Abstract
In this article we introduce a new conception of three-dimensional DataSpace, which is physical space enhanced by connectivity to the network.
DataSpace is addressed geographically as opposed to the current logical addressing scheme of the Internet. Here, a local area network is
replaced by a room, a street, a mountaintop, and so on. Billions of objects populate DataSpace, each aware of its own geographic location. These
objects move through DataSpace, and produce and locally store their own data. They can be selectively queried, monitored, and controlled based
on their properties. We propose two architectures for DataSpace. We describe mechanisms to use the network as a DataSpace engine in order to
perform querying and monitoring operation in a highly scalable way.

DataSpace: Querying and Monitoring
Deeply Networked Collections 1n
Physical Space

TOMASZ IMIELINSKI AND SAMIR GOEL, RUTGERS UNIVERSITY

hen the physical space around
us is illuminated with different types of radiation, specific sets of
objects respond to specific types of radiation, even though the
radiation may fall on all objects. For example, most of the
objects in our environment reflect visible light; bones reflect X-
ray radiation, tissues resonate in magnetic fields. On similar lines,
we can imagine “illuminating” the physical space around us by
“beaming” various types of requests on deeply networked collec-
tions of objects contained in space. A
request “beamed” on the network may ask
for retrieval of data or completion of a task.
Furthermore, we can imagine specific sets of
objects responding to the request placed by
a user, depending on the request type and
the properties of the object. Through such a
network-mediated illumination of the physi-
cal world, one can experience and control
billions of objects in one’s immediate or
remote environment. We call such a world
DataSpace and define it simply as physical
space containing data. It can be the 3-D
physical space encompassing Earth (Fig. 1)
or that encompassing our galaxy (Fig. 2). Of
more immediate relevance is the 3-D real
physical space shell starting from 10 km
below the surface of Earth and extending up
to 100 km above the surface of Earth (Fig.
3). In this article, we use the term DataS-
pace mostly to refer to this space shell.

DataSpace is populated by a very large number of objects
that produce and locally store data pertaining to themselves.
In DataSpace, physical objects are not just characterized by
shape, size, and color, but also by processor type, amount of
memory, and network connectivity.

Just as in real space through which we move, spatial coordi-
nates are the basic points of reference to navigate and query
DataSpace. However, unlike in real space, the user can navi-
gate through and query objects far beyond the range of his
senses. Thus, by “moving” through DataSpace, a user, con-

W Figure 1. 4 3D physical space cube
encompassing planet Earth.

nected to the network, acquires enhanced awareness of
his/her surroundings as well as even very remote areas, includ-
ing information that was previously invisible or beyond his/her
access. DataSpace in effect gives the user a “sixth sense”
through which to perceive the world.

DataSpace is spatial by definition, built from three-dimen-
sional administrative and geometric cubes of data. An adminis-
trative datacube can encapsulate a city, a street, a building, a
basement, a room, or even a shelf or draw-
er; it can also include the interior of an
engine (e.g., one of the cylinders) or the
left hemisphere of someone’s brain. A
geometric datacube can range from a cubic
mile around the World Trade Center to a
cubic millimeter in the retina of an eye.

In DataSpace, collections of objects
inhabit various administrative and geomet-
ric datacubes. So for these objects to be
usefully accessed and manipulated, they
need to be organized into logical clusters.
This is achieved by grouping objects into
classes called dataflocks. Dataflocks are
classes of often mobile objects that move
through the physical world while still main-
taining (some level of) connectivity to the
network. Dataflocks are accessed through
the datacubes in which they are located
and their own class properties.

New objects become part of a dat-
acube by a simple plug-and-play mechanism. Rather than
requiring a complex prior protocol, this event involves little
processing other than registering a physical object in the
scope of its “vision.” Plug and play is emphasized in JINT [1],
the most serious attempt today to build “smart spaces” of
devices such as home appliances, printers, and photocopier
machines. Using JINI, these devices can be connected to the
local area network and electronically controlled. However,
JINI is still oriented toward the logical structure of the
Internet, where locality and distance are defined not by geo-

4 1070-9916/00/$10.00 © 2000 IEEE

IEEE Personal Communications ® October 2000

graphic space but rather by the Internet’s logical struc-
ture of subnets. In contrast, DataSpace is spatial and
embedded in the physical reality that surrounds us. Here,
the local area network is replaced by a room, a street, or
the top of a mountain, depending on where the user is
located. Also, DataSpace is a global concept — apart
from accessing this immediately surrounding “local”
space, the user is potentially allowed to query, monitor
and control objects in remote spaces as well; in fact, in
the whole DataSpace.

