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Abstract
Accurate and scalable simulation has historically been a key
enabling factor for systems research. We present TOSSIM, a
simulator for TinyOS wireless sensor networks. By exploiting the
sensor network domain and TinyOS’s design, TOSSIM can capture
network behavior at a high fidelity while scaling to thousands of
nodes. By using a probabilistic bit error model for the network,
TOSSIM remains simple and efficient, but expressive enough to
capture a wide range of network interactions. Using TOSSIM, we
have discovered several bugs in TinyOS, ranging from network bit-
level MAC interactions to queue overflows in an ad-hoc routing
protocol. Through these and other evaluations, we show that
detailed, scalable sensor network simulation is possible.

1. INTRODUCTION
Development of the right simulation tools has been a key

step in systems research progress for several areas. In general,
simulation can provide a way to study system design alternatives
in a controlled environment, explore system configurations that are
difficult to physically construct, and observe interactions that are
difficult to capture in a live system.

A debate often emerges over how much fidelity is required
to observe critical phenomena, since simulation cost typically
increases quickly with the level of detail. Several times in the
past, we have seen a tool that captured the essential elements of
the area of study; these tools dramatically accelerated progress in
emerging research areas. For example, SimOS [24] used binary
rewriting techniques to provide enough detail and yet enough speed
and flexibility to allow workload-driven evaluation of machine
architectures and operating systems for multiprocessors by running
whole programs.ns-2 [2], using an object approach, provided a
common toolbox for studying a wide range of network protocols
and implementations against various traffic models. Proteus [5]
provided broad feedback on the design of parallel programs.

We believe that developing the right simulation tools will be
especially important for sensor network research. Not only does
this area address issues of architecture, operating systems, network
protocols, and distributed in-network processing, it does so in a
highly application-specific manner. Additionally, sensor network
systems are closely connected to the physical world; this adds
noise, variation, and uncertainty to execution. We need simulation
tools that will allow studying entire applications, including the
operating system and the network stack. These tools must handle
very large numbers of nodes with sufficient detail that the subtle
interactions caused by unpredictable interference and noise can be
observed.

Many researchers have concluded that it is intractable to address
this collection of requirements simultaneously and have, instead,
employed very abstract simulations for studying behavior at scale
and detailed simulations for individual nodes.ns-2 has been
adapted to provide a rough analog of sensor network behavior to
evaluate protocols against synthetic workloads [4, 23, 29].

Usually, the algorithm representations evaluated through simula-
tion are quite different from those of a real implementation. While
these simulation approaches are valuable, the lesson from SimOS,
Proteus, and numerous similar tools, is that it is very important
to have a vehicle that allows study of the actual implementation
of algorithms at scale running real applications [5, 24]. This is
especially true in new areas where there are not years of experience
in what can be safely abstracted without sacrificing accuracy. Also,
if simulation and deployment programming environments are very
different, having an accurate simulator can inhibit deployments:
one has to implement algorithms twice.

In this paper, we investigate how we might exploit the charac-
teristics of the sensor network domain to obtain a scale, fidelity,
and completeness that would be intractable in a general purpose
context. Specifically, we consider the simulation of TinyOS sensor
networks. TinyOS, developed at UC Berkeley, is a sensor network
operating system that runs on custom ’mote’ hardware [12]. Over
one hundred groups worldwide use it, including several companies
within their products. Many published systems [8, 14], proto-
cols [11, 20, 26, 28, 31] and applications [15, 17, 18, 29] have
been built on TinyOS. Providing a TinyOS simulation environment
would help all of these efforts.

A TinyOS simulator has four key requirements:

• Scalability: The simulator must be able to handle large
networks of thousands of nodes in a wide range of config-
urations. The largest TinyOS sensor network that has ever
been deployed was approximately 850 nodes; the simulator
must be able to handle this and the much larger systems of
the future.

• Completeness:The simulator must cover as many system
interactions as possible, accurately capturing behavior at
a wide range of levels. Algorithm and network protocol
simulations are helpful, but the reactive nature of sensor
networks requires simulating complete applications.

• Fidelity: The simulator must capture the behavior of the
network at a fine grain. Capturing subtle timing interactions
on a mote and between motes is important both for evalu-
ation and testing. The simulator must revealunanticipated
interactions, not just those a developer suspects.



• Bridging: The simulator must bridge the gap between
algorithm and implementation, allowing developers to test
and verify the code that will run on real hardware. Often,
algorithms are sound but their implementations are not.

To investigate whether these four requirements could be met at
once, we built TOSSIM, a discrete event simulator. Compiling un-
changed TinyOS applications directly into its framework, TOSSIM
can simulate thousands of motes running complete applications.
By only replacing a few low-level TinyOS systems that touch
hardware, it can capture mote behavior at a very fine grain, allowing
a wide range of experimentation. Taking advantage of several
characteristics of TinyOS sensor networks enables achieving this
fidelity at scale. As individual motes have limited storage and CPU
resources, TOSSIM can simulate many of them at once. TinyOS’s
event-driven execution maps well to a discrete event simulation,
requiring a very simple simulation engine. Whole-system compila-
tion can be used to integrate entire applications into the simulation
infrastructure. By seamlessly supporting the PC-based TinyOS
tool-chain, TOSSIM allows developers to easily transition between
running an application on motes and in simulation. To improve its
usefulness to TinyOS developers, TOSSIM has mechanisms that
allow GUIs to provide detailed visualization and actuation of a
running simulation.

This paper has three contributions. First, it addresses a critical
need in sensor network development: scalable, controlled and
accurate simulation of these non-deterministic systems. Second,
by taking advantage of characteristics of the sensor network do-
main, TOSSIM provides insight on how to resolve the tensions
between scalability, completeness, fidelity, and bridging. Finally,
by describing and evaluating a concrete implementation, TOSSIM,
this paper shows that such a simulator can be built.

Section 2 summarizes the aspects of TinyOS relevant to simula-
tion. Section 3 presents TOSSIM’s architecture, implementation,
and capabilities. Section 4 evaluates TOSSIM’s accuracy and
performance. We address relevant prior work in Section 5, discuss
our results and future work in Section 6, and conclude with
Section 7.

2. TINYOS
The event-driven nature of sensor networks means that testing

an individual mote is insufficient. Programs must be tested at
scale and in complex and rich conditions to capture a wide range
of interactions. Deploying hundreds of motes is a daunting task;
the focus of work shifts from research to maintenance, which is
time-consuming due to the failure rate of individual motes. A
simulator can deal with these difficulties, by providing controlled,
reproducible environments, by enabling access to tools such as
debuggers, and by postponing deployment until code is well
tested and algorithms are understood. In this section, we provide
background on TinyOS, presenting points of its design that are of
particular interest for simulation.

