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Abstract. The register allocation problem has an exact polynomial so-
lution when restricted to programs in the Single Static Assignment (SSA)
form. Although striking, this major theoretical accomplishment has yet
to be endorsed empirically. This paper presents the first experimental
results concerning a complete SSA-based register allocation algorithm.
We describe novel techniques to perform register coalescing and SSA-
elimination. In order to validate our allocation technique, we extensively
compare different flavors of our method against a modern and heavily
tuned implementation of the linear-scan register allocator. The proposed
algorithm consistently produces faster code when the target architecture
provides a small number of general purpose registers. For instance, we
have achieved an average speed-up of 9.2% when limiting the number of
registers to 7 (four general purpose, three reserved). By augmenting the
algorithm with an aggressive coalescing technique, we have been able to
raise the speed improvement up to 13.0%.

1 Introduction

Register allocation is the process of mapping a program that uses an unbounded
number of virtual variables into a program that uses a fixed number of physical
registers, in such a way that virtuals with overlapping live ranges are assigned
different registers. If the number of registers is not enough to accommodate all
the virtuals alive at some point of the control flow graph, some of these variables
must be mapped into memory. These are called spilled virtuals.

The Static Single Assignment (SSA) form is an intermediate representation
in which each variable is defined exactly once in the program code [18]. Prior
work [3] has conjectured the using SSA Form could benefit register allocation
due to live range splitting; however, it was only in 2005 and 2006 that several
research groups [2, 5, 13] have shown that interference graphs for regular pro-
grams are chordal, and can therefore be efficiently colored in polynomial time.
A regular program [6] is a program in SSA form with the additional property
that undefined variables are never used. This result is particularly surprising,
given that Chaitin et al [7] have shown that register allocation is NP-complete
for general programs.

Most of the work on SSA-based register allocation remains purely theoretical.
This paper presents what we believe is the first complete SSA-based register
allocator. We describe the many phases that constitute the register allocation



process, from the initial assignment of physical registers to variables to the final
generation of running code. We compare the proposed algorithm, and some of
its variations, against a state-of-the-art implementation of the traditional linear
scan used in LLVM [15], an industrial strength compiler. We have been able to
compile and run a large range of benchmarks, such as SPEC2000, MediaBench,
FreeBench, etc. In addition to the execution time of the compiled benchmarks,
we use static metrics such as the number of loads and stores inserted by each
register allocator in order to compare the performance of the algorithms under
evaluation.

This paper also describes a novel collection of methods that we use in order
to improve the quality of the code produced by our algorithm. These techniques
include: (i) heuristics for performing register coalescing; (ii) a transformation of
the control flow graph to facilitate the deconstruction of φ-functions and (iii) an
aggressive analysis that can be used to reduce the number of loads and stores
inserted in the final code. The objective of (iii) is to map virtuals that are related
by φ-functions to the same memory address. The techniques (i) and (iii) can be
used/removed from the algorithm in a very modular way, and, even without
them, our implementation is very competitive with other register allocators.

2 Some Intuition on SSA-based Register Allocation

We illustrate the simplicity and elegance of SSA-based allocation with an ex-
ample. The program in Figure 1 was taken from [16]. Figure 1 (b) is the same
program, after the SSA elimination phase. Figure 1 (c) shows the sequence of as-
signments that would be performed by a traditional linear scan algorithm. This
algorithm would traverse blocks 1, 2, 3 and finally block 4. When allocating reg-
isters in block 3, the allocator has to deal with temporaries C and E that have
already been assigned machine registers in block 2: a self imposed conflict. The
graph in Figure 1 (c) cannot be colored with two colors. Its chromatic number
is 3.
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Fig. 1. (a) Example control flow graph in SSA-form [16]. (b) Program after the SSA
elimination phase. (c) Interference graph and sequence of register assignments.



Because each variable in a SSA-form program is defined only once, self-
imposed conflicts do not occur in SSA-based register allocation. That is, when
the allocator first meets with the definition of a variable v, v cannot have been as-
signed a register. For a formal proof, see [14]. Figure 2 (a) outlines the dominance
tree of our example program. The allocator presented in this paper traverses the
dominance tree in pre-order, assigning registers to temporaries. Figure 2 (b)
shows the allocation process. The interference graph of the SSA-form program
can be compiled with two registers: one register less than the minimum neces-
sary in the program after SSA-elimination! Figure 2 (c) shows the final program.
Notice that we use three xor instructions to transfer the values of C1 and E1
into C and E. This example is not a coincidence: the demand of registers in the
SSA-form program is never greater than the demand of registers in the original
program [13]. Furthermore, a greedy allocator that traverses the dominance tree
in pre-order always finds an optimal coloring, if there is no aliasing of registers
and no pre-colored registers.
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Fig. 2. (a) Dominance tree of the example program. (b) Interference graph of the SSA-
form program, and assignment sequence. (c) Final program after SSA-based register
allocation.

2.1 A Note on the Representation of φ-functions

Following the notation established by Hack et al [14], we represent the φ-functions
existent in the beginning of a basic block as a matrix equation. Figure 3 (a) out-
lines the general representation of a φ-matrix. And Figure 3 (c) gives the intuitive
semantics of the matrix shown in Figure 3 (b).

An equation such as V = φM , where V is a n-dimensional vector, and M
is a n×m matrix, contains n φ-functions such as ai ← φ(ai1, ai2, . . . aim). Each
possible execution path has a corresponding column in the φ-matrix, and adds
one parameter to each φ-function. The φ symbol works as a multiplexer. It will
assign to each element ai of V an element aij of M , where j is determined by
the actual path taken during the program’s execution.
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Fig. 3. (a) φ-functions represented as a matrix equation. (b) Matrix equation repre-
senting two φ-functions and three possible execution paths. (c) Control flow graph
illustrating the semantics of φ-functions.

3 Related Work

Many industrial compilers use the SSA form as an intermediate representation:
Gcc version 4.0 [12], Sun Microsystems Java HotSpot Virtual Machine [21],
IBM’s Java virtual machine Jikes RVM [22] and LLVM [15]. However, these
compilers do not perform register allocation on SSA-form programs: instead,
they require a SSA elimination pass that replaces φ-functions with copy instruc-
tions, and run the register allocator on the resulting code.