The concept of a DataSpace is in contrast to the tradi-
tional concept of a database. A database stores informa-
tion locally about remote physical objects. Here physical
objects become merely the artifacts of their corresponding
entry in a database. In DataSpace, on the other hand,
data is inherently dispersed and connected — it “lives” on
the physical object; it is an inherent part of that physical
object; it is stored with the object, and may be queried by
reaching that object through the network. Data becomes
another natural characteristic of the object similar to its
weight, color, and general appearance.

Inherent in this conception of data that is dispersed in and
intrinsic to objects in a DataSpace are the processes of query-
ing and monitoring, and the underlying mechanisms of com-
munication and messaging. This work builds on the work by
Navas and Imielinski where they have introduced GeoCast [2]
for geographic messaging and implemented it within
DARPA’s GLOMO program.

Querying and Monitoring

In DataSpace, querying and monitoring of object collections is
spatially driven. Users first identify the datacube they want to
query. Each datacube has a datacube directory service (DS)
which lists all dataflocks registered in that datacube. Only
dataflocks registered in a given datacube can be the subject of
queries in that datacube. In general, very local dataflocks (such
as door locks in a building) will only be
registered in small datacubes immedi-
ately encompassing them. Dataflocks
desiring greater visibility will be regis-
tered in larger encompassing data-
cubes. Answering queries in larger
datacubes will invariably involve aggre-
gation. For example, a query inquiring
information about all taxi cabs in Man-
hattan may be answered by first provid-
ing their numerical distribution over a
two-dimensional spatial grid (e.g.,
blocks); the exact information can be
obtained eventually through the pro-
cess of query zooming to the smaller
datacubes.

We view querying as analogous to
illuminating the physical space. A
datacube is “illuminated” with a mes-
sage (radiation) carrying a query.
Only objects that satisfy the query respond to it (“reflect” the
radiation). In larger datacubes, instead of individual objects,
one may have sub-datacubes responding with aggregates of
responses from inhabitant objects. This has a clear visual anal-
ogy: details are usually not visible from far distances; one can
zoom in when details are required.

In the next section we describe possible architectures of
DataSpace. Later, we define parameters for evaluating any
DataSpace design. Subsequently we look at key technical chal-
lenges in realizing the proposed DataSpace architecture.
Finally, we conclude the article.

B Figure 2. 3D physical space cube encompasssing our galaxy.

W Figure 3. A 3D physical space shell stretch-
ing from 10 km below the surface of earth to
100 km above the surface of earth.

Architecting DataSpace

In this section we describe possible architectures for the
DataSpace system.

The Network as a DataSpace Engine

The Basic Approach — In this architecture we propose to pro-
vide the basic functionalaties (querying and monitoring) of
DataSpace at the network level using multicast mechanisms.
“Beaming” a request to a specific datacube (datacube “illumina-
tion”) such that specific sets of objects respond to it is naturally
amenable to implementation via multicasting. For this purpose
one may use shared multicast trees [3,4], where multicast group
membership for a given datacube is calculated on the basis of its
physical location. This way the network itself can take care of
ensuring that a given message “illuminates” only a specific dat-
acube. Moreover, the network can also support indexing on
selected attributes of dataflocks through multicasting. More pre-
cisely, for an indexed attribute, each pair h = (Atutribute, value) is
mapped to a corresponding multicast address, and all objects
which satisfy the predicate (Atribute =
value) belong to that multicast group.
This is analogous to maintaining a list
of objects associated with an index
entry (through so-called inverted
indices) in databases.

Conceptually, it is simpler to think
of a one-to-one mapping between the
set of pairs h = (Attribute, value) for
an index attribute and a set of multi-
cast addresses. However, in a practi-
cal implementation one may choose a
many-to-one mapping, mapping a set
of possible values of the index
attribute to a distinct multicast
address. A many-to-one mapping is
especially useful when an index
attribute takes continuous values. For
example, assume a DataSpace consist-
ing of temperature sensors, and
assume that the index attribute for the dataflock of tempera-
ture sensors is temperature. We believe that queries using this
index attribute are more likely to be of the form “Find all tem-
perature sensors in CoRE building reading temperature between
65 and 75° F,” where a range is specified. In such a case,
mapping ranges of temperature values ([54, 64], [65, 75], etc.)
to distinct multicast addresses is more efficient.

