
Multiple Simultaneous Acoustic Source Localization
in Urban Terrain

Ákos Lédeczi, Péter Völgyesi, Miklós Maróti, Gyula Simon, György Balogh, András Nádas, Branislav Kusy,
Sebestyén Dóra and Gábor Pap

Institute for Software Integrated Systems
Vanderbilt University

Nashville, TN, 37235, USA

Abstract—Experiences developing a sensor network-based
acoustic shooter localization system are presented. The system is
able to localize the position of a shooter and the trajectory of the
projectile using observed acoustic events, such as the muzzle
blast and the ballistic shockwave. The network consists of a large
number of cheap sensors communicating through an ad-hoc
wireless network, which enables the system to resolve multiple
simultaneous acoustic sources, eliminate multipath effects,
tolerate multiple sensor failures while providing good coverage
and high accuracy, even in such challenging environment as
urban terrain. The paper describes the hardware and software
platform developed for this application and summarizes the
lessons learned during the development of the system.

Keywords-wireless sensor network; sensor fusion; acoustic
source localization; time synchronization; message routing;

I. INTRODUCTION
A common feature of existing countersniper systems is that they

contain only a few sensor units deployed around or near a protected
area. Our alternative approach was made possible by the emergence of
wireless sensor networks. In contrast to current solutions, our system
contains a large number of inexpensive sensors. Thus, the system can
provide much better coverage and it is robust against multipath effects
prevalent in urban environments. Furthermore, our system can resolve
multiple, simultaneous shots which no other existing system can do. In
addition to these technical advantages, a sensor network-based
approach also have several other favorable properties in military
operations: speed and ease of deployment in hostile environments,
independence of potentially unreliable civilian infrastructure (power
and communication network), and robustness against node failures.

Figure 1. depicts the acoustic events generated by a typical rifle
shot. The muzzle blast produces a spherical wave front, traveling at
the speed of sound from the muzzle of the gun. The shock wave is
generated in every point of the trajectory of the supersonic projectile
producing a cone-shaped wave front (assuming the speed of the bullet
is constant). The angle of the shockwave cone is determined by the
ratio of the speed of the projectile and the speed of sound. The sensors
autonomously detect the shockwave and/or the muzzle blast, measure
their times of arrival (TOA), and send the measured results to a base
station through the ad-hoc wireless sensor network (WSN). A fusion
algorithm running on the base station determines the location of the
shooter and the trajectory of the projectile. The sensor network utilizes
several middleware services to maintain communication between the
base station and the sensors, synchronize the clocks of the sensors, and
perform self-localization.

Figure 1. System concept

The 3D localization accuracy of the developed prototype system is
1 meter on average. The latency of a sixty-node six-hop setup is below
2 seconds. Furthermore, the system can accurately localize several
shots per second. This rate is limited primarily by the low
communication bandwidth available on the current sensor network
platform.

 We reported on the first generation of the system in [1]. Time
synchronization and message routing was discussed in detail in [2]
and [3], respectively. The aim of this paper is to share the many
lessons we learned during the development of this successful sensor
network application. In addition, we describe the new techniques we
applied in the second generation system including a new sensor board,
new detection algorithm, a novel time synchronization approach and a
new shockwave fusion algorithm. The remainder of the paper is
organized as follows. In the next two sections we describe the
hardware and software platform we developed and applied. Then we
briefly present and evaluate the results. Finally, we detail the most
important lessons we learned.

II. HARDWARE PLATFORM
The hardware platform is built upon the UC Berkeley MICA2

mote device running the TinyOS embedded operating system [6], a
widely used component-based architecture targeting wireless sensor
network applications. Open interfaces at the software and hardware
levels made it possible to integrate specialized smart sensor elements
and supporting middleware services. Each MICA2 mote is furnished
with an ATmega 128L 8-bit microcontroller with 128 Kbytes
instruction memory, 4 Kbytes data memory and typical embedded

The DARPA/IXO NEST program (F33615-01-C-1903) has supported the
research described in this paper.

peripherals built in. The on-board radio transceiver operates in the 433
MHz ISM band and has a maximum transfer rate of 38.4 Kbits/sec
with the maximum range of about 300 feet.