TinyOS is an operating system specifically designed for sensor
networks. It has a component-based programming model, provided
by the nesC language [9], a dialect of C. TinyOS is not an OS in
the traditional sense. It is a programming framework for embedded
systems and set of components that enable building an application-
specific OS into each application.

A TinyOS program is a graph of components, each of which is
an independent computational entity. Each TinyOS component has
a frame, a structure of private variables that can only be referenced
by that component. Components have three computational abstrac-
tions: commands, events, and tasks. Commands and events are

Figure 1: Simplified nesC Component Graph of the Sense-
ToRfm TinyOS Application. The networking stack dominates
the left side, while timers and sensors are on the right.

mechanisms for inter-component communication, while tasks are
used to express intra-component concurrency.

A commandis typically a request to a component to perform
some service, such as initiating a sensor reading, while anevent
signals the completion of that service. Events may also be
signaled asynchronously, for example, due to hardware interrupts
or message arrival. From a traditional OS perspective, commands
are analogous to downcalls and events to upcalls. Commands and
events cannot block: rather, a request for service issplit phase
in that the request for service (the command) and the completion
signal (the corresponding event) are decoupled. The command
returns immediately and the event signals completion at a later
time.

Rather than performing a computation immediately, commands
and event handlers may post atask, a function executed by the
TinyOS scheduler at a later time. This allows commands and events
to be responsive, returning immediately while deferring extensive
computation to tasks. While tasks may perform significant compu-
tation, their basic execution model is run-to-completion, rather than
to run indefinitely. This allows tasks to be much lighter-weight than
threads. Tasks represent internal concurrency within a component
and may only access that component’s frame. The TinyOS task
scheduler uses a non-preemptive, FIFO scheduling policy.

TinyOS abstracts all hardware resources as components. For
example, calling thegetData() command on a sensor compo-
nent will cause it to later signal adataReady() event when
the hardware interrupt fires. While many components are entirely
software-based, the combination of split-phase operations and
tasks makes this distinction transparent to the programmer. For
example, consider a component that encrypts a buffer of data.
In a hardware implementation, the command would instruct the
encryption hardware to perform the operation, while a software
implementation would post a task to encrypt the data on the CPU.
In both cases an event signals that the encryption operation is
complete.

Figure 1 contains a simplified component graph of a simple
application, SenseToRfm, that periodically samples the light sensor
and broadcasts the value in a network packet. The nodes of the
graph are components and the edges are interfaces. The network
stack dominates the left side of the graph, while the sensing stack
is on the right side. ADC, ClockC , UART, SlavePin and



task void packetReceived() {
TOSMsgPtr tmp;
state = IDLE STATE;
tmp = signal Receive.receive((TOS Msg*)rec ptr);
if(tmp != 0) rec ptr = tmp;
call ChannelMon.startSymbolSearch();

}

Figure 2: TinyOS MicaHighSpeedRadioM Receive Task Code

SpiByteFifo are example hardware abstraction components.
Upward arrows represent event flow, downward arrows represent
command flow, and large triangles represent interrupts.

Figure 2 shows sample nesC code for a packet reception task,
taken fromMicaHighSpeedRadioM . The task signals there-
ceive event on theReceive interface, calls thestartSym-
bolSearch command on theChannelMon interface, and uses
two frame variables,rec ptr andstate . It uses the return value
of the receive event to perform a buffer swap for its next receive
buffer.

TinyOS commands and events are very short, due to limited
code space and a finite state machine style of decomposition.
The rich event processing model means an event or command
call path can traverse several components. Understanding all of
the possible control flows can be difficult, especially when many
executions are asynchronous. Our experience with TinyOS has
shown that while failure bugs are usually quickly found, bugs that
produce operational but aberrant behavior, such as low channel
utilization, are far more difficult to discover; on the surface they are
indistinguishable from transient network conditions. Additionally,
while individual components are usually sound, they are written
as separate entities; this ignores the possible interactions that can
result from complex compositions.

The TinyOS component model allows us to easily change the
target platform from mote hardware to simulation by only replacing
a small number of low-level components. The event-driven execu-
tion model can be exploited for efficient event-driven simulation,
and the whole program compilation process can be re-targeted
for the simulator’s storage model and native instruction set. As
individual mote resources are very small, we can simulate many of
them within the simulator’s address space. The static component
memory model of TinyOS simplifies state management for these
large collections. Setting the right level of simulation abstraction
can accurately capture the behavior and interactions of TinyOS
applications; the challenge is to remain scalable and efficient. In the
next section, we present TOSSIM, our solution to this challenge.

3. TOSSIM
TOSSIM captures the behavior and interactions of networks of

thousands of TinyOS motes at network bit granularity. Figure
3 shows a graphical overview of TOSSIM. The TOSSIM archi-
tecture is composed of five parts: support for compiling TinyOS
component graphs into the simulation infrastructure, a discrete
event queue, a small number of re-implemented TinyOS hardware
abstraction components, mechanisms for extensible radio and ADC
models, and communication services for external programs to
interact with a simulation.

TOSSIM takes advantage of TinyOS’s structure and whole
system compilation to generate discrete-event simulations directly
from TinyOS component graphs. It runs the same code that
runs on sensor network hardware. By replacing a few low-level
components (e.g., those shaded in Figure 3), TOSSIM translates
hardware interrupts into discrete simulator events; the simulator
event queue delivers the interrupts that drive the execution of

Figure 3: TOSSIM Architecture: Frames, Events, Models,
Components, and Services

a TinyOS application. The remainder of TinyOS code runs
unchanged.

TOSSIM uses a very simple but surprisingly powerful abstrac-
tion for its wireless network. The network is a directed graph,
in which each vertex is a node, and each edge has a bit error
probability. Each node has a private piece of state representing
what it hears on the radio channel. This abstraction allows testing
under perfect transmission conditions (bit error rate is zero), can
capture the hidden terminal problem (for nodesa,b,c, there are
edges(a, b) and(b, c) but no edge(a, c)), and can capture many of
the different problems that can occur in packet transmission (start
symbol detection failure, data corruption, etc.).

The simulator engine provides a set of communication services
for interacting with external applications. These services allow
programs to connect to TOSSIM over a TCP socket to monitor
or actuate a running simulation. Details of the ADC and radio
models, such as readings and loss rates, can be both queried and
set. Programs can also receive higher level information, such as
packet transmissions and receptions or application-level events.