In 2005 Pereira and Palsberg [16] showed that 95% of the interference graphs
of methods in the Java 1.5 Standard Library are chordal after the SSA elimina-
tion phase. They described heuristics for color assignment and spilling on chordal
graphs, but they did not take advantage of SSA properties. The only SSA-based
register allocator that has been described so far is a theoretical algorithm due
to Hack et al [14]. Some differences between our algorithm and Hack et al’s are
(i) the way we perform register coalescing, (ii) the way we handle pre-colored
registers, (iii) the spilling heuristics. However, the main difference between these
algorithms is that we allow virtuals in φ-functions to be mapped to memory;
what happens due to spilling. In Hack’s case, if a parameter of a φ-function
is spilled, and it is not possible to re-load it in the basic block from where it
flows into the φ-function, all the other parameters and the defined variable must
also be spilled. Our approach gives the compiler extra flexibility, in order to
produce code of better quality, but requires a more complex φ-deconstruction
algorithm. Once a valid register assignment has been found, neither algorithm
requires further spilling during the SSA-deconstruction phase.

The name Linear Scan is used to designate a number of register allocation
algorithms based on the work of Poletto and Sarkar [17]. The original linear scan
register allocator was intended to be fast enough to be used in JIT compilers.
Subsequence versions of the algorithm attempt to produce code of better quality
without seriously compromising the small compilation time. Traub et al’s [23]



and Wimmer et al’s [24] versions handle holes in the live ranges of virtuals and
split intervals to avoid spilling. Evlogimenos’ [10] extensions allow to coalesce
move instructions and to fold memory operands into instructions to save loads
and stores. A key difference in this last work is the backtracking in face of
spilling. Finally, the algorithm proposed by Sarkar et al [19] gives another poly-
nomial time exact solution to the register allocation problem. Sarkar’s algorithm
does not rely on the SSA-transformation to find an optimal register assignment.
Instead, it uses copy instructions and swaps, in a way very similar to the method
used in our SSA-elimination phase (see Section 4.5) to split the live ranges of
virtual registers. Sarkar’s algorithm and SSA-based register allocation require
the same number of registers, which equals the size of the maximum number of
live-ranges that cross any point of the control flow graph. The main difference
between all these versions of linear scan and the SSA-based register allocators
is that, in the former case, register allocation occurs after φ-functions have been
removed from the target code, whereas in the later, it happens before. Another
difference is that while in a SSA-based allocator basic blocks are visited in a
pre-order traversal of the dominance tree, this ordering is not required in linear
scan.

The algorithm described by Cytron et al [9] produces programs in Conven-
tional Static Assignment Form (CSSA). In this flavor of SSA-form, the live range
of virtuals that are part of the same φ-function do not overlap, because they de-
scribe the same variable. The static analysis framework proposed by Sreedhar
et al [20] to convert a program from non-convetional to conventional SSA-form
is very similar to the transformation techniques described in Sections 4.1 and
4.3. In both cases copy instructions are used to split the live range of variables.
The main difference is that Sreedhar et al’s method incrementally inserts non-
redundant copy instructions in the control flow graph, whereas we start with a
completely partitioned program, and then proceed to the removal of redundant
copy instructions until no redundancy remains. Both analysis have the same
complexity and lead to similar results.

4 The Proposed Algorithm

Figure 4 gives an overview of our register allocation algorithm. We identify six
main phases in the algorithm, and each of them is further detailed in this section.
The grey boxes outline phases that are optional. They may improve the quality
of the code produced, but may cause a degradation in the compilation time of the
algorithm. Figure 4 shows the SSA deconstruction phase preceding the insertion
of spill code; however, the inverse ordering is also possible.

4.1 φ-Lifting: Pre-transformation of the control flow graph

Our algorithm allows the partial spilling of parameters of φ-functions, that is,
some parameters of a φ-function can be mapped to memory, whereas others are
located in registers. In order to guarantee that no further spilling will happen
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during the SSA-deconstruction phase, we ensure that, if the parameter and the
definition of a φ-function are located in memory, they are assigned the same
memory address.

In order to facilitate our exposition, we define the equivalence class of φ-
related virtuals 1 as follows: (i - reflexivity) any virtual v is φ-related to itself;
(ii - symmetry) if virtual v is φ-related to virtual u, then u is φ-related to v;
(iii - transitivity) if v1 is φ-related to v2, and v2 is φ-related to v3, then v1 is φ-
related to v3. (iv) given a φ-function such as vi = φ(vi1, vi2, . . . , vim), the virtuals
vi, vi1, vi2, . . . , vim are φ-related; Notice that the set of all the φ-related equiv-
alence classes completely partition the set of virtuals in a SSA-form program.
For instance, Figure 5 (a) shows an example control flow graph containing 6 φ-
function, and three equivalence classes of φ-related virtuals: {v1, v3, v4, v5, v6, v7, v9},
{v2, v8} and {v10, v11, v12, v13, v14}.

Ideally, we would like to assign the same memory address to all the φ-related
virtuals that have been spilled. However, this may compromise the correctness of
the target program, because the live ranges of φ-related virtuals might overlap.
Interferences between the live ranges of φ-related virtuals are mostly introduced
by compiler optimizations such as global code motion [20] and copy folding
during SSA construction [4]. For instance, assume that virtuals v3 and v6 have
been spilled in the program show in Figure 5 (a). Although they are φ-related,
it is not correct to store them in the same memory cell because their live ranges
overlap in block 7. On the other hand, this problem does not exist if v2 and v8

are spilled, because they are never simultaneously alive in the target program.
In order to ensure that the live ranges of φ-related variables do not overlap, we
resort to a simple transformation of the control flow graph, which is described
by the PhiLifting 2 algorithm given below:

1 φ-related equivalence classes are called φ-congruence classes in [20]
2 occasionally we will denote φ-functions as ai = φ(ai1 : B1, ai2 : B2, . . . , aim : Bm), meaning

that variable ai1 comes from block B1.
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Fig. 5. (a) Control flow graph before the splitting of the live ranges of φ related virtuals.
(b) Program transformed by PhiLifting. (c) Program transformed by PhiMemCo-
alesce.