Real-time detection, classification and correlation of acoustic
events require processing power and buffer sizes not present in
standard microcontroller-based embedded devices. To overcome these
limitations, application-specific sensor boards have been designed and
built at Vanderbilt University. The different architectures reflect the
current dilemma faced by many signal processing engineers today.

Figure 2. FPGA acoustic sensor board

Our first design (see Figure 2.) utilizes a Xilinx XC2S100 FPGA
chip with three independent analog channels exploiting the inherent
parallelism of the hardware. The algorithms – implemented in VHDL
– are focusing on time domain analysis of acoustic signals captured at
high sample rates (1 MSPS). Hardware and software interfaces (I2C
bus, interrupts, led display and serial A/D) are implemented as custom
IP cores in the same gate array. While this approach completely
avoids the instruction-fetch, load/store bottlenecks of traditional
processor architectures and provides efficient resource utilization, the
size of the FPGA component severely constrains the complexity of
our algorithms. Suboptimal power consumption of the processing unit
is another handicap in the sensor network domain.

To overcome these limitations another sensor board has been
developed, where customized analog signal paths and an energy-
efficient, powerful DSP processor make the unit uniquely suitable for
power constrained applications. At the heart of our second platform
(Figure 3.) is a low-power fixed point ADSP-218x digital signal
processor running at 50Mhz. Its internal program (48KB) and data
(56KB) memory buffers with advanced addressing modes and DMA
controllers enable sophisticated signal processing and advanced power
management methods.

Figure 3. DSP-based acoustic sensor board

Two independent analog input channels with low-cost electret
microphones pick up the incoming acoustic signals utilizing a 2-stage
amplification with software programmable gain (0-54dB). The A/D
converters sample at up to 100kSPS at 12-bit resolution. Analog
comparators with software adjustable thresholds can be used to wake
up the signal processor from low-power sleep mode, enabling
continuous operation for weeks on two AA batteries.

The signal processing board can be used as a stand-alone device
or connected to other embedded hardware using standard and custom
communication interfaces. Programmable interrupt and
acknowledgement lines and a standard I2C bus connection enable
integration with the MICA2 mote [6, 8]. The board also provides a
standard asynchronous serial interface, perfectly suited for PC, laptop
or PDA connections.

The combination of computational power, energy efficiency and
specialized circuits made it possible to utilize more sophisticated
frequency and time domain analysis detecting and classifying acoustic
events more precisely.

The FPGA and the DSP boards running the detection algorithms
continuously draw 30 and 31 mA, respectively. While we have not
implemented the power saving mode on the DSP board yet, we expect
this number to drop to 1-5mA in various sleep modes. For
comparison, the Mica2 mote draws 15 mA running the countersniper
application.

III. SOFTWARE PLATFORM
An earlier version of the system was described in detail in [1]. Here

we present a summary of the software architecture (Figure 4.). The
Muzzle Blast and Shockwave Detector is implemented in VHDL on
the FPGA of the first generation sensor board and in C on the DSP of
the new board. The TOA data from either board is sent through the
I2C interface to the mote. The Acoustic Event Encoder assembles a
packet containing the TOA data and passes it to the Message Routing
service.

Figure 4. Software Architecture

In addition to transporting the packets to the base station through
multiple hops, the Message Routing service also performs implicit
time synchronization. Additional software components running on the
mote include a Remote Control service enabling the
configuration/polling of a single node, a group of or all of the nodes
from the base station. A Stack Monitor makes sure that the limited
memory of the mote is not exhausted.

The Base Station runs the Sensor Fusion algorithm utilizing the
known sensor positions and displays the results on the User Interface.
The accuracy and/or range of existing sensor self-localization methods
(including our own [4]) are not satisfactory for the shooter localization
application. Hence, up-till-now all tests of the system were performed
utilizing hand-placed motes on surveyed points.