TOSSIM supports the TinyOS tool-chain, making the transitions
between simulated and real networks easy. Compiling to native
code allows developers to use traditional tools such as debuggers in
TOSSIM. As it is a discrete event simulation, users can set debug-
ger breakpoints and step through what is normally real-time code
(such as packet reception) without disrupting operation. It also
provides mechanisms for other programs to interact and monitor a
running simulation; by keeping monitoring and interaction external
to TOSSIM, the core simulator engine remains very simple and
efficient.

3.1 Compiler Support
Closing the gap between simulation and deployment, we modi-

fied the nesC compiler (ncc ) to support compilation from TinyOS
component graphs into the simulator framework. With the change
of a compiler option, an application can be compiled for simu-
lation instead of mote hardware, and vice versa. This compiler
integration is also a key element to providing scalability and fidelity
simultaneously. In the TinyOS memory model, component frames



nesC TinyOS Code Mote C Code TOSSIM C Code
result_t StdControl.init(){ result_t Counter$StdControl$init(void){ result_t Counter$StdControl$init(void){

state = 0; Counter$state = 0; Counter$state[tos_state.current_node] = 0;
return SUCCESS; return SUCCESS; return SUCCESS;

} } }

Figure 4: nesC Code from Counter Component with Resulting Mote and TOSSIM C Code

constitute the entire in-memory storage of a program. In TOSSIM,
component variables are replaced with an array of them, one copy
for each simulated mote. All frame variable references index into
the variable’s array, based on which mote is currently “running.”
Figure 4 shows a snippet of TinyOS code, the resulting C code
for a mote, and the resulting code for simulation. This C code
is compiled to the simulator instruction set rather than the mote
instruction set.

3.2 Execution Model
A simulator event queue sits at the core of TOSSIM. Interrupts

are modeled through simulator events, which are distinct from
TinyOS events. A simulator event calls an interrupt handler in
hardware abstraction components. The interrupt handler signals
TinyOS events and calls TinyOS commands, just as it would on
a mote. These TinyOS events and commands post tasks and cause
further simulator events to be enqueued, driving execution forward.

TOSSIM keeps time at mote instruction clock cycle granularity:
4MHz. All simulator events are timestamped and processed in
global time order. When the simulation starts, motes are given
randomized and staggered times at which their boot sequence is
called, to prevent artificial synchronization. Every TOSSIM event
occurs at a specific virtual time and runs instantly in regards to the
virtual clock. There is a notion of delta time1 for event execution,
similar to VHDL simulators [1]. This allows code within a handler
to have a temporal ordering, as well as providing a total order on
events occurring at a certain virtual instant.

Each simulator event is associated with a specific mote. After
running a simulator event, the scheduler executes the tasks on that
mote’s TinyOS task queue, following the FIFO run-to-completion
model of the normal TinyOS scheduler. When the core loop
executes a simulator event, it sets global state to indicate which
mote is currently running, which is used by frame variable refer-
ences. Once control transfers outside of a hardware abstraction
component, TOSSIM executes standard TinyOS code.

After each simulator event, TOSSIM runs the task queue of the
mote associated with the event until the queue is empty. Following
the TinyOS model, TOSSIM runs each task to completion, without
preemption. This concurrency model is identical to the TinyOS
one, with one exception: interrupt handlers, being discrete events,
cannot preempt tasks. Section 6 discusses this in greater depth.

3.3 Hardware Emulation
TinyOS abstracts each hardware resource as a component. By

replacing a small number of these components, TOSSIM emulates
the behavior of the underlying raw hardware. These include
the Analog-to-Digital Converter (ADC), the Clock, the transmit
strength variable potentiometer, the EEPROM, the boot sequence
component, and several of the components in the radio stack.

The low level components that abstract sensors or actuators
also provide the connection point for the simulated environment.

1An infinite amount of delta time adds up to zero virtual time. That
is, events do not occur simultaneously, being ordered in delta time,
but also do not take any virtual time to execute [3].

For example, the simulated ADC still provides the standard split
phase interface to the application graph; calling thegetData()
command on the TOSSIM ADC component will cause it to signal
a dataReady() event later, just as mote hardware does. Under
simulation, however, an external function provides the ADC read-
ing.

The radio transceiver is effectively a sensor/actuator pair, but it is
handled specially. A TOSSIM network model is a shared resource
that captures the inter-mote interactions. Each bit transmission
engages the model, which changes the state of the channel observed
by receive events on other nodes. By modeling at the bit level,
TOSSIM allows users to develop, test, and evaluate low level
network protocols in addition to high level applications, and
everything in-between. We discuss in depth how TOSSIM models
the network later, in Section 3.7. By controlling these models,
developers can simulate a wide range of environments. Section 3.6
describes one tool for doing so.

3.4 Sample Execution
Figure 5 contains a sample execution that demonstrates the

workings of TOSSIM. A simple program,SenseToLeds , is
running on a single mote. This program has a 1Hz timer that
samples the light sensor and displays the three high order bits of
the reading on the mote LEDs. Since simulator time is kept in
terms of a 4MHz clock, the timer events are four million ticks apart,
and the 50µs ADC capture takes 200 ticks between request and
interrupt. In Figure 5 TOSSIM-specific execution is shown in plain
text, while unchanged TinyOS execution is shown in italics. This
sample execution shows how a small number of TOSSIM events
results in the series of TinyOS events and commands comprising
an entire (albeit very simple) application.

3.5 Radio Models
TOSSIM provides mechanisms for TinyOS developers to choose

the accuracy and complexity of the radio model as necessary for
their simulations. The models are external to the simulator, which
can remain simple and efficient.

TOSSIM support consists of a directed graph of bit error prob-
abilities. Each edge(u, v) in the graph represents the error rate
when moteu sends tov, and is distinct from the edge(v, u);
this allows accurate simulation of asymmetric links. Bit errors
are independent. Link probabilities can be specified by the user
and changed at runtime. Transmission events propagate to the
simulated input channel of each connected node. Each mote has
its own local view of the network channel. The network does not
model RF cancellation. If a bit error occurs, TOSSIM flips the
transmitted bit.

As an example, consider moteT transmitting to moteR on an
error-free channel. On each of its bit events,T transmits a 0 or 1.
This transmission modifies internal state ofR, representing what it
hears over the air. On each of its bit events,R reads this state, and
passes the heard bit up to a TinyOS component.

TOSSIM also has two built-in special case radio-models for what
we have observed to be common needs. The first,simple , places
all of the motes in a single radio cell, with error-free transmission.
simple is very useful when testing protocols for correctness in the



Time (4MHz ticks) Action
3987340 Simulator event is dequeued and handled at time 3987340.

The clock interrupt handler is called, signaling the application Timer event.
The application’s Timer handler requests a reading from the ADC.