PhiLifting(ai = φ(ai1 : B1, ai2 : B2, . . . , aim : Bm))
Create new virtual vi

Add copy instruction I = 〈ai := vi〉 at the end of block Bj

Replace ai by vi in φ
For each virtual aij ∈ φ,

Create new virtual vij

Add copy instruction I = 〈vij := aij〉 at the end of block Bj

Replace aij by vij in φ

Notice that if vij is a virtual created by the PhiLifting algorithm, then
vij is alive only at the end of the block Bj that feeds it to its φ-function. Be-
cause each parameter of a φ-function comes from a different basic block, the
control flow graph transformed by the PhiLifting algorithm has the follow-
ing property: if v1 and v2 are two φ-related virtuals, then their live ranges do
not overlap. The transformed control flow graph contains one φ-related equiva-
lence class for each φ-function, and one equivalence class for each virtual v that
does not participate in any φ-function. Following with our example, Figure 5 (b)
outlines the result of applying PhiLifting on the control flow graph given in Fig-
ure 5 (b). The transformed program contains 14 equivalence classes: {v1}, {v2},



{v4}, {v5}, {v7}, {v11}, {v12}, {v14}, {v9, v15, v18}, {v3, v16, v19}, {v8, v17, v20},
{v10, v21, v22}, {v6, v23, v25} and {v13, v24, v26}.

Lemma 1. Consider the φ-equation V = φM , where V = (a1, . . . , an). Let the
jth column of M be Vj = (a1j , . . . , anj). We let B be the basic block where V is
defined, and we let Bj be the basic block that feeds the jth column of M . The
register pressure at the end of Bj can never exceed the register pressure after the
definition of the variables in V .

Proof. Let out(Bj) be the set of variables alive at the end of Bj . Let Sj =
{a1j , . . . , anj} be the set constituted by the elements of Vj , and let Tj = {t1, . . . , tm}
be the set of variables that are alive after the definition of V , but that are
not in V . We see that the set of variables alive at the end of block Bj is
out(Bj) = Sj ∪ Tj . Let S = {a1, . . . , an}. |S| ≥ |Sj | because |V | = |Vj |, and
all the positions of V are filled with distinct elements, what is not necessarily
the case in Vj . The set of variables alive past the definition of V is A = S∪T , and
by the definition of T , we have that S ∩ T = ∅. We conclude that A ≥ out(Bj).

Theorem 1. Let P be a program whose control flow graph does not contain
critical edges. PhiLifting does not increase the register pressure in P .

Proof. From Lemma 1 we know that the register pressure at the end of a basic
block that feeds a φ-equation V = φM is never greater than the register pressure
after the definition of the virtuals in V . Because our target control flow graphs
have no critical edges, PhiLifting only changes the register pressure at the end
of basic blocks that feed φ-functions, which will be bounded by the register
pressure past the definition point of those φ-functions.

4.2 φ-Analysis

The φ-analysis groups into equivalence classes the virtuals that are related by
some φ-function. Because of the transformation performed by the PhiLifiting
algorithm, the φ-analysis has a very efficient implementation: each φ-function
v = φ(v1, . . . , vm) already determines an equivalence class, e.g {v, v1, . . . , vm}.

4.3 Aggressive Coalescing of φ-related virtuals

Although the PhiLifting algorithm produces correct programs, it is too con-
servative, because all the φ-related virtuals are used in the same φ-function. We
now describe a coalescing technique that reduces the number of φ-related equiv-
alence classes to the minimum number that do not compromise the correctness
of the target program. In the algorithm PhiMemCoalesce below, SI is the
set of instructions created by the procedure PhiLifting, and SQ is the set of
equivalence classes of the program transformed by PhiLifting.

PhiMemCoalesce(SI = {I1, I2, . . . , Iq}, SQ = {Q1, Q2, . . . , Qr})
For each instruction I = 〈vij := aij〉 ∈ SI ,



SI := SI \ I
Let Qv be the equivalence class of vij

Let Qa be the equivalence class of aij

If Qv ∩ Qv = ∅
SQ := SQ \ Qv

SQ := SQ \ Qv

SQ := SQ ∪ {Qa ∪ Qv}

In order to perform operations such as Qi ∩ Qj efficiently, we rely on the
interval representation of live ranges commonly used in versions of the linear
scan algorithm. Each virtual is represented as a collection of ordered intervals
on the linearized control flow graph. Thus, a set Q of virtuals is a set of ordered
integer intervals. In this way, the intersection of two φ-equivalence classes Qi

and Qj can be found in time linear on the number of disjoint intervals in both
sets. Because a φ-equivalence class can have O(V ) disjoint intervals, the final
complexity of algorithm PhiMemCoalesce is |Li| × V .

Figure 5 (c) illustrates the application of algorithm PhiMemCoalesce on
the program shown in Figure 5 (b). The procedure PhiLifting inserts 12 copy
instruction into the target control flow graph. PhiMemCoalesce can remove
all but four of these instructions: v16 = v1, v22 = v12, v18 = v4 and v23 = v3. If,
for example, v1 and v16 were coalesced, the interfering variables v3 and v9 would
be placed in the same φ-equivalence class.

4.4 The Color Assignment Phase

Live ranges of variables in a SSA-form program are contiguous along any path on
the dominance tree. For instance, Figure 6 (a) shows the dominance tree of the
program given in Figure 5 (c). Figure 6 (b) outlines the live range of v3 across
the path formed by the blocks 2, 6 and 7, and Figure 6 (c) depicts the live range
of v12 along the blocks 2 and 5. This continuity allows a very simple algorithm
to be used to assign physical registers to virtuals: we traverse the dominance
tree of the target program allocating colors to live ranges in the order in which
they appear. In the absence of pre-colored registers and aliasing this assignment
is optimal [11].

The interval representation ensures that φ-functions are treated as parallel
copies. Given a φ-equation V = φM , all the virtuals in the vector V are marked
as alive in the beginning of the basic block where they are defined. Let S be the
set of virtuals from a column of the matrix M , and assume that these virtuals
are feed into the φ-matrix from block B. All the virtuals in S are marked as
alive at the end of B, but not beyond. For example, Figure 6 (d) shows the live
ranges of variables alive in blocks 1 and 2 of the program in Figure 5 (c).

Register coalescing If two virtuals vd and vu are related by a move instruc-
tion such as vd = vu, it is desirable that the same physical register be allocated
to both vd and vu. In this case, the copy instruction can be removed without
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compromising the semantics of the program. We perform this assignment if vu

is not alive past the definition point of vd. The coalescing in this case is al-
ways safe, given Lemma 2. Moreover, because there is no holes in the joint live
range of vu and vd, it does not compromise the optimality of the color assignment
algorithm. Although simple, this optimization is very important, because it elim-
inates most of the redundant instructions added by the PhiLifting algorithm
from Section 4.1, if the PhiMemCoalesce pass is not used.