The next three sections summarize the key components of the
system.

A. Detection
The first version of the sensor board was designed with three

independent acoustic channels allowing on-board Angle of Arrival
(AoA) estimation using time of arrival (ToA) estimates of the three
channels. Since the microphones of the individual channels were
located two inches apart, the resolution and accuracy requirements
were in the microsecond range. Hence, the incoming signal is sampled
at 1MHz and then it is compressed using Zero-Crossing (ZC) coding.
ZC coding provides large compression rate enabling real-time
processing in the latter stages of the signal processing chain. Although
the coding is lossy, those features of the signal between zero crossings
that are necessary to achieve high precision ToA estimates are
preserved: start time, min/max amplitude, length, rise time, and
previous average amplitude. The ZC-coded signal is used to detect
possible occurrences of shockwave and muzzle-blast patterns.

The signal processing algorithm running on the second generation
board uses time-frequency analysis combined with time-domain
feature extraction. In the first stage, possible events are detected using
the signal’s energy distribution in the frequency domain. This stage
has a high false positive ratio, but successive stages eliminate false
candidates based on the changes of the energy distribution in time.
The next stage utilizes a signal-to-noise-ratio-like quantity (SNR),
calculated as the ratio of the signal energy in certain frequency ranges
of interest. The amplitude, slope and width of the SNR peaks are used
to eliminate the majority of false positives. The next stage determines
the exact starting point of a candidate in time domain, and further tests
involving the shape of the signal are performed. The candidates are
then time-stamped, and a quality descriptor (QD) is assigned to them.
The QD contains confidence values, describing the ‘muzzle blast’-
ness or ‘shock wave’-ness of the detected event. Based on the QD,
either a local decision is made whether the event is to be reported at
all, or the decision is left to the central fusion algorithm, where the
time-stamp along with the QD is used to determine the location of the
shot.

Both of the boards and the detection algorithms worked well
under a variety of circumstances. Depending on the type of gun and
ammunition, the muzzle blast detection range was between 30 and 150
meters. The shockwave detection range is between 30 and 50 meters.
Note that this is not as critical because if the projectile does not go the
near the sensor field, then the shot is not interesting from an
application standpoint. There were hardly any false positives for either
muzzle blast or shockwave. Vehicle noise, engine backfire, training
grenades and regular urban noise did not cause any detections. The
only false detections were due to raindrops hitting the microphone
directly. As these are events limited to a single microphone at a time,
light to moderate rain did not affect system performance at all,
because the sensor fusion immediately determined that no single
source could have produced the events within a few tenths of a
second.

B. Routing-Integrated Time Synchronization
The Message Routing service utilizes the Directed Flood Routing

Framework [3]. However, in addition to the sensor reading, a radio
message includes an age field, which contains the elapsed time since
the event detection. Each intermediate mote measures the elapsed time

from the reception of a data packet till its retransmission. The age field
is updated upon transmission using a precise time stamping method
described in [2]. When the sensor reading arrives at the destination,
the age field contains the sum of the offsets measured by each of the
motes along the path. The destination node can determine the time of
the event by subtracting age from the time of arrival of the message.
In essence, the clock of the base station becomes the global clock. The
average accuracy of this approach implemented on MICA2 motes is
tens of microseconds depending on the number of hops and other
factors. As the speed of sound is approximately one foot per
millisecond, this time synchronization error may cause a shooter
localization error that is well under an inch in the worst case.

C. Sensor Fusion
The sensor network delivers the measured shockwave and muzzle

blast TOA data to the base station after each detected shot. The data
set contains correct measurements that are detections of primary (line-
of-sight) acoustic events, and they may also contain erroneous data,
typically due to multipath effects. Multiple shots may occur at
different locations, but close in time, resulting in mixed measurements
containing correct measurements of multiple shots and also erroneous
data. The task of the sensor fusion algorithm is to estimate the shooter
location and the trajectory of the projectile, in spite of the possibly
large number of incorrect measurements. Furthermore, it has to deal
with two more sources of error: (1) imprecisely known sensor
locations and (2) time synchronization error.