In the extreme case, one may map all the values of the
index attribute to a single multicast address. Choosing a
proper mapping is an implementation issue. In the remain-
der of this article we assume that appropriate mapping is

IEEE Personal Communications * October 2000

chosen to handle the common case efficiently, and deliber-
ately leave it unspecified. We use the phrase (attribute,
value) pair to also refer to the case when the attribute is con-
tinuous and “value” refers to a range of values of the
attribute. In such cases, this phrase should be interpreted to
be equivalent to the predicate (attribute IN value). In cases
where “value” refers to a single value of the attribute, the
phrase (attribute, value) pair should be interpreted as equiva-
lent to the predicate (attribute = value).

There will be a simple, standard, predefined mechanism in
DataSpace for mapping an (attribute, value) pair to a multicast
address. The mechanism may be as simple as a hash function.
Choosing an appropriate mapping mechanism is an imple-
mentation issue, and we deliberately leave it unspecified.

The process of querying in DataSpace parallels that in a
traditional database. In a traditional database, a query is pro-
cessed by first filtering tuples based on the condition on the
index attribute. The tuples that satisfy the condition on the
index attribute are then sequentially checked for the satisfac-
tion of the remaining conditions of the query. In a similar
way, a query is processed in DataSpace by first filtering the
objects based on the condition on the index attribute. This is
done by mapping the condition on the index attribute to a
multicast address. It is important to note that only the condi-
tion on the index attribute is mapped to a multicast address;
the whole query is not mapped to a multicast address. A mes-
sage containing the query is sent at this multicast address.
This message reaches all those objects that satisfy the condi-
tion on the index attribute. This way, in DataSpace, multicast
serves as an indexing mechanism for this distributed collec-
tion of data. The objects that receive the multicast message
extract the query from the message and check whether they
satisfy the remaining conditions of the query. If they do, they
respond with their id; otherwise, they silently discard the
received message. Thus, the filtering on the index attribute
happens at the network layer, while the filtering on the
remaining conditions of the query is done at the application
layer. We explain the querying process in more detail via an
example later.

An important feature of the querying process in DataSpace
is that the mechanism for mapping the condition on the index
attribute to a multicast address does not need to ensure that it
reaches exactly those objects which satisfy the condition. Even
if some objects that do not satisfy the condition on the index
attribute receive the multicast message, by checking if the
objects satisfy all the conditions of the query, application-layer
filtering makes sure they do not respond to it.

One may provide the basic functionalities (querying and
monitoring) of DataSpace at either the network or applica-
tion layer. We believe that implementing these functionali-
ties at the network layer has several advantages over
implementing them at the application layer. The network
layer provides us with an efficient mechanism for sending a
message to groups of objects via multicast. An application-
layer implementation will have to either use multiple unicast
connections or broadcast to achieve the same result. Clearly,
performing a single multicast is much more resource-effi-
cient than performing multiple unicasts or broadcast. This
makes the network-layer solution much more scalable than
an application-layer solution. A network-layer solution dele-
gates the task of providing the basic functionalities to the
lower level of the abstraction hierarchy. This allows the net-
work to deal with network-specific issues such as disconnec-
tion and router failure, rather than having to reimplement
what the network does on the application layer. This is clos-
er to the plug-and-play philosophy of seamless network pres-
ence for devices and objects; implementing

join/drop/response operations on the lower levels of the net-
work hierarchy makes them easier to standardize and frees
an application of an unnecessary burden.

DataSpace Architecture — As stated earlier, DataSpace is a
collection of datacubes which are either geometric or adminis-
trative. Each datacube has a corresponding space handle that
encodes its size and its location in 3-D physical space.

Datacubes are populated by dataflocks, which are either
static or mobile. Each object (sensor, machine, piece of soft-
ware, physical object) is characterized by a set of attributes.
Dataflocks are subjects of querying or monitoring. Some of
the dataflock attributes are supported by network indices. By
network index we mean an attribute for which every pair
(attribute, value) has a corresponding multicast address, and
all objects which satisfy the predicate (attribute = value) are
members of the corresponding multicast group. Pairs & =
(attribute, value) such that the attribute is indexed are called
subject handles. Network indices are used in processing
DataSpace queries the same way database indices are used
in processing database queries [5,6]. Thus, the network in
effect serves as an index of this distributed collection of
physical objects.

A query is encoded as a DataSpace address with two com-
ponents: a space handle, which identifies a datacube, and a
subject handle, which denotes an individual predicate (on the
index attribute) extracted from the query. Querying is effected
by sending a multicast message on its corresponding Data-
Space address. Objects addressed by the query respond to it
by sending their identifiers. These DataSpace addresses occu-
py a part of the IPv6 [7] multicast addressing space.