Lemma 2. Two virtuals v1 and v2 of an strict SSA-form program interfere if,
and only if, either v1 is alive at the definition point of v2, or vice-versa.

Proof. See [13]

It is also interesting that the parameters and the definition of φ-functions
be assigned the same physical register. Such assignment reduces the number of
instructions necessary to eliminate φ-functions during the SSA-deconstruction
phase. We say that a virtual vij is a fixed point in a φ-function such as vi =
φ(vi1, . . . , vij , . . . , vim) if vi and vij are assigned the same physical register during
the coloring phase. It has been proved that the problem of maximizing the
number of fixed points in a SSA-form program is NP-complete [14]. Therefore,
we use heuristics in order to increase the number of fixed points in the final
register allocated code.

For each virtual that participates in a φ-function, we maintain a preference
list of physical registers. This data structure is used when necessary to assign
a color to the virtual. In this case, the preference list is traversed in decreasing
order, and the first available physical register is chosen. The preference list for
a virtual can be computed according to the algorithm ComputePreference,
given below. We let l(v) be the location of virtual v, which may be a register
(R), a memory location m, or an undefined value ⊥ if the virtual has be been
assigned a location by the register allocator.

ComputePreference v



Foreach physical register R
p[r] := 0

If v is defined by a φ-function v = φ(v1, . . . , vp),
For each vi ∈ φ

if l(vi) = R
p[R] := p[R] + 1

For each φ-function vd = φ(v1, . . . , v, . . . , vq)
if l(vd) = R

p[R] := p[R] + 1
return p sorted in decreasing order.

The preference list attempts to maximize the number of fixed points once a
physical register is assigned to a variable, given the information known until that
moment. The worst case complexity of building the preference list is O(V ×|φ|),
where |φ| is the number of φ-functions in the target program and V is the number
of variables. In practice this complexity is O(V ), because each virtual tend to
appear in a constant number of φ functions. The complexity of performing the
ordering is O(R × log R), where R denotes the number of physical registers in
the target program. Given that the maximum size of each cell in the preference
list is V , it can also be ordered in O(V ) using the bucket sort method [8].

The Spilling Heuristics If the number of live ranges in any point of the
dominance tree is bigger than the number of available physical registers, then
some virtual must be spilled. Most of the register allocation problems related
to spilling are NP-complete, even when restricted to SSA-form program. For
instance, it is NP-complete the problem of minimizing the number of registers
sent to memory in an SSA-form program [25]. Again, we use heuristics to decide
which variables should be mapped into memory.

We define the weight of a variable v as the likelihood that v will not be spilled,
that is, the smaller the weight of a variable, the bigger the chance that it will
be spilled. The weight of all the variables can be computed statically, according
to the formula given below, where L(inst) is the loop nesting depth of the basic
block that contains instruction inst, and s is the size of v’s live range, which is
given by the number of instructions and control flow edges that it crosses. The
weight of a variable vi used in a φ-function depends on the basic block Bi that
feeds it into the φ-function. The weight of a variable defined by a φ-function is
the summation of the weigh of all its parameters.

ComputeWeigth v, s
w := 0
Let inst be the definition site of v

If inst 6= φ

w := w + 1 + 10L(inst)

Else let inst = 〈v := φ(v1 : B1, . . . , vp : Bp)〉
∀i, 1 ≤ i ≤ p

If v 6= vi



w := w + 1 + 10L(Bi)

∀ inst ∈ use sites of v
If inst 6= φ

w := w + 1 + 10L(inst)

Else let inst = 〈vaux := φ(v1 : B1, . . . , v : B . . . , vq : Bq)〉
If vaux 6= v

w := w + 1 + 10L(B)

return w/s

The previous formula can be used to statically compute the weight of all the
variables before register allocation starts. For greater accuracy, we can update
the weight dynamically. As we show in Section 4.5, if the definition and parameter
of a φ-function is in memory, no further instruction must be added to the final
code during the SSA-elimination phase. Thus, it is interesting to deduct from the
weight of a variable defined by a φ-function the contribution of the parameters
that have been already spilled. To illustrate the static formula, we compute the
spilling weight of each variable in Figure 5 (c). The table below outlines the
nested depth of each basic block:

Bi 1 2 3 4 5 6 7 8 9

L(Bi) 0 1 1 0 0 0 1 1 0

The weight of each virtual is given in the following table. Notice that φ-
functions do not contribute to the size of live-ranges. For instance, we consider
that v10 is used immediately after it is defined. As an example, we show how
the weight of v8 is computed. The size of the live range of this virtual is 6,
because it crosses the definition points of v11, v12, v4 and v5. Also, it is alive in
the two edges between blocks 2 and 3. The virtual is defined by a φ-function;
however, it is also the second parameter of the same φ-function. Thus, case v8

is spilled, nothing will have to be done for the second entry of that φ-function.
The contribution of v2 is 1 + 10L(B1) = 2. The final number is 2/6 = 0.3.

v v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v16 v22 v23

Σ(L(Bi)) 6 4 26 22 22 24 22 2 24 6 13 2 24 24 4 4 4

s 3 2 14 2 1 1 3 6 4 2 3 1 2 3 1 1 1

w(v) 2 2 1.86 11 22 24 7.3 0.3 6 3 4.3 2 12 8 4 4 4

Handling Pre-colored Virtual Registers The calling conventions adopted
by the compiler, and constraints imposed by the computer architecture may
require that specific registers be allocated to some virtuals. These virtuals are
called pre-colored. The polynomial solution to SSA-based register allocation does
not support pre-colored registers. Indeed, a general pre-coloring of a chordal
graph cannot be extended to a full coloring in polynomial time, unless P =
NP [1]3.