Figure 5. Muzzle Blast Sensor Fusion

The traditional Time Difference of Arrival (TDOA) approach is
not able to handle either multipath effects or multiple simultaneous
shots. Our fusion algorithm is based on a search on a surface defined
by a consistency function. The global maximum of the surface defines
the estimated shooter position. Multiple shots are shown as multiple
local maxima on the surface. A formal definition of the consistency
function and the search to find its maxima are given in [1]. Here we
present a conceptual description.

Consider the right hand side of Figure 5. The four blue circles
represent four sensors that detected a shot. Let us assume that the shot
was fired from the red position. Since we know the sensor positions
and the speed of sound, we can plot the timeline of events when the
shot had to be fired according to the sensor readings (bottom of Figure
5.). If the position is the correct shooter position, then all line-of-sight
sensors will agree on the time of the shot. That is, these detections will
fall within a narrow window whose width is determined by the
possible detection errors that are dominated by the sensor position
errors. So, if we know the sensor positions to one foot of accuracy
then all line-of-sight detections will fall within a millisecond wide
window on the timeline at the correct shooter position. Non-line-of-

sight detections, on the other hand, will show up as outliers. Consider
the first sensor in Figure 5. whose detection time was t1. The sound of
the shot traveled longer then the distance we use in our computation,
hence, it will result in a larger estimated shot time.

The consistency function is defined for every point in the three
dimensional area of interest as the maximum number of sensor
detections that fall within a narrow time window. The estimated shot
position will be the global maximum of this function. Note that
multiple shots will show up as multiple peaks. Also note that a
consistent echo, that is, an echo from the same obstruction measured
by multiple sensors, shows up as a local maximum also. However, it
can be shown that the estimated absolute time of a real shot and a
corresponding consistent echo are the same. As long as more sensors
detect the real shot than the echo, peaks due to echoes can be easily
eliminated. This assumption proved to be realistic in our field
experiments.

A multi-resolution search procedure based on interval arithmetic
finds the global maximum rapidly [1]. Sensor readings contributing to
this position are then removed from the list of unclassified acoustic
events and the procedure is repeated to find subsequent shots.

The above description applies to muzzle blasts only. Recently, we
have generalized the approach to shockwaves as well. In this case,
three more dimensions are added to the original four dimensions (x, y,
z spatial coordinates and the shot time). These are the azimuth and
elevation of the projectile trajectory (estimated as a line) and the speed
of the bullet (estimated as constant). However, the search in this 7
dimensional space proved to be computationally infeasible using a
current desktop class computer. Instead, we applied a genetic
algorithm-based approach to determine projectile trajectories. [10]
provides a detailed description of the approach.

IV. RESULTS
To evaluate the performance of the shooter localization system,

multiple field experiments were conducted in US Army Military
Operations in Urban Terrain (MOUT) facilities. A typical setup
utilized 60 motes deployed in the central area of the facility covering
an approximately 100m by 50m area with mean node spacing distance
of 5m.

Shooter detection error

0

2

4

6

8

10

12

14

16

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

error (meter)

fr
eq

ue
nc

y

2d
3d

Figure 6. Experimental results

In one particular test scenario, 40 shots were fired of which 18
were blanks and 22 were short range training ammunition (SRTA).
Since the performance of the system was equivalent for both types of
ammunition, only the unified results are presented. In the following
summary, we refer to (x,y) localization error as 2D error (elevation is
not considered), and (x,y,z) localization error as 3D error. Figure 6.

shows the histogram of the 2D and 3D errors for the set of test shots.
The position error (in meters) and the number of shots are shown on
the horizontal and vertical axes, respectively. The average 2D error
was 57cm, while the average 3D error was 98cm. These numbers are
exceptional.