Each datacube has its own local directory service (DS), which
contains entries for the dataflocks registered in that datacube.
Each object can be registered in many enclosing datacubes.

Each query g is associated with two groups of objects: one
that satisfies g, and another, denoted by Interested(q), that
monitors all changes to the membership of query ¢g. Every
time a new object joins g or an existing object drops out of g,
it sends out a message to the Interested(q) group. Members of
the Interested(q) group are themselves a dataflock and may be
queried.

Since the members of Interested(q) monitor updates to the
membership of query g, they know the answer to query q. A
few of these members may offer this membership information
to anybody who is interested in finding the answer to query g.
Such members are called brokers of query g. Any object inter-
ested in finding the answer to query ¢ may request the broker
of g for the answer instead of directly querying the objects.
Having brokers tends to be more efficient, especially for
queries whose answers do not change very much over time. In
general, for such queries it is more resource efficient to cache
the answer at the broker and use it to service the request of
the querying objects.

An Example — To illustrate the concepts presented, let us
consider an example. Consider a DataSpace consisting of mul-
timodal sensors for measuring temperature and humidity.
Assume that one would like to process the query:
“Find all temperature sensors in CoRE building reading tem-
perature between 65 and 75° F, and relative humidity between

50 and 55 percent.”

Assume that temperature is the index attribute for the
dataflock of multimodal sensors. Figure 4 illustrates how the
query would be translated into a DataSpace address (refer to
[5, 6] for details). The spatial constraint on the query is mapped
to a space handle using the Global Positioning System (GPS)
[8] coordinates of the region enclosing the CoRE building. The
condition involving the index attribute is mapped to a subject

IEEE Personal Communications ® October 2000

Select id

handle. The resulting DataSpace address is

From sensor
where temperature IN [65,75]

formed by clubbing the space and subject han-

AND relative_humidity IN [50,55] | <space-handle> | <subject-handle> |

dles together.
The query is processed by sending a multi-

in CORE_Building |

DataSpace address

cast message on the DataSpace address. The

message contains the query in its body. This
query reaches all sensors located in the CoRE
building that satisfy the condition (temperature
IN [65, 75]). The application running on these sensors receives
the message. It checks whether the sensor satisfies the remain-
ing conditions of the query. If it does, it sends back the id of
the sensor; otherwise, it silently discards the received message.

In summary, in this architecture a query is filtered at two
levels: at the network layer based on the physical scope of the
query, and on the indexed attribute of the query. The second
level of filtering happens at the application layer.

DataSpace on Top of a
Geographic Routing Infrastructure

Another possible architecture for DataSpace uses a geograph-
ic routing [2] infrastructure as the base layer, and builds
DataSpace on top of it. This architecture is different from the
previous one in only one aspect: it does not make use of inter-
domain multicast routing. Instead, it relies on a combination
of geographic routing and link-local multicasts to perform
querying and monitoring operations. In this section we only
describe the changes from the previous architecture.

Geographic routing [2] aims at routing a message based
on the geographical location of the destination rather than
the IP address. The destination may even be a region
bounded by a set of GPS coordinates, in which case the
message is broadcast in the specified region. The geographic
routing infrastructure consists of three types of elements in
order to accomplish this goal: geographic router, geographic
node, and geographic host. A geographic router (geo-router)
routes messages based on the geographic location of the
destination region. A geographic node (geo-node) is an
entry/exit point for the routing system. The main function of
a geo-node is to store incoming geographic messages for the
duration of their lifetime and to periodically multicast them
on all of the subnets or wireless cells to which it is attached.
A geographic host (geo-host) is located on all objects capa-
ble of receiving and sending geographic messages. Its role is
to notify all applications running on the object about the
availability of geographic messages, to determine the
object’s current geographic location, and to determine the
address of the local geo-node.

The Basic Approach — This architecture is based on the
observation that a querying operation in DataSpace can be
decomposed into two stages:
* Routing the query to the specified destination datacube
* Issuing the query in the destination datacube

In the first stage, the message containing the query is rout-
ed based on the geographical location of the destination data-
cube. For this purpose, we make use of the geographic routing
base layer. The geographic routing infrastructure routes the
message to the set of geo-nodes responsible for the datacube
specified in the query. In the second stage, the query is issued
within the destination datacube. In order to accomplish this,
geo-nodes extract the query from the received message, map
it to the corresponding DataSpace address, and send a multi-
cast message at this address with a time to live (TTL) of 1.
The message contains the query in its body. The DataSpace
address is computed from the query in the same way as
described in the previous architecture.