3 This problem is polynomial if each color appears at most once in the pre-coloring [1]



In order to keep the polynomial time exact solution, it is possible to further
partition the control flow graph by surrounding instructions that contain pre-
colored virtuals with single parameter φ-functions [13]. A similar approach is
adopted by [19]. We did not adopt this approach because it would require us to
change the flavor of SSA representation used in our compiler framework. With
the objective of keeping our implementation simple, we avoid assigning to a
virtual v any physical register r if the live range of v overlaps the live range
of any other virtual pre-colored with r. We build a small interference graph in
order to check for conflicts between virtuals and physical registers. This graph
is one order of magnitude smaller than the complete interference graph. Table 1
compares these sizes for some programs of SPEC2000 tested with our algorithm.

gzip vpr mcf parser bzip2 twolf crafty art ammp equake

(a) 25716 198816 6508 138304 20978 206267 213653 15285 176899 15742

(b) 339771 3538532 67353 1224197 499925 5243067 2445314 191638 1453721 301670

b/a 13.21 17.80 10.35 8.85 23.83 25.42 11.44 12.54 8.22 19.16

Table 1. Comparison between the sizes of (a) the graph of interferences between
virtuals and physical-registers and (b) the complete interference graph.

4.5 The SSA-deconstruction Phase

After the color assignment phase, every virtual register in the original program
has been assigned one physical location, which is either a physical register, or
a memory address, case the virtual has been spilled. Given an equation such as
V = φM , we let (a1, a2, . . . , an) = φ(a1j , a2j , . . . , anj) denote the transference of
the values from the jth column of the matrix. We let Bj denote the block that
feeds these values. The SSA-elimination phase consists in inserting instruction
in the target program to transfer the value stored in l(aij) to l(ai).

The algorithm used to eliminate φ-functions can be divided into two steps.
In the first step we use copies, stores or loads to transfer values whenever it is
safe to do it. In the second step we use sequences of swap instructions to transfer
the coloring of the remaining variables. For the purposes of this discussion we
assume a control flow graph without critical edges. The safe operations used in
the first part of the algorithm are given in the table below. We let Qj be the
set {a1j , a2j , . . . , anj} of parameters coming from block Bj , and we let Q be the
set {a1, a2, . . . , an} of variables defined by the φ-equation. After inserting a safe
operation to resolve the transference ai ← aij , we remove ai from Q and we
remove aij from Qj . The safe operations are used until no longer possible 4:

4 The ‘do nothing’ operation can be seen as an instance of register coalescing.



l(ai) l(aij) pre-condition Operations
1 R m store R in m
2 m R @v ∈ Qj , l(v) = R load R from m
3 Rx Ry Rx = Ry do nothing
4 Rx Ry @v ∈ Qj , l(v) = Rx Rx := Ry
5 m m do nothing

Lemma 3. If no safe operation applies, then there is no virtual ai such that
l(ai) = m. .

Proof. Immediate. ut

In the final step of the algorithm, swap instructions are used to transfer the
values stored in registers. if l(ai) 6= l(aij), we say that virtuals ai and aij are
miscolored. An interesting fact is that, if no safe operations applies, then the set
of registers used in the miscolored shorts constitute a perfect permutation. This
is proved in Lemma 4. Therefore, the coloring can be fixed with at most n − 1
swaps, where n is the number of miscolored variables.

Lemma 4. If no safe operation applies in the partition point between cliques Qj

and Q, and if ai ← aij is a pair of miscolored variable, then there exists ax ∈ Q
and ayz ∈ Qj such that l(ax) = l(aij) and l(ayz) = l(ai).

Proof. If there were ai ← aij such that l(ai) is not used by any virtual of Qj ,
then either safe operation 2 or safe operation 4 would apply. From Lemma 3 we
have that ∀ax ∈ Q, l(ax) 6= m. If l(aij) is not used by any virtual in Q, then
there exists at least one register R used by some virtual from Q that is not used
by any virtual from Qj , and either safe operation 2 or 4 applies. ut

Lemma 5. If Q and Qj share n pairs of miscolored variables, the coloring can
be transfered with at most n operations.

Proof. The proof is by induction on n.
Basis: n = 1. In this case, there exists a virtual ai in Q such that l(ai) = Ri

and there exists a virtual aij such that l(aij) = Rj . Because the only miscolored
variable in Qj is aij , the register Ri cannot be in use by any other register of
Qj . Therefore, we can transfer the coloring with either safe operation 2 or 4.

Induction Hypothesis: the lemma is true for up to n miscolored registers.
Inductive Step: assume that there exists n+1 miscolored pairs of variables

between Q and Qj . Let ai ← aij be one of these pairs, so that l(ai) = Ri

and l(aij) = Rj . If Ri is not in use by any miscolored variable of Qj , we can
perform the transfer via either a copy or a load instruction. Otherwise Ri is
miscoloring another virtual axy, and we can transfer the coloring by means of
a swap sequence. After the transfer of aij ’s color, this virtual can be removed
from the set of miscolored variables, and the result follows by the induction
hypothesis. ut
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5

2

1 t1(R1)

t2(m2)

t3(R2)

t4(R3)

t5(R4)

t41(R2) t42(m3)

t31(R4) t32(R4)

t21(m2) t22(R2)

t11(m1) t12(R1)

t51(R3) t52(R3)

:=ϕ

Block   Z

From
Block  Y

From
Block  X

st R1 [m1]

xor R2 R2 R4
xor R4 R2 R4
xor R2 R2 R4

swap R2 and R4:

Block  X
safe copies:

xor R3 R3 R4
xor R4 R3 R4
xor R3 R3 R4

swap R3 and R4: st R2 [m2]
R2 := R4
R4 := R3
ld R3 [m3]

Block  Y
safe copies:

(a) (b) (c)

Fig. 7. (a) Five φ-functions joining two basic blocks. (b) Tail of block X, after φ-
elimination. (c) Tail of block y, after φ-elimination.

We have implemented swaps of integer registers as sequences of three xor
instructions. A backup register must be used to swap floating point values, as
proposed by Briggs et al [4]. Figure 7 illustrates our SSA-elimination algorithm.
Notice that there is a permutation of the physical registers R2, R3, R4 between
the definition vector and the column feed by block X. Such permutation cannot
use safe operations, and must be eliminated by a sequence of register swaps.
The transferring of values between block Y and block Z can be completely im-
plemented via safe operations.

4.6 Spill Code Placement

After a valid color assignment has been found, it is necessary to insert load and
store instructions in order to transfer values to and from memory. Because of the
single assignment property, only one store is necessary to preserve the definition
of a spilled register. We attempt to recycle loads among different uses of the
same spilled register whenever possible. This optimization is only applicable
inside a basic block. This phase only handles spilled virtuals used or defined in
instructions other than φ-functions. Further loads and stores are inserted during
the SSA-elimination phase in order to deal with φ-related virtuals that have been
spilled. Notice that this phase is completely independent of the SSA-elimination
step, and these two stages can be executed in any order.