As one can see, a single shot had more than one meter 2D error,
while two more had 3D errors in the 3-meter range. One of these shots
was taken near the edge of the sensor field and only a handful of
sensor detected it. The other two created a relatively flat consistency
function around the true location possibly due to echoes. In general,
the 3D accuracy is worse than the 2D because most of the sensors
were on the ground and the vertical resolution of the system, therefore,
was not as good.

These results were obtained utilizing only the muzzle blast
information in the sensor fusion. Recently, we conducted our last field
experiments to evaluate the shockwave-based sensor fusion for long
range shots. We applied a genetic algorithm-based shockwave fusion
[10] and a novel range estimation method [10] when some muzzle
blast detections were also available. The results were very
encouraging. In one particular test, 12 shots were fired through the
middle of the network, so there where sensors on each side of the
trajectory. The shooter was approximately 100 meters from the edge
of the sensor field. The average azimuth error was 0.66 degrees, the
average elevation error was 0.61 degrees, and the average range error
was 2.56 meters. In another test, 11 shots were fired from the same
distance near the edge of the network, so there were no or only a few
sensors on one side of the trajectory. The average error increased to
1.41 degrees in azimuth, 1.11 degrees in elevation and 6.04 meters in
range. These numbers are comparable to those of existing centralized
countersniper systems.

Utilizing the test data, we performed simulations to check the
sensitivity of the system to sensor localization error. Surprisingly, we
found that the trajectory estimation accuracy is largely insensitive to
sensor positions. Even when an extra 2m random error was added to
the sensor positions, the azimuth error still remained below 2 degrees.
For more details, refer to [10].

V. LESSONS LEARNED
Developing a non-trivial application on a resource-constrained

sensor network platform has taught us many lessons. The most
important one is that there is a very long way from an algorithm on
paper to a middleware service on the target hardware platform
working under real-world environmental conditions. What are the
special characteristics of this computing field that make it especially
difficult?

A. Moving Target
The field of wireless sensor networks is a relatively new domain

characterized by rapid innovation. As such, the available hardware and
software platforms evolve at a fast pace. Developing applications for a
moving target is challenging. For example, the MICA2 mote, the
successor of the original MICA, became available in early 2003.
Among other things, it had a new radio chip and required a new radio
stack implementation in TinyOS. It turned out that collision avoidance
did not work perfectly, which significantly degraded the
communication bandwidth. Some of our existing middleware services
had poor performance on the new platform, which led us to the
development of algorithms that worked well even in the presence of
collisions.

TinyOS itself is an exemplar of a very successful, but rapidly
evolving system. Version 1.0, which came out in the fall of 2002 and
was a complete rework implemented in a new language, provided
great improvements, but required a significant effort in porting all

existing services and applications. We found that one has to balance
the stability of the target application and the need of importing parts of
the latest revisions of the TinyOS development tree.

There is a rich body of work documented in the sensor network
literature. However, few proposed algorithms are ever implemented
on hardware. Those with available implementation become outdated
very quickly unless the authors remain vigilant about porting their
code when the hardware and software platforms change. Even then, it
is not guaranteed that the algorithm works just as well on the new
platform, as it did on the old one. These factors hinder software reuse
significantly.

B. Integration
Middleware services do not work in isolation. Any meaningful

application uses multiple middleware services and other application
components. They must interact and share the limited resources of the
platform. One of our bugs was traced to the stack overwriting
statically allocated memory under some rare conditions. This led us to
the development and religious use of a stack monitoring service. In
addition to the hardware limitation of 4 kilobytes of available data
memory, TinyOS itself can run out of resources, such as timers and
tasks. This has also occurred several times.