The ADC component puts a simulator ADC event on the queue with timestamp 3987540.
The interrupt handler completes; the clock event re-enqueues itself for the next tick.

3987540 Simulator ADC event is dequeued and handled at time 3987540.
The ADC interrupt handler is called, signaling an ADC ready event with a sensor value.

The application event handler takes the top three bits and calls LEDs commands.
The ADC interrupt handler completes.

7987340 Simulator event is dequeued and handled at time 7987340.
The clock interrupt handler is called, signaling the application Timer event.
. . . execution continues as above

Figure 5: Sample Execution

absence of any multi-hop or hidden terminal behavior. The second,
static , is a static undirected graph of error-free connections; this
allows testing protocol correctness in the multihop case.

3.6 Communication Services
TOSSIM provides mechanisms that allow PC applications to

drive, monitor, and actuate simulation by communicating with
TOSSIM over TCP/IP. Drawing on the abstractions of TinyOS,
the simulation-application protocol is a command/event interface.
TOSSIM signals events to applications, providing data on a running
simulation. Examples of events sent from TOSSIM are debug
messages added by developers in TinyOS source code, radio
and UART packets sent, and sensor readings. Applications call
commands on TOSSIM to actuate a simulation and modify its
internal state. Commands include operations to change radio link
probabilities and sensor reading values, turn motes on and off, and
inject radio and UART packets. The communication protocol is
abstract so that developers can write their own systems that hook
into TOSSIM in new ways, if needed. The monitoring/actuation
hooks and statements are removed when compiling for a mote.

3.6.1 TinyViz
TinyViz, the TOSSIM visualization tool, illustrates the capabil-

ities of TOSSIM’s communication services. TinyViz is a Java-
based graphical user interface for TOSSIM, allowing simulations
to be visualized, controlled, and analyzed. TinyViz provides visual
feedback on the simulation state and mechanisms for controlling
the running simulation, e.g., modifying ADC readings and radio
loss probabilities. TinyViz provides a plugin interface allowing
developers to implement their own application-specific visualiza-
tion and control code within the TinyViz engine. Figure 6 shows a
screenshot.

The core TinyViz engine, by itself, does very little besides man-
aging the event/command interface to TOSSIM. Users interact with
a simulation by loadingpluginsthat provide desired functionality.
The TinyViz engine publishes TOSSIM events to loaded plugins.
This allows, for example, a network plugin to visualize network
traffic as motes receive messages. Plugins can also send commands
to TOSSIM, actuating a simulation. For example, when a user
turns off a mote in the visualization, the control plugin sends the
corresponding power off command to TOSSIM.

TinyViz has a set of default plugins that provide basic debugging
and analysis capabilities. Two of these, the network and control
plugins, were described above. Further examples include a plugin
that displays in list format all debug messages and another that
graphically displays the data in radio and UART packets. A sensor
plugin that displays mote sensor values in the GUI allows the user
to set individual mote sensor values during simulation; this plugin
can be extended to more complicated sensor models. A radio model
plugin changes radio connectivity based on distances between

motes in the GUI and graphically displays link probabilities,
providing basic mechanisms for experimenting with how networks
behave under change.

The basic TinyViz plugins are simple, but provide visualizations
rich enough to debug and analyze a sensor network. The debug
message plugin can examine internal mote state, and a breakpoint
plugin can pause TOSSIM on user-specifiable events, so a user
can drop into a debugger. In larger contexts, routing pattern
visualizations can reveal algorithm behavior.

Using the simple models provided by TOSSIM, developers can
write more powerful TinyViz plugins. For example, one can model
in-network obstructions such as metal barriers by changing bit
error rates. A plugin can model failures by turning motes off at
scripted times. Plugins can also use simulation data to examine and
analyze application behavior. Using the communication services of
TOSSIM, TinyViz allows a user to take an omniscient view of a
large network, examining internal mote in a running simulation.

3.7 Data Link Layer
The most complex system TinyOS provides is its networking

stack. Composed of 12 components, the networking stack uses
CSMA and single error correction/double error detection data
encoding with a full-packet CRC. As perhaps the single most
important shared resource of a sensor network, it deserves special
attention in a simulator. In order for TOSSIM to be useful for
studying data link and physical protocols and accurately capture
interactions between applications and low-level protocols, it must
simulate the behavior of the TinyOS networking stack at high
fidelity.

Emulating the behavior of the hardware at the component level
offers insight into the subtle interactions of the networking stack
not captured in other simulations, bridging algorithmic simulation
and implementation. In contrast, emulating the stack at the packet-
level does not allow observations of the delicate interactions in
mote communication. Furthermore, it is not clear that emulating
the actual radio hardware provides additional insight into the
behavior of the stack as our implementation does, while such an
implementation would significantly reduce the simulator’s scala-
bility.

We provide a detailed description of the TinyOS protocol stack,
followed by an explanation of how TOSSIM simulates it. The
description illustrates the importance of bit-level simulation for
capturing the complexity of the TinyOS networking stack. Some
of our evaluations in Section 4 illustrate how high-level protocol
failures can be due to interactions with very low-level data-link
protocol details; these failures can only be discovered by capturing
the network at a high fidelity. Instead of worrying about modeling
each possible error in the networking stack (e.g., detection failure,
encoding failure, synchronization failure, acknowledgment failure,
etc.), a developer need only provide a single probability.



Figure 6: TinyViz connected to TOSSIM running an object tracking application. The right panel shows sent radio packets, the left
panel exhibits radio connectivity for mote 15 and network traffic. The arrows represent link quality and packet transmissions.

3.7.1 TinyOS Networking: AM and Below
The TinyOS packet abstraction is an Active Message [25]. AM

packets are an unreliable data link protocol, and the TinyOS
network stack handles media access control and single hop packet
transmission. Active Messages provide precise timestamps as well
as synchronous data-link acknowledgments. TinyOS provides a
namespace of up to 256 AM message types, each of which can
be associated with a separate software handler.

Figure 7 shows the different phases of packet transmission and
reception. The sender first enters a CSMA delay period, listening
for an idle channel. The sender then transmits a packet start
symbol at 10Kbps, which a receiver samples for at 20Kbps. As
the following data is transmitted at 40Kbps, after the start symbol
the receiver must synchronize to the sender at a finer granularity.
The sender pauses for a few bit times after the start symbol, then
transmits a one bit. The receiver, after the start symbol, polls
the channel to identify the falling edge denoting the sender pause.
Once it has done so, it polls again, this time for the next rising edge,
using an input capture register to take a precise timestamp. These
two spin loops take roughly 400-600µs. The receiver adjusts its
radio clock so that its 40Kbps data sample rate is synchronized with
the sender’s signal. The sender starts transmitting encoded packet
data, which the receiver decodes into a packet buffer.