We do not spare registers for the insertion of spill code, e.g loads and stores.
Yet during the coloring phase, if a variable v is spilled, each use of v is replaced
by a fresh virtual v′, which is mapped to the same memory location as v. The
register allocated to v′ will be the target of the load instruction.

5 Step-by-step Example

We assume a hypothetical machine with only two registers X and Y and use the
program in Figure 5 to illustrate the several phases of our algorithm. Figure 8



(a) outlines the sequence of events that would take place during the color assign-
ment phase. Basic blocks are visited in a depth-first traversal of the dominance
tree. The order in which blocks are visited, in our example, coincides with their
numeric labels. For completeness we point out the sites where variables were
spilled. For instance, when block 1 is visited, virtual v1 is assigned register X,
virtual v2 is given Y and is spilled so that its register can be allocated to v16.
Notice that v1 and v2 have the same spilling weight (see table in Section 4.4);
the choice of v2 was arbitrary in this case.

v1:X
v2:Y
spill v2
v16:Y

1

v9:X
v3:Y
spill v3
v8:Y
spill v8
v11:Y
spill v9
v12:X

2

v4:X
v9:Y
v5:Y34

5 v22:X

v10:Y
v3:X
v23:X

6

v6:X
v13:Y
spill v6
v3:X
v6:X
v7:X
v14:Y

7

89

v1:X =
v2:Y =
st mA = v2:Y
v16:Y = v1:X

1

v9:mB = Φ(v1:X,v4:X)
v3:mC = Φ(v16:Y,v5:Y)
v8:mA = Φ(v2:mA,v8:mA)
v11:Y =
v12:X =

2

v4:X =
    v9:Y = ld mB
v5:Y = v9:Y

3

4
5
v22:X = v12:X

v10:Y = Φ(v11:Y,v22:X)
     v3:X  = ld mC
v23:X = v3:X

6

v6:mD          v23:X, v7:X
v13:Y     v10:Y, v14:Y
      v3:X = ld mC
      = v3:X
      v6:X = ld mD
v7:X  = v6:X
v14:Y = v13:Y

7
8

= v14:Y9

= Φ

(a) (b)

Fig. 8. (a) The color assignment phase. (b) Program after placement of spill code.

Figure 8 (b) shows the program after the coloring phase and the placement
of code to handle spills. Notice that the register assigned to the definition of a
φ-function that has been spilled becomes irrelevant on this phase. For instance,
v9 had been originally allocated the register X; however, we mark its location
as a memory address in order to guide the SSA-deconstruction algorithm.

v1:X =
v2:Y =
st mA = v2:Y
v16:Y = v1:X
st mB = v1:X
st mC = v16:X

1
v11:Y =
v12:X =

2

v4:X =
    v9:Y = ld mB
v5:Y = v9:Y
st mB = v4:X
st mC = v5:Y

3

4

5 v22:X = v12:X
     v10:Y = v22:X

     v3:X  = ld mC
v23:X = v3:X
    st mD = v23:X

6

      v3:X = ld mC
      = v3:X
      v6:X = ld mD
v7:X  = v6:X
v14:Y = v13:Y

7

8

= v14:Y9

st mD = v7:X

Fig. 9. The code produced after the SSA-deconstruction phase.



Finally, we proceed to the SSA-deconstruction phase, whose result is shown
in Figure 9. Stores have been inserted at the end of blocks 1, 3 and 6 to handle
spilled virtuals defined by φ-functions. A single copy instruction was inserted
at the end of block 5. Notice that the final program does not use the names
of virtuals. We show them in Figure 9 to facilitate the understanding of the φ-
deconstruction process. We point also that the definitions of v8 and v13 could be
completely removed due to register and memory coalescin. The task of removing
redundant copies such as v5 : Y = v9 : Y in block 3 is left for the code generator.

6 Experimental Results

We have implemented the proposed algorithm in C++, using the LLVM [15] plat-
form. Our implementation does not use LLVM’s data structures directly. Instead,
we dump the compilers’ intermediate representation in our framework, process it,
and map the results back into LLVM’s back end. We opted for this strategy in or-
der to facilitate the development and debugging of our allocator. Our implemen-
tation has about 4,000 lines of code (about 2,600 lines of uncommented code), in-
cluding code responsible for implementing liveness analysis, phi-deconstruction,
removal of critical edges and auxiliary data structures (lists, trees, etc). We
have used two collection of benchmarks in our experiments. The first set of
programs come from SPEC-CPU 2000 (gzip, vpr, parser, crafty, mcf,
twolf, bzip2, art, ammp, and equake). The last three applications use float-
ing point operations. The second set is the LLVM’s test suite, a collection of
214 applications that include benchmarks such as Fhourstones, FreeBench,
MallocBench, Prolangs-C, ptrdist, mediabench, CoyoteBench, etc. The LLVM
test suite has provided us with 1,172 .c/.cpp files and 590 .h files, comprising
641,708 lines of C code. The hardware used for the tests is a Dual 1.25 GHz pow-
erPC G4 with 2MB L3 cache and 1.25 GB DDR SDRAM running Mac OS X
version 10.4.8. We have compiled and run our benchmarks using seven different
register allocators:

– (Simple): the naive algorithm, that spills every temporary.
– (Local): performs local allocation, that is, it attempts to keep values in

registers along the same basic block, and spills the variables alive at the
block boundaries.

– (LLVM): the LLVM default algorithm. This is a modern version of linear
scan. Before the register assignment phase, it executes an aggressive coalesc-
ing pass. Holes in the live ranges of variables are filled with other virtuals
whenever possible. One particular characteristic of this algorithm is that is
backtracks in the presence of spills: if a variable v is spilled, the allocation
restarts from the beginning of v’s interval. This optimization avoids reserv-
ing registers to place memory transfer code. As a further optimization, the
algorithm tries to use spilled values directly from memory whenever it is
possible, in order to minimize the number of loads/stores inserted due to
spilling. For a detailed description of the algorithm, see [10].



– Ch -O1 the SSA-based register allocator without the coalescing heuristics
described in Section 4.4.

– Ch -O2 SSA-based register allocation with register coalescing.
– Ch -O2 SSA-based allocator with register coalescing and coalescing of φ-

related virtuals in memory, as described in Section 4.3.
– GCC -O2 The gcc compiler (Notice that this is a different back-end then the

one used in the other algorithms).

