
gce compiler. We include gec for reference purposes, given that it is a well know
compiler, although it uses a back-end different than the other algorithms.

We do not compare compilation times, because our algorithm has not been
directly implemented in LLVM, i.e, the dumping of data slows the compilation
substantially. We point that the asymptotical complexity of Ch -01 is the same
as one iteration of LLVM’s alg. The coalescing heuristics in Ch -02 has increased
the compilation time in about 11%, and the merging of equivalence classes in Ch
-03 has added 16% to the compilation time of Ch -01. In our experiments we
vary the number of registers available in the target architecture. The PowerPC
register bank contains 32 integer registers, but 3 are reserved by the PowerPC
ABI (they are used for heap and stack addressing). Figure 8 gives the absolute
running time of the 214 applications from the LLVM test suite when compiled
with 4, 8 and 29 (the maximum number) general purpose registers. On the
bottom of the figure we distinguish the applications whose running time, when
compiled with our algorithm with 7 registers (four general purpose), was greater
than 5 seconds. This happened for 33 applications, which count for about 94%
of the total execution time. We also display the five largest absolute running
times that we found among the benchmarks.

Table 1 shows the results obtained during the compilation of programs from
the SPEC-CPU 2000 with 11 integer and 32 floating-point registers available. We
present running time and static data, which consists of the number of variables
spilled (spill), the maximum amount of space (in four bite words) reserved
on the stack frame to stored spilled values (stack), plus the number of stores,
loads, moves and xors present in the final assembly code. Notice that some of
these instructions have not been inserted by the register allocator, but are part
of the program itself. The algorithms used are Ch -01, Ch -03 and LLVM’s
implementation. The rows labeled Ratio contain the execution time of the code
produced with the LLVM’s algorithm divided by the execution time produced
by the different versions of our algorithm.
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Fig. 8. Total execution time for 214 applications compiled with different register all-
cators and different number of general purpose registers.

Register allocation before SSA-elimination tends to produce lower number
of spills. Consequently, the target code has fewer loads and stores, and requires
less space on the memory stack. However, the splitting of live ranges causes
the insertion of a large number of move and xor instructions in the produced
assembly code. Because memory accesses are more expensive than copies, this
tradeoff is advantageous in situations where the register pressure is high. Our
academic implementation was able to outperform the industrial quality imple-
mentation of LLVM in most of the cases when the number of general purpose
registers available was reduced to 8. Moreover, in the tests performed on the
LLVM benchmarks with four general purpose registers, the performance gain
of Ch -01 was approximately 9.5%, whereas the experiments in the SPEC2000
programs produced performance improvements as high as 38%, as in bzip2. No-
tice that in an architecture plenty of physical registers, spills seldom happen, yet
the extra move/xor instructions remain as a burden in the SSA-based alloca-
tor. This fact suggests the existence of a performance threshold between register
allocation before and after the elimination of ¢-functions. Figure 9 compares
our algorithm and the LLVM’s implementation with four different numbers of
general purpose registers: 4, 8, 12 and 16. Around 12 registers the fewer number
of spills stops compensating for the large number of move and xor instructions
that the SSA-based algorithm requires to keep the variables from been spilled.



gzip | vpr | mcf |parser|bzip2|twolf|crafty| art |ammp|equake
Spill| 247 | 1657 | 93 750 288 | 3326 | 3222 | 138 | 637 | 150
stack| 84 394 | 100 96 202 | 385 | 421 104 | 74 169
Store| 780 | 5274 | 364 | 2970 | 699 |(13479| 6914 | 437 |2252| 362
Load | 1173 |12126| 617 | 6363 | 1171 |22333| 15265 | 738 [4746| 782
Move | 916 | 8118 | 257 | 4627 | 685 | 7158 | 6534 | 380 [4046| 482
Xor | 356 | 1170 | 94 666 245 | 2245 | 2211 | 189 | 634 | 124
Time | 89.93 |375.38|541.87| 41.79 [453.12|16.27 | 44.46 |330.97|18.20| 17.51
Ratio| 1.15 | 1.03 | 0.98 | 1.16 | 1.35 | 1.07 | 1.10 | 0.97 | 1.00 | 0.98

Spill| 192 | 1507 | 73 671 246 | 2217 | 2647 | 124 | 613 | 146
stack| 66 316 80 7 163 | 282 | 306 95 67 165
Store| 698 | 4556 | 342 | 2874 | 637 | 7086 | 6185 | 400 [2251| 359
Load | 1088 |11410| 595 | 6272 | 1109 |15873| 14513 | 700 |4755| 779
13| Move | 808 | 7245 | 201 | 4229 | 600 | 5933 | 6006 | 352 |3617| 461
14| Xor 53 435 25 99 38 502 | 744 18 | 106 1

15| Time | 88.28 (374.87|537.94| 41.12 |443.81{16.04| 45.06 |305.77|18.04| 17.02
16|Ratio| 1.16 | 1.04 | 0.99 | 1.18 | 1.38 | 1.08 | 1.08 | 1.05 |1.01| 1.01