Once the packet data has been read in, the sender transmits a
pulse of ones for the receiver to use for measuring signal strength.
After this strength pulse, the sender transitions into receive mode
and the receiver transitions into send mode. The sender introduces
a short pause in its timing as part of this phase shift; as the receiver
was sampling after the sender actually transmitted a bit, the sender
must shift its sampling point to be after the receiver. The receiver
then transmits a short bit pattern indicating acknowledgment; if the
sender hears it, it marks the sent packet as acknowledged before
passing it back in a send done event. The receiver checks the packet
CRC, discarding corrupted packets. If the packet is addressed for

Figure 7: TinyOS Packet Sending/Reception

the receiver or the broadcast address, the networking stack signals
a reception event of the proper AM type.

3.7.2 Network Simulation
The TinyOS stack uses three network sampling rates at different

phases of packet reception and transmission: 40Kbps for data,
20Kbps for receiving a start symbol, and 10Kbps for sending a start
symbol. In TOSSIM, adjustments to radio bit-rates are made by
changing the period between radio clock events. The combination
of bit sampling and bit-rate changes nearly captures the entire stack.
There is one exception: the pair of spin loops to synchronize a
sender signal, the one place where TinyOS breaks its event-driven
methodology.

Under simulation, we maintain the event-driven concept by
ignoring the first spin loop (for the zero) and handling the second
(for the one) with additional state. Whenever a mote transmits the
synchronization bit, it checks if any of the motes that can hear it
are in the synchronization listening state. If it finds such a mote, it
enqueues a radio event for the receiver representing the occurrence
of the input capture.
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Figure 8: Empirical and Corresponding Simulated Packet Loss
Data

This implementation results in an almost perfect simulation of
the TinyOS networking stack at a bit level; TOSSIM accurately
simulates the hidden node problem and can simulate errors at all
phases of packet reception. When two nodes have interfering
transmissions, a third listening node will just see the union of
the two sender’s bits, leading to both signals being corrupted.
Additionally, delay arises when motes repeatedly enter CSMA
wait because they continue to hear a signal on the channel.
A single bit error during the data phase can be handled with
the data encoding, but a single bit error during start symbol
detection will prevent reception and a single bit error during
acknowledgment transmission will cause it to fail. This granularity
changes the methodology with which one normally approaches
network simulation. For example, instead of modeling latency,
by modeling the network itself TOSSIM simulates contention and
backoff, which are causes of latency.

4. EVALUATION
We evaluate how well TOSSIM meets the four core needs of

a sensor network simulator: fidelity, completeness, bridging, and
scalability. To evaluate its fidelity and completeness, we used
Surge, a sample application that comes packaged with TinyOS.
Surge is a simple send/report program; nodes periodically collect
sensor readings and route them to a base station, which collects
and graphically displays them for the user. We discuss the Surge
protocol in greater depth in Section4.4.1.

4.1 Fidelity: Radio Noise
We have developed a tool that generates radio loss graphs from

physical topologies, based on empirical loss data gathered from
a real-world network. The empirical data is from a network of
twenty-six motes, placed in a line, spaced at regular two foot
intervals, with the TinyOS radio set at a medium power setting
(50 out of 100). Each mote transmitted two hundred packets, with
each other mote keeping track of the number of packets heard.
Figure 8(a) shows a plot of this empirical data as loss rates over
distance.

To generate lossy models, we took this empirical data and
generated Gaussian packet loss probability distributions for each
distance. Given a physical mote topology, the tool generates packet
loss rates for each mote pair by sampling these distributions. The
tool translates packet error rates into independent bit error rates.
Figure 8(b) shows the results of the experiment used to gather loss
data when run in TOSSIM.

This model is by no means perfect. Instead, it demonstrates
that the simple bit-error mechanism provided by TOSSIM allows
the implementation of complex models. For example, instead of
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Figure 9: Packet CRC Failure Rates in Surge for Three
Network Densities and Varying Sensing Frequencies.Each
line shows a different network density, specified by the spacing
between nodes in a 5x5 grid.

sampling from these distributions, loss rates could be generated
by functions of distance, set to be constant, or derived from other
experimental data. TOSSIM remains uncommitted to a specific
model, allowing developers to choose one that fits their needs.
Protocols can be tested for correctness with error-free models, and
also tested in the presence of packet loss.

4.2 Fidelity: Packet-level Interactions
Simulating network contention, the hidden terminal problem,

and packet corruption are important requirements for TOSSIM. To
evaluate whether the very simple networking model of TOSSIM
can capture all of these complex interactions, we simulated Surge
running at a range of sampling frequencies, from once per second
to once every nine seconds. We simulated each frequency in a 5x5
grid network, at three network densities. The densest network had
the 25 motes spaced 10 feet apart (a 40’ by 40’ area), while the
sparsest had them spaced at 20 feet (an 80’ by 80’ area). For each
simulation, we calculated the percentage of packets that were lost
due to CRC failures. Figure 9 shows the results.

Two factors are at play in this study. The first is transmission
rate. As the network send rate increases, so does the probability of
collision. The second is network density. While the densest (single
cell) networks do not suffer from the hidden terminal problem,
neither do the sparsest (in which nodes have no neighbors). Real
networks, of course, are more complex than this: cells are not
simple and discrete. These two factors can be seen in the simulation
results; the densest network (10 foot spacing) has the highest packet
loss due to CRC failures, and that loss is most acute at the highest
transmission rate.

If one thinks of a sensor network as a graph, then the hidden
terminal problem occurs when there are three verticesa, b, andc,
with edges(a, b) and(b, c) (but no(a, c)). Botha andc transmit at
the same time, corrupting each other’s signals atb. If, for a vertex
v, one assumes each neighbor has an independent probability
of transmitting, then as the degree ofv increases, so does the
probability that two neighbors will transmit concurrently. In other
words, the more neighbors a node has (that cannot hear each other),
the greater the chance they will interfere with one another. Of
course, in the real world it is more complex: neighbors can often
hear each other. Also, as a network becomes sparser, there will



be more CRC failures due to long, lossy links; additionally, more
packets will be dropped due start symbol detection failure.

Higher network densities and sensing rates increase the possibil-
ity of the packet collisions. A network with 10-foot spacing and a
1Hz sampling rate caused the worst corruption rate. This complex
behavior, caused by the interaction of a network of motes’ packet
encoding, the MAC, and hidden terminal problem all emerge from
TOSSIM’s simple network probability graph.