All these observations point in one direction. Middleware services
must be kept as simple as possible. Simple algorithms typically need
fewer resources and have fewer interactions that are easier to
comprehend and hence, debug. This means that general purpose
protocols that are meant to support a variety of applications are
usually too heavyweight for the mote platform. In our experience, the
development of application-specific middleware is the rule rather than
the exception. For example, there is no message traffic in our network
until a shot is fired. Then a lot of motes need to send messages to the
base station almost simultaneously. As many messages as possible
need to be delivered in the first second, but it does not necessarily
matter which ones. We developed a simple routing protocol
specifically optimized for this set of requirements instead of taking an
existing approach, porting it to the then new MICA2 platform and
hoping that it’ll perform well in our application.

C. Simulation
Embedded systems in general are characterized by their tight

integration with the physical world. This is especially true for wireless
sensor networks, since their primary purpose is to measure some
physical phenomenon, they must operate in an uncontrolled
environment, and they use wireless communication. These facts limit
the applicability and usefulness of simulation. Few simulators take the
physical world into account. For wireless networks that is usually
limited to the simulation of the radio channel. But how do RF
multipath effects prevalent in urban environments or draining batteries
effect radio range? Some of the complex simulator frameworks (e.g.
ns-2) might be able to be configured to answer some questions like
these, but the effort required to set up realistic simulations is very
high.

The current state-of-the-art in mote simulation presents other
problems too. TOSSIM, the TinyOS simulator, takes the actual code
the motes run, but its radio model is very simplistic. More realistic
simulators [7, 9], on the other hand, require reimplementation of the
application in their language using their API. Such simulation can be
very helpful in the early phases of algorithm development, but does
not help in debugging the actual code. These difficulties and the tight
deadlines made us do hardly any simulation in the development
process.

D. Development cycle
In many ways, developing code for the mote platform is

reminiscent to the earlier days of computing when memory usage or
the number of floating point operations in a program were important
considerations. When you have 4 kilobytes of data memory and
twenty some useful bytes in a message, literally every bit counts
again. And you need to (re)learn that you do not multiply or divide,
only shift.

Another similarity to the past is the speed of the debug cycle.
Reprogramming a hundred nodes by plugging them in the
programming board one by one is not a speedy operation. Thus, we
needed to make radio reprogramming work somewhat reliably for at
least the one-hop case. The primary debugging tool we used to have
was the three LEDs on the mote. Instead, we created a tool that works
like “printf,” routing the data back to the base station and displaying
the text there. In this sense, basic tool development is an integral part
of application development just like in the past.

Another unique feature of sensor network applications is that a
small change in the code or a minor new feature will have an impact
on many parts of the overall application. The primary reason for this is
the fact that there are typically three or more different hardware
components working together in a typical WSN application: the
sensor board, the mote and the base station. For example, when we
wanted to add a simple data recorder, so that we can analyze the signal
shapes the acoustic channel records on the sensor board, we needed to
modify the sensor board code. Then we needed to add the capability
on the mote side to receive a large data buffer from the sensor board
through the I2C interface, store it, break it up into small packets and
send it to the base station using the message routing service.
Furthermore, the base station Java code needed to be modified to
receive the packets, assemble them in the correct order and request
any missing packets from the sender. Finally, the pieces needed to be
integrated and tested. A relatively simple new feature took a couple of
manweeks to fully implement and verify.

E. Testing
Testing may be the most time consuming task in putting together a

real world sensor network system, especially, if it is an outdoor
application. The main problem is that what works using a handful of
nodes in the lab will almost always not work under real deployment
conditions. Differing conditions include communication distances
(and hence, different topology and network diameter), multipath
effects, weather conditions (temperature, precipitation), noise and
other miscellaneous environmental factors. And during a field test you
typically try out things that you do not think of in the lab. For
example, you may put the motes in tall grass and realize that the
effective communication range is cut in half.