17|8pill| 301 | 2241 | 120 | 990 | 369 |3643| 5260 | 197 | 717 | 252
18|stack| 107 | 421 127 177 245 | 405 | 526 159 | 102 | 271
19|Store| 855 | 5368 | 401 | 3315 | 802 |8511| 8673 | 507 |2503| 494
20| Load | 1253 |11146| 622 | 6264 | 1312 [16610| 15996 | 733 |4511| 970
21| Move | 219 | 3326 | 90 1575 | 180 | 2688 | 2190 | 164 |1836| 160
22| Xor | 23 | 363 7 75 29 | 325 | 621 18 | 82 1
23| Time [103.13|388.05(533.27| 48.71 [611.15|17.36| 48.83 |322.28|18.15| 17.18
Table 1. Static data collected for SPEC2000 with 11 registers (8 general purpose).
(lines 1-8): Ch -01. (lines 9-16): Ch -03. (lines 17-23): LLVM’s alg. Time given in secs,
is the running time of the applications.
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6 Conclusion

This paper has presented a SSA-based register allocator, which introduces novel
approaches for global register coalescing, TSSA to CSSA transformation and
SSA-elimination. Our experiments point that this algorithm is a good alternative
for architectures with few registers, such as x86, or the Thumb subset of ARM, with
eight general purpose registers. We are currently adapting our algorithm for JIT
compilation. This version will be built directly into the LLVM core, and we
expect that it will be as fast as the current algorithms available in that compiler.
Further details about this project, and the implementation of our framework are
available at http://compilers.cs.ucla.edu/fernando/projects/soc/.
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A Lemmas and Theorems

Lemma 2. Consider the ¢-equation V.= ¢ M, where V = (as,...,a,). Let the
§t column of M be V; = (a1j,...,an;). We let B be the basic block where V is
defined, and we let B; be the basic block that feeds the jth column of M. The
register pressure at the end of B; can never exceed the register pressure after the
definition of the variables in V.

Proof. Let out(B;) be the set of variables alive at the end of B;. Let S; =
{a1j, ..., an;} be the set constituted by the elements of V;, and let T; = {¢1, ..., tm}
be the set of variables that are alive after the definition of V', but that are
not in V. We see that the set of variables alive at the end of block B; is
out(B;) = S; UT;. Let S = {ai1,...,an}. |S] > |9;| because |V| = |V;|, and
all the positions of V are filled with distinct elements, what is not necessarily
the case in V;. The set of variables alive past the definition of V' is A = SUT', and
by the definition of T', we have that SN T = (). We conclude that A > out(B;).

Theorem 2. Let P be a program whose control flow graph does not contain
critical edges. PhiLifting does not increase the global register pressure in P.

Proof. This lemma amounts to saying that if P could be compiled with K reg-
isters before the control flow transformation, it still can be compiled with K
registers after it. From Lemma 2 we know that the register pressure at the end
of a basic block that feeds a ¢-equation V' = ¢ M is never greater than the regis-
ter pressure after the definition of the virtuals in V. Because our target control
flow graphs have no critical edges, PhiLifting only changes the register pressure
at the end of basic blocks that feed ¢-functions, which will be bounded by the
register pressure past the definition point of those ¢-functions.

Lemma 3. If no safe operation applies, then there is no virtual a; such that
Z(CLZ') =m. .

Proof. Immediate the from inspection of the table of preferences. a

Lemma 4. If no safe copies can be used to transfer values from Q; to Q, and if
l(a;) # a;j, then there exists a, € Q and a,, € Q; such that l(ay) = l(a;;) and
lay.) = Uai).

Proof. If there were a; < a;; such that [(a;) is not used by any virtual of @,
then either safe operation 2 or safe operation 4 would apply. From Lemma 3 we
have that Va, € Q,l(az) # m. If [(a;;) is not used by any virtual in @, then
there exists at least one register R used by some virtual from @ that is not used
by any virtual from @;, and either safe operation 2 or 4 applies. O

Lemma 5. If Q and Q; share n pairs l(a;) = l(ai;, such that l(a;) # 1(as;),
then the transference of values from @Q; to Q) can be performed with at most n
operations.



Proof. The proof is by induction on n.

Basis: n = 1. In this case, there exists a virtual a; in @ such that {(a;) = R;
and there exists a virtual a;; such that I(a;;) = R;. Because the only miscolored
variable in @; is a;;, the register R; cannot be in use by any other register of
Q. Therefore, we can transfer the coloring with either safe operation 2 or 4.

Induction Hypothesis: the lemma is true for up to n miscolored registers.

Inductive Step: assume that there exists n+ 1 miscolored pairs of variables
between @ and @Q;. Let a; < a;; be one of these pairs, so that I(a;) = R;
and I(a;;) = R;. If R; is not in use by any miscolored variable of Q;, we can
perform the transfer via either a copy or a load instruction. Otherwise R; is
miscoloring another virtual a,,, and we can transfer the coloring by means of
a swap sequence. After the transfer of a;;’s color, this virtual can be removed
from the set of miscolored variables, and the result follows by the induction
hypothesis. a