4.3 Fidelity: Subtle Race Conditions
The ability to simulate a large number of motes at a very fine

granularity allowed us to uncover subtle bugs and race conditions
in TinyOS code. Here we discuss one race condition we discovered
in the TinyOS radio stack, involving a rare timing case. Until
TOSSIM, the bug had been unnoticed, even though the stack had
been in use by many research groups for over six months. We
discovered the bug while testing applications in TOSSIM, verified
its existence with its author, and fixed it.

This race condition occurred in the media access control com-
ponent of the TinyOS radio stack,ChannelMonM , which is
responsible for both sensing an idle channel (when sending pack-
ets) and for detecting the packet start symbol (when receiving
packets). The idle channel and start symbol detection operations
are concurrent and share a buffer of recently received bits. Before
sending a packet,ChannelMonM attempts to detect whether the
radio channel is idle, and performs a random backoff if not.
Before performing backoff,ChannelMonM wrote bits into the
shared buffer, possibly corrupting incoming bits being monitored
by the start symbol detection code. The author of the offending
component said the bug was a hold-over from an older, since-
discarded MAC algorithm.

The bug fix was simple – removing the offending write. This
bug was never detected in real deployments because it occurs very
rarely, and causes packet loss that is indistinguishable from radio
noise. Simulating the radio at the bit level allows these fine-grained
timing issues to manifest in the simulation environment; they would
be not be possible to detect or analyze with a higher-level, packet-
level simulation.

4.4 Completeness: Surge
To evaluate whether TOSSIM can capture the wide range of

interactions that occur in a TinyOS program, we present Surge
as an example. We describe the Surge routing protocol in depth.
Using TOSSIM, we discovered a significant flaw in the protocol,
caused by an interaction of its routing cycle detection algorithm,
retransmission policy, and the false negatives from the AM-level
synchronous acknowledgments. Each of these policies are part of
a separate TinyOS component:MultiHopRouteM , Queued-
SendM, andMicaHighSpeedRadioM , respectively. TOSSIM
was able to accurately capture this interaction, allowing us to
analyze the complete Surge application and determine the causes
of Surge’s behavior in the real world.

4.4.1 Surge
The Surge protocol forms a dynamic spanning tree, rooted at a

single node. Nodes route packets to the root. Each mote maintains
the network address of its parent in the tree as well as its depth.
Nodes select their parent by eavesdropping on received messages;
they attempt to use the parent with the lowest depth in the tree and
best estimated link quality. Nodes select a new parent when the link
quality falls below a certain threshold. Surge suppresses cycles in
the routing by dropping packets that revisit their origin. A cycle’s
lifetime is limited by the sampling rate. When a node in a cycle
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Figure 10: Send queue length over time for two motes in the
Surge network: send queues often overflow.
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Figure 11: Send queue length for two motes in the Surge
network over time, with cycle and duplicate suppression fixes:
send queues do not overflow.

takes a reading and sends it, the node will promptly discover and
break the routing cycle.

Surge uses AM acknowledgments to provide a form of reliable
transport. Nodes attempt to retransmit unacknowledged packets
several times, and estimate the link quality to their parent as
the fraction of messages that are acknowledged. Surge has been
used in several applications and demonstrations. However, as
far as we know, it had not been methodically analyzed in terms
of performance or behavior. While running Surge in a test
deployment, we observed a wide range of anomalous behaviors
and troubling end-to-end reliability. We tried instrumenting the
network in different ways, but were unable to get to the bottom of
the problem; among other things, we did not know what to look for.
Finally, after several days of fruitless effort, we turned to TOSSIM
to gain some insight on the cause of Surge’s behavior.

4.4.2 Simulation Environment
We used 5x5 mote grids with the lossy network model shown

in Figure 8. Motes use the Surge protocol to route periodic sensor
readings to the base station, located in one corner of the grid. We
simulated grid spacings of 10, 15 and 20 feet to evaluate a range of
network densities. We limited radio range to 50 feet. In the 10 foot
case, most nodes can hear each other (although opposite corners
cannot, for example), and in the 20 foot case, most packets will
require several hops through the network. To separate the issue
of network contention from the protocol, we configured Surge to
sense at a low rate: once every ten seconds. In each case we
simulated 15 virtual minutes, and longer simulations (2.5 virtual
hours) validated that this represents steady-state behavior and not
initial network startup.



4.4.3 Surge Analysis
Initial evaluation of the Surge protocol in TOSSIM uncovered

a high end-to-end loss rate, even in the presence of many good
network links. Given that channel utilization was low (each node
generates only 1 packet every ten seconds), this seemed unlikely
to be due to channel contention. After looking at a few packet
traces, we suspected a problem with the packet send queue on each
mote, which holds up to 16 packets awaiting transmission. When
this queue overflows, packets are dropped, so a burst of activity
in the network could cause increased loss. By instrumenting the
length of the send queue in TOSSIM, we determined that this was
in fact a problem. Figure 10 shows plots of the send queue length
for two motes in the network at increasing distances from the base
station. Surge concentrates traffic near the root of the spanning
tree, and the mote closer to the base station frequently exhibits
queue overflow. Given that the network generates packets at a very
low rate, it seemed unlikely that the network should have so many
packets in a queue at once due to bursts of communication.

Looking at transmission data, we determined the cause of the
large number of packets to be an interaction between the re-
transmission policy and AM-level acknowledgments. Sometimes,
a mote would successfully receive a packet, but the subsequent
acknowledgement would be corrupted; the sender would see a
false negative in the acknowledgment field of the packet buffer
and retransmit. Bit errors in the radio channel were the cause
of these false negatives. The Surge protocol has no build-in
duplicate suppression; when a receiver receives a retransmission,
it enqueues the packet in its forwarding queue along with the first
copy. Essentially, every packet can duplicate at each hop in the
network. This causes a possibly exponential increase in the copies
of a packet over the number of hops.

While problematic, this duplication was not sufficient to disrupt
a network by itself. For example, over a 4 hop network, a average
replication factor of 1.5 would only result in 4 duplications over the
complete traversal of the network. This is troublesome, but given
the rate at which Surge was generating packets, should have been
easy to handle.

An additional flaw in the protocol caused this duplication to over-
whelm the network and overflow send queues. Surge suppresses
cycles by dropping packets that revisit their origin. However, a
packet originating at a node outside of a cycle will traverse it many
times, until the routing protocol breaks the cycle. In the presence of
even a short-lived cycle, a single packet can traverse ten or fifteen
hops back and forth between two nodes. The possibly exponential
growth from per-hop duplication occurs, send queues overflow, and
the network saturates.