Therefore, the system needs to be tested under real deployment
conditions frequently. In our case that means loading 50 motes and
sensor boards with the current software, changing the batteries, and
taking them along with laptops, rifles and ammunition to a farm
outside of town. Once there, the mote positions need to be surveyed to
better than 1 foot accuracy, a time consuming task in itself. The whole
setup needs a handful of people and takes several hours even before
you start testing. At this point, you do not want to realize that because
of a trivial error, the system does not really work and you have to
postpone the test. Therefore, before a field test, you need to test every
piece of the system and the whole application extensively in the lab.
You need to find all the problems you possibly can in the lab before
committing yourself to an expensive field test. Therefore, a complete
field test of the system can take multiple people several days.

F. Scalability
The necessary sensor density and the size of the area that can be

covered depend on many factors including the density of the urban
area, overall accuracy requirements and the expected lifetime of the
system. We estimate that scaling up to system to 100 nodes deployed
in a typical urban area and covering 200x200 meters could provide the
accuracy and latency presented in this paper. Beyond such deployment
area and number of nodes, the network connectivity and the latency
would become issues. However, this area is hardly more than one
percent of a square mile. A realistic military application would require
the coverage of several square miles necessitating orders of magnitude
larger network size.

While this particular system has latency and deployment density
requirements that may be more severe than most WSN applications,
the limited radio range will constrain the deployment area of any
sensor network application. As many others have observed, this
mandates a hierarchical network architecture where groups of motes
are clustered around more powerful nodes. The main requirement is
that this “second layer” node has a different communication channel
to other such “supernodes” providing higher bandwidth and longer
range. While there are several attempts at creating such hierarchical
network architecture, significant challenges remain. In particular, the
power requirement of such supernodes mandates very large batteries
or results in severely limited lifetime.

CONCLUSIONS
The most important lesson we learned is how wide the gap is

between an algorithm on paper, or even performing satisfactorily in a
simulator, and working on the actual hardware as an integral part of a
complex application deployed in the field. The tight integration of
WSNs and the physical world, the severe resource constraints and the
wireless communication are the most significant factors responsible
for this gap.

ACKNOWLEDGEMENTS
The authors would like to thank Vijay Raghavan, Keith Holcomb,

Al Sciarretta, Tony Mason, David King, Tamás Lédeczi, Béla Fehér,
Janos Sztipanovits, and Ben Abbott for their valuable contribution to
this work. This work would not have been possible without the help
and dedication of the people at the US Army Dismounted Battlespace
Battle Lab at Ft. Benning and the U.S. Army Aberdeen Test Center.
We also thank the anonymous reviewers for their constructive
comments.

REFERENCES
[1] Simon, G., et al.: Sensor Network-based Countersniper System. In Proc

of the Second ACM Conference on Embedded Networked Sensor
Systems (SenSys), November 2004.

[2] Maroti, M., Kusy, B., Simon, G., Ledeczi, A. The Flooding Time
Synchronization Protocol. In Proc of the Second ACM Conference on
Embedded Networked Sensor Systems (SenSys), November 2004.

[3] Maroti, M.: The Directed Flood Routing Framework. In Proc of the 5th
International Middleware Conference, October 2004.

[4] Sallai J., et al.: Acoustic Ranging in Resource-Constrained Sensor
Networks, In Proc of ICWN '04, Las Vegas, NV, June, 2004.

[5] Gay, D. et al.: The nesC Language: A Holistic Approach to Networked
Embedded Systems, In Proc. of PLDI, 2003

[6] Hill, J., Culler, D.: Mica: A Wireless Platform for Deeply Embedded
Networks. IEEE Micro, Vol. 22, No. 6, 2002, pp. 12–24.

[7] http://www.isi.edu/nsnam/ns/
[8] http://www.xbow.com/
[9] Simon G., et al..: Simulation-based optimization of communication

protocols for large-scale wireless sensor networks, In Proc of 2003 IEEE
Aerospace Conference, March, 2003.

[10] Balogh, G., et al..: Wireless sensor network-based projectile trajectory
estimation, Technical Report, ISIS-05-601, February 2005,
http://www.isis.vanderbilt.edu/projects/nest/applications.html