Figure 10 gives the running time of the compiled benchmarks. The upper
part of Figure 10 compares the proposed algorithm against LLVM’s register
allocator when producing code for a machine with few registers. In this case we
have limited the number of integer general purpose registers in the PowerPC
register bank to only four. The bars give the absolute running time of all the 214
compiled applications. The next set of bars compare the seven register allocator
when producing code for PowerPC with all the 32 integer registers available. On
the bottom of the figure we have separated the applications whose running time,
when compiled with our algorithm, was greater than 5 seconds. This happened
for 33 applications, which count for about 94% of the total execution time.
We also display the five largest absolute running times that we found in the
collection of benchmarks, in order to further compare the proposed algorithm
against LLVM’s register allocator.

> 5sec
33 Apps

< 5sec
181 Apps

CoyoteBench
lpbench

795

862

773

Total running time for 214 applications from LLVM's test suite - 29 registers (sec).

1503

2509

801

4 registers (sec).

1138

1042

optimizer
eval

CoyoteBench
huffbench

Shootout
sieve Shootout

matrix
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Simple
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gcc -O2
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LLVM's alg.
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Ch -O3
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Fig. 10. Total execution time for 214 applications compiled with different register
allcators.



Table 2 shows the results obtained during the compilation of programs from
the SPEC-CPU 2000 set of benchmarks. We present static data and the running
times of the compiled programs. The static data consists of the number of stores,
loads, moves and xors present in the final assembly code. Notice that some of
these instructions have not been inserted by the register allocator, but are part
of the program itself. The results in Table 2 have been obtained after limiting the
number of integer registers available for allocation to only four 5. We compare Ch
-O1, Ch -O2 and Ch -O3 against LLVM’s implementation. The final assembly
code produced by LLVM’s back end was compiled with gcc (without further
optimizations) in order to be executed in our target machine. The first table
(lines 1-6) was produced by Ch -O1, thus the bigger number of copies, and, most
notably, xor instructions in the final code. The second table (lines 7-12) was
generated by Ch -O2. Lines 13-18 have been obtained with Ch -O3. The last table
(lines 19-23) was found via LLVM’s register allocator. The Ratio rows contain
the execution time of the code produced with the LLVM’s algorithm divided by
the execution time produced by the different versions of our algorithm. Table 4
compares compilation results for the same set of SPEC-CPU 2000 programs, but
this time with the 32 registers available.

SSA-based register allocation is effective for architectures with few registers :
Our academic implementation was able to outperform the industrial quality
implementation of LLVM in every case when the number of registers in the target
architecture was reduced to only four. In the tests performed on the LLVM set
of benchmarks, the gain in performance was approximately 9.5%, whereas the
experiments in the SPEC2000 programs produced performed improvements as
high as 44%, as in bzip2.

In our experiments, 12 registers seem to be the performance threshold between
register allocation before and after SSA-elimination : the SSA-based algorithm
trades copy instructions for a smaller number of spilled variables. Due to the
splitting of live ranges, SSA-based register allocation tends to insert more copy
instructions into the target code than the traditional linear scan algorithm. Nev-
ertheless, if the register pressure is high, the SSA-based allocator tends to spill
less. Because copy instructions are cheaper than memory accesses, this tradeoff is
beneficial when the number of spills is large. However, in an architecture plenty
of physical registers, spills barely happen, yet the extra move/xor instructions
remain as a burden in the SSA-based allocator. The chart shown in Figure 11
compares our algorithm and the LLVM’s implementation with four different sizes
of register banks: 4, 8, 12 and 16. Around 12 registers the fewer number of spills
stop compensating for the large number of move and xor instructions that the
SSA-based algorithm requires to keep the variables from been spilled.

5 The only exception been crafty, whose compilation required a minimum of eight registers
in our system



gzip vpr mcf parser bzip2 twolf crafty art ammp equake

1 Store 1516 8060 547 4812 1263 13571 6857 748 3370 555

2 Load 2077 16277 899 9085 1883 23688 15142 1050 6749 1068

3 Move 684 7563 221 3754 566 6088 7024 427 3687 814

4 Xor 221 849 55 474 125 1219 1518 13 314 27

5 Time 135.574 520.678 538.992 48.022 679.478 22.034 6.518 402.654 19.948 19.768

6 Ratio 1.08 1.08 1.02 1.02 1.39 1.24 1.14 1.04 0.99 1.12

7 Store 1516 8467 548 4939 1264 13592 6862 749 3373 556

8 Load 2078 16586 900 9171 1885 23701 15150 1053 6753 1070

9 Move 652 6862 203 3571 512 5446 6120 318 3437 457

10 Xor 86 492 13 174 50 514 951 4 106 4

11 Time 133.476 519.426 538.374 48.914 673.588 21.373 6.442 400.966 19.202 19.655

12 Ratio 1.10 1.09 1.02 1.00 1.41 1.28 1.15 1.05 1.02 1.12

13 Store 1254 6982 482 4420 1095 10812 6213 624 3186 546

14 Load 1836 15196 827 8690 1734 22028 14578 927 6535 1057

15 Move 630 6704 193 3478 493 4996 5997 310 3366 440

16 Xor 62 468 19 114 35 433 771 18 115 4

17 Time 129.784 471.407 502.60 47.845 655.875 20.963 6.409 375.760 19.156 19.102

18 Ratio 1.13 1.19 1.09 1.02 1.44 1.30 1.16 1.12 1.03 1.16

19 Store 1664 9093 576 5346 1380 13820 8673 789 3771 738

20 Load 2260 16592 911 9318 2064 24314 15996 1099 6583 1278

21 Move 201 3597 77 1631 197 2554 2190 176 1810 218

22 Xor 23 363 7 75 29 325 621 1 82 1

23 Time 146.708 564.297 549.378 48.817 947.494 27.266 7.428 421.587 19.712 22.186

Table 2. Static data collected for SPEC2000 with four general purpose registers. (1-6):
Ch -O1. (7-12): Ch -O2. (13-18): Ch -O3. (19-23): LLVM’s alg.