4.4.4 Fixing Surge
We instrumented the send queue to keep track of its maximum

depth and redeployed Surge in our real-world network to validate
that these queue overflows occur. They did. We implemented two
changes to Surge to prevent this behavior. The first was duplicate
suppression in the send queue; the second was to incorporate a
more aggressive cycle detection algorithm that drops packets which
do not traverse up the tree. Incorporating both of these fixes, we re-
ran our simulations. Figure 11 shows the send queue length with
the fixed protocol, which exhibits no cases of queue overflow.

The ability to instrument sensor network applications at different
levels demonstrates TOSSIM’s value for analyzing complex sys-
tems. This degenerate behavior in Surge was the result of low-
level interactions between the link layer acknowledgment scheme,
network-layer retransmission policy, and routing protocol. This
problem would have been difficult to resolve using an abstract

0.001

0.01

0.1

1

10

100

1000

10000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Motes

T
im

e 
(s

ec
o

n
d

s)

Busy
Quiet
Inactive

Figure 12: Scalability of TOSSIM on three applications as a
function of the number of motes. Each simulation ran for ten
virtual seconds.

simulation of the networking stack; as with theChannelMonM
bug, low-level simulation of the actual TinyOS code was needed.

4.5 Completeness: TinyDB
Other research groups have used TOSSIM to test and evaluate

their work. One example is TinyDB [17], a sensor query engine that
runs on TinyOS developed by the Telegraph group at UC Berkeley.
TinyDB provides an SQL-based interface to the sensor network,
allowing users to pose declarative queries.

TinyDB uses a wide range of algorithms to route data tuples to
query roots, aggregate sensor data to reduce traffic, and compute
statistics over subregions of a network. Much of this processing
occurs within the sensor network itself, reducing the amount of
radio traffic by an order of magnitude compared with full collection
and out-of-network processing.

The Telegraph group has used TOSSIM extensively in the design
and evaluation of TinyDB; they report that it provides a useful
environment for prototyping new features. Using TOSSIM and
the lossy radio model, they have examined TinyDB’s behavior and
performance in networks of hundreds of nodes, a daunting task in
the real world.

4.6 Bridging
TOSSIM compiles directly from TinyOS code; building a simu-

lation instead of a mote image merely requires changing the single
platform parameter tomake (i.e., make sim instead ofmake
mica ). Besides the small number of components that TOSSIM
replaces to emulate interrupts and other hardware abstractions, all
of the simulation code (especially application code) is identical to
that which runs on a mote. By supporting the TinyOS PC tool-
chain, users can transition between a simulation and real-world net-
work by changing a single option in SerialForwarder, the TinyOS
network access proxy server program. Users can step through
simulation code with traditional debuggers without disrupting mote
execution. All of these things combine to provide developers the
ability to carefully test and analyze the implementations that will
run on mote hardware.

4.7 Scalability
We evaluate TOSSIM’s scalability using three different appli-

cations with varying degrees of complexity. Because of the bit-



level resolution of the radio stack simulation, performance of a
simulation is based largely on the amount of communication, rather
than on the complexity of the application logic itself. Hence,
while these applications are simple, their simulation performance
accurately represents that of larger applications.

The first application,CntToLeds , displays the bottom three
bits of a 4 Hz counter on the mote’s three LEDs. This application
does not use the networking stack, and therefore represents the
best case of simulation performance. The second application,
RfmToLeds , displays the value contained in a received radio
packet on the LEDs. This application performs only listening,
and does not send any radio packets; its performance demonstrates
the overhead of the receive side of the radio stack. The third
application,CntToRfm , transmits the value of the 4 Hz timer as a
radio message, and displays the value of received timer messages
on the LEDs. This application represents a busy network scenario
involving both sending and receiving of messages.

Figure 12 shows the performance of these three applications as a
function of the number of simulated nodes. In each case, 10 virtual
seconds of execution time were simulated on a 1.8 GHz Pentium
4 machine with 1GB of memory running Linux 2.4.18. The
memory footprint of motes is very small, so memory consumption
is not a limiting factor in our simulations. For a network of
10000 motes running theCntToRfm application, approximately
4 MB of memory is required. Dense network configurations can
lead to greater memory requirements.

As the figure shows, simulation time is mostly linear in the num-
ber of nodes, simulating the radio stack at the bit level introduces
significant complexity. The network-inactive application scales
extremely well, and 8192 motes can be simulated in 12.5 sec. The
network-intensive application, on the other hand, requires about
2.75 hours to simulate 8192 motes. Much of this overhead is
due to the MAC layer used in our radio stack; a TDMA scheme
would allow motes to sample the channel infrequently, yielding a
significant performance improvement.

5. PRIOR WORK
Simultaneously meeting all of the requirements posed to a sensor

network simulator is difficult. Several other sensor network simu-
lators have been proposed, but none meet all of the requirements as
TOSSIM does.

ns-2 [2] is the predominant discrete event simulator used in net-
work systems. It simulates networks at the packet level, and allows
a wide range of heterogeneous network configurations. Complex
models to determine packet loss rates from physical topologies are
written in Tcl or C, separate from a protocol implementation.ns-
2 is, as its name suggests, a network simulator, while TOSSIM is a
TinyOS simulator that provides a network model.

Numerous sensor network research efforts have evaluated algo-
rithms with simulations usingns-2 . For example, research on
geographic hash tables used a 50-200 node simulation with an
802.11 MAC[23]. Simulations for the PSFQ routing protocol used
25 nodes with 2Mbps links[26]; there are other examples of an
802.11 MAC being used inns-2 to simulate sensor networks[30],
although initial evidence indicates it is inappropriate[13].

Additionally, ns-2 does not model application behavior. For
trace driven simulations of layered protocols, this is appropriate. In
sensor networks, however, protocols and applications interact; for
example, protocol layers are often crossed or ignored to provide
time-dependent aggregation of sensor readings, following a model
of integrated layer processing instead of strict layering [6].ns-2 is
inappropriate to model this sort of behavior; whilens-2 is a much
more general network simulator, TOSSIM simulates applications,

the network, and their interaction, thereby providing a degree of
fidelity, bridging, and completeness thatns-2 cannot.

SensorSim[19] is built on top of anns-2 802.11 network model
using DSR. SensorSim is intended for the heavy-weight WINS [22]
platform, and requires applications writers to use SensorWare Tcl
scripts. It uses similar techniques to achieve different goals than
TOSSIM; for example, it closely tracks energy usage based on data
taken from real-world WINS nodes.

EmStar [7] provides a flexible environment for transitioning
between simulation and deployment for iPAQ-class sensor nodes
running Linux. Users have three options: running many virtual
nodes on a single host with a simulated network, running many
virtual nodes on a single host with each virtual node bridged to a
real-world one for networking, and running a single real node on a
host with a network interface.

TOSSF[21], a simulator developed at Dartmouth, compiles
TinyOS code into the SWAN[16] framework for wireless simula-
tion. TOSSF borrows many techniques used in TOSSIM. However,
TOSSF translates to a very different target simulation framework.
TOSSF uses dynamic function binding and frame allocation to
allow different mote applications to run at once. It includes
idealized radio propagation models; in contrast, TOSSIM contains
models derived from empirically gathered data. TOSSF seeks to
scale to tens or hundreds of thousands of nodes, but there currently
are not yet any published evaluations of its scalability, fidelity, or
completeness. In contrast, TOSSIM has been in use by several
groups (such as the Telegraph group at UC Berkeley) for over six
months.

TOSSIM simulates not only the network, but also the execution
of each node; the distributed nature of sensor networks makes this
aspect of TOSSIM similar to work in processor simulation. Many
of the same issues arise, such as the trade-off between performance
and inter-CPU timing accuracy, which in the case of a sensor
network is inter-mote timing and performance. Systems such as
Embra [27](part of SimOS [24]) emulate binary code; TOSSIM
compiles directly to native code instead, as the relative simplicity of
mote hardware allows accurate simulation at the component level.

Proteus allowed the user to configure the relative fidelity and
resulting performance of the separate components in a multipro-
cessor, such as interrupts, instruction quanta, and networking[5].
Work with Tango Lite demonstrated that trace-based simulations
were only worthwhile if execution was timing independent[10],
something which is obviously not the case with an event-driven
sensor network.

6. DISCUSSION AND FUTURE WORK
By exploiting several characteristics of TinyOS and the sensor

network domain, TOSSIM can provide a scalable, high-fidelity
simulation. As individual motes are resource-constrained, TOSSIM
can simulate large numbers of them. Event-driven execution effi-
ciently maps to event-driven simulation. The TinyOS component
model provides an easy way to capture the execution of entire
applications by re-implementing a few low-level abstractions. The
component model also allows TOSSIM to use the same code
that will run on motes, so developers to test their algorithm
implementations. By representing a network as a bit error graph,
TOSSIM can capture many of the subtle interactions seen in reality
while keeping configuration and simulation simple.

Because TOSSIM can replace arbitrary TinyOS components, it
has a flexible level of abstraction. A desire for extremely high
fidelity motivated our choice for where the simulation/TinyOS
boundary lies, but this boundary and the models beneath it can be
easily changed. For example, while we designed TOSSIM to be



a closed TinyOS mote simulator, its architecture turns out to be
much more flexible than we anticipated, allowing a user to trade
off between fidelity and performance.

For example, the performance measurements in Section 4.7
are from simulating the network at the bit level. As a simple
experiment, we wrote a simulator version of the TinyOS packet-
level radio component,RadioCRCPacket . This simulator im-
plementation models packet loss due to bit errors (using the lossy
model), but does not model packet collision or MAC delays.
Using this higher-level abstraction, simulating 8192 motes running
RfmToLeds for 10 virtual seconds takes approximately 25 real-
world seconds; in comparison, as shown in Figure 12, simulating
this at the bit level approximately takes an hour. By allowing users
to replace any part of the application component graph, TOSSIM
provides flexibility in the spectrum of fidelity and performance.

Researchers at UCLA, drawing on their experiences with Em-
Star [7], are exploring connecting real-world motes to the TOSSIM
networking model by replacing TinyOS networking components
with a bridge to real motes. In this system, when a TOSSIM mote
sends a packet, the TOSSIM engine tells a real-world counterpart
mote to send a packet, and when a real-world mote receives a
packet, it signals its TOSSIM counterpart with the received packet.
This would allow debugging and analysis of high-level application
implementations on a PC with a real-world network. Other groups
have modified TOSSIM so that multiple running copies can com-
municate through a network proxy, allowing developers to program
palmtop PCs in TinyOS, including even an AM interface over
802.11. This is useful when experimenting with heterogeneous
networks that have a few powerful motes, without having to design
and fabricate new hardware platforms.

The comparatively low mote bandwidth allows TOSSIM to
simulate protocols at bit granularity. As Figure 12 showed, network
activity is the principal simulation cost. Real-world motes are also
limited by network activity, but for a different reason: energy. In an
interesting turn of different but parallel constraints, optimizing an
application for energy consumption will also speed its simulation.

An important issue is whether TOSSIM’s techniques are limited
to a specific OS running on certain hardware, or can be generalized
to a broader class of sensor network platforms. There is also the
question of how TOSSIM can be improved. We consider three
points: modeling CPU time, modeling energy, and supporting
thread-based execution models.

TOSSIM’s run-instantly execution model does not capture CPU
time. Since interrupts are discrete events, TOSSIM does not model
preemption and the resulting possible TinyOS data races. Achiev-
ing this degree of fidelity would require either interpretation of
mote binaries or instrumenting them to correlate PC ISA operations
with mote ones and maintaining cycle counts. While using such
techniques would be feasible for a small number of motes, it would
limit scalability. We are exploring possible ways to provide similar
degrees of fidelity while avoiding most of the costs. Additionally,
current versions of nesC perform compile-time data race checks,
greatly reducing this class of bugs, and therefore limiting the utility
of such functionality.

Another thing that TOSSIM currently does not capture is energy
consumption. Initial work deploying sensor networks has shown
there to often be a large disparity between expected and real power
draw [18]. However, simulation can provide comparative results
for analyzing algorithms. Providing energy data requires adding
hooks to the simulator implementations of hardware abstraction
components, to keep track of changes in their energy states. The
importance of energy in sensor network systems makes it one of
the next intended additions for TOSSIM.

7. CONCLUSION
TinyOS’s event-based execution maps easily to discrete event

simulation. Unfortunately, it is unlikely that TOSSIM would
be effective for simulating thread-based systems; the cost of the
large number context switches (even if in user-land) would be
prohibitive. Additionally, maintaining accurate time across motes
and interrupt modeling in the presence of possible spin loops
would require the same techniques as capturing preemption – a
tremendous performance cost.

We tackled the problem of testing and analyzing sensor net-
work applications, and have demonstrated that it is possible to
build scalable, high fidelity simulations of full sensor network
applications. The number of bugs and flaws we found in core
TinyOS services suggests that simulation should be an important
phase in application development, and the ease with which one can
transition between deployments and simulation means doing so is
not prohibitive. Our hope is that TOSSIM will be of great use to
the sensor network community, enabling research in this new and
wide domain.
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