7 Conclusion

This paper has presented a SSA-based register allocator. This algorithm pro-
duces code of good quality, and clearly outperform the traditional linear-scan
implementation if the number of available registers is not large. We have also de-
scribed coalescing heuristics and a static analysis that can be used to improve the
quality of the assembly code produced by our allocator. Further details about
this project, and the implementation of the whole algorithm are available at
http://compilers.cs.ucla.edu/fernando/projects/soc/.
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ENS Lyon, 2005.



gzip vpr parser bzip2 twolf crafty

LL
V
M

Ch
 
-
O
3

12
9.
8

80
.5

47
1.
4

37
4.
9

34
8.
4

47
.9

55
.8

41
.1

38
.2

65
5.
8

44
3.
8

42
0.
7

20
.9

15
.9

14
.8

52
.8

45
.0

33
.7

14
6.
7

10
0.
2

87
.8

56
4.
3

38
9.
5

33
3.
2

48
.9

43
.9

94
7.
5

61
1.
0

39
8.
7

27
.3

16
.9

14
.1

47
.9

32
.7

59
.6

87
.8

4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16

82
.9

36
4.
7

36
.6

39
.0

43
2.
0

14
.9

80
.4

36
4.
1

37
.5

41
3.
7

14
.4

36
.6

10
07

89
7

82
1

92
1

81
1

11
38

84
8

84
1

LLVM benchs

4 8 12 16

Fig. 11. Comparison between Ch -O3 and LLVM’s algorithm for architectures with
different number of registers.
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gzip vpr mcf parser bzip2 twolf crafty art ammp equake

1 Spill 247 1657 93 750 288 3326 3222 138 637 150

2 stack 84 394 100 96 202 385 421 104 74 169

3 Store 780 5274 364 2970 699 13479 6914 437 2252 362

4 Load 1173 12126 617 6363 1171 22333 15265 738 4746 782

5 Move 916 8118 257 4627 685 7158 6534 380 4046 482

6 Xor 356 1170 94 666 245 2245 2211 189 634 124

7 Time 89.93 375.38 541.87 41.79 453.12 16.27 44.46 330.97 18.20 17.51

8 Ratio 1.15 1.03 0.98 1.16 1.35 1.07 1.10 0.97 1.00 0.98

9 Spill 247 1657 93 750 288 3326 3223 139 636 150

10 stack 84 392 100 92 202 384 421 105 74 169

11 Store 780 5275 364 2970 699 13489 6911 438 2255 362

12 Load 1174 12130 617 6365 1172 22332 15224 739 4811 782

13 Move 823 7269 216 4302 599 6048 2190 388 3693 467

14 Xor 71 474 25 147 53 814 621 18 124 1

15 Time 88.83 378.22 536.43 41.41 448.78 16.28 44.41 317.99 18.13 17.32

16 Ratio 1.16 1.03 0.99 1.18 1.36 1.06 1.10 1.01 1.00 0.99

17 Spill 192 1509 75 673 247 2231 2664 125 613 146

18 stack 66 316 82 77 164 285 308 95 67 165

19 Store 699 4559 344 2876 637 7179 6213 401 2241 359

20 Load 1092 11413 597 6274 1109 15985 14578 701 4797 779

21 Move 807 7246 201 4232 602 5896 5997 352 3623 461

22 Xor 53 423 25 99 38 472 771 18 109 1

23 Time 88.78 374.87 537.94 41.12 443.81 16.04 45.06 305.77 18.04 17.02

24 Ratio 1.16 1.04 0.99 1.18 1.38 1.08 1.08 1.05 1.01 1.01

25 Spill 301 2241 120 990 369 3643 5260 197 717 252

26 stack 107 421 127 177 245 405 526 159 102 271

27 Store 855 5368 401 3315 802 8511 8673 507 2503 494

28 Load 1253 11146 622 6264 1312 16610 15996 733 4511 970

29 Move 219 3326 90 1575 180 2688 2190 164 1836 160

30 Xor 23 363 7 75 29 325 621 18 82 1

31 Time 103.13 388.05 533.27 48.71 611.15 17.36 48.83 322.28 18.15 17.18
Table 3. Static data collected for SPEC2000 with eigth general purpose registers.
(lines 1-8): Ch -O1. (lines 9-16): Ch -O2. (lines 17-24): Ch -O3. (lines 24-31): LLVM’s
alg. Time is given in seconds.



gzip vpr mcf parser bzip2 twolf crafty art ammp equake

1 Store 517 3037 231 2113 379 4618 3416 291 1778 219

2 Load 740 7989 406 4407 521 9678 12342 508 3630 548

3 Move 1001 9790 331 5599 756 8233 8352 532 4489 503

4 Xor 395 1365 115 579 365 1026 2862 129 529 184

5 Time 78.576 341.041 378.432 38.191 437.874 14.529 31.599 298.511 17.822 16.983

6 Ratio 0.896 0.96 1.01 1.11 0.92 0.95 0.88 1.00 0.98 0.95

7 Store 517 3049 231 2120 379 4698 3381 291 1779 218

8 Load 740 8004 406 4398 511 9732 12318 508 3631 540

9 Move 1001 8491 270 5171 693 7828 7431 448 4076 506

10 Xor 395 471 31 129 65 763 852 18 118 1

11 Time 77.232 350.267 367.978 38.409 436.557 14.570 29.886 298.793 17.763 16.390

12 Ratio 0.911 0.93 1.03 1.11 0.92 0.95 0.93 1.00 0.99 0.99

13 Store 517 3037 231 2111 372 4887 3391 289 1778 219

14 Load 739 7991 406 4403 514 10404 12315 506 3629 548

15 Move 896 8353 259 5097 669 7769 7316 415 3979 490

16 Xor 53 435 34 120 65 667 708 21 118 1

17 Time 76.945 346.275 368.010 37.782 436.126 14.544 29.534 292.089 17.720 16.414

18 Ratio 0.915 0.94 1.04 1.12 0.92 0.95 0.94 1.02 0.99 0.99

19 Store 472 3062 231 2118 368 4553 3380 292 1780 228

20 Load 726 7480 405 4365 491 9849 12187 473 3671 552

21 Move 282 3707 140 2056 277 3864 2939 224 4076 210

22 Xor 23 363 7 75 29 325 621 18 82 1

23 Time 70.419 326.552 381.434 42.584 402.785 13.880 27.751 298.707 17.494 16.204

Table 4. Static data collected for SPEC2000 with 29 general purpose registers. (1-6):
Ch -O1. (7-12): Ch -O2. (13-18): Ch -O3. (19-23): LLVM’s alg.