W Figure 4. An example illustrating the mapping operation in DataSpace.

Similarly, the operation of monitoring a query can be
decomposed into two stages. We elaborate on this below.

DataSpace Architecture — In this architecture for DataSpace,
every device runs a geo-host. If a device has limited capabilities,
it can be configured to contact a proxy running geo-host. We
change the behavior of geo-nodes slightly to support DataSpace
operations. If the incoming geographic message is a query, a
geo-node transmits it only once. This is done to preserve the
semantics of querying as an operation on the snapshot of the
system state. On the other hand, if the incoming geographic
message is a request for monitoring a query, a geo-node stores
the incoming message and periodically multicast it.

As described earlier, a querying operation is performed in
two stages: in the first stage, geo-routers route the query to the
geo-nodes responsible for the specified datacube. In the second
stage, geo-nodes map the query to its corresponding DataSpace
address. The method for mapping a query to a DataSpace
address is the same as described in the previous architecture.
Geo-nodes multicast a message (containing the query) at this
address using a TTL of 1. This message reaches all the objects
located in the specified datacube that satisfy the condition on
the index attribute. The geo-hosts running on these objects
check if the object satisfy all the conditions of the query, and
respond with the object’s id if they do.

The operation of monitoring a query can also be decom-
posed into two stages:

* Routing the request for monitoring a query to the datacube
specified in the query
* Performing a monitoring operation in the destination datacube

The geographic routing infrastructure is a natural fit for per-
forming the first stage. It delivers the message to the set of geo-
nodes responsible for the destination datacube. To perform the
second stage, a geo-node maintains a state for every query
being monitored. The state contains the query being monitored
and a list of IP addresses of senders interested in monitoring
that query. For every monitored query it multicasts a keep-alive
message. The multicast address is computed from the query in
the same way described in the previous architecture. Such
keep-alives reach all devices in the datacube that satisfy the
query. They indicate to the devices in the datacube that some
objects are interested in monitoring the answer to the query.
On receiving such keep-alives, devices start sending updates to
the geo-node, which in turn sends them to the interested
objects. The timescale of these updates may be very different
from the frequency at which keep-alives are issued (keep-alives
are sent at very low frequency). Devices stop sending their
updates if they don’t receive a keep-alive for a “long” time. The
state maintained by geo-nodes is “soft” and needs to be
refreshed periodically by the objects monitoring the query.

An Example — To illustrate the concepts presented, let us
consider an example. Consider again a DataSpace consisting
of multimodal sensors for measuring temperature and humidi-
ty. Assume that one would like to process the query:
“Find all temperature sensors in CoRE building reading tem-
perature between 65 and 75° F, and relative humidity between
50 and 55 percent.”
In this architecture, the query is first routed to the set of

IEEE Personal Communications * October 2000

geo-nodes responsible for the CoRE building. These geo-
nodes map the query to a DataSpace address as shown in Fig.
4. They use this address to send a multicast message with a
TTL of 1. This message contains the query in its body. It
reaches all sensors located in the CoRE building that satisfy
the condition (temperature IN [65, 75]). The geo-hosts running
on these sensors receive the message and check if the remain-
ing conditions of the query are also satisfied. If they are, geo-
hosts respond with the id of the sensor; otherwise, they
silently discard the received message.

In summary, in this architecture a query is filtered at three
levels. The geographic routing layer filters the query based on
the physical scope of the query. The network layer filters the
query based on the indexed attribute of the query. The final
level of filtering happens at the application layer.

Observability and Awareness

The two architectures for DataSpace presented in this article
are not the only ones possible. In fact, they are among many
possible architectures for DataSpace. In this section we identi-
fy two quality-of-service parameters for characterizing any
architecture for DataSpace: observability and awareness.

A query g is R-observable at an object o if o can be provid-
ed with the answer to g such that the answer satisfies restric-
tion R. Restriction R specifies certain assurances on the
quality of the answer. For example, consider a DataSpace of
sensors sensing temperature in all parts of a building. Consid-
er the query: “Find all sensors reading between 200 and 250°F.”
If a querier receives a response from all sensors satisfying this
query within 60 s, then this query is said to be 60-second-
observable at this querier.

An object o is R-aware of a query ¢ if at any time it knows
the current answer to g, where current is defined by restric-
tion R. Restriction R specifies certain assurances on the quali-
ty of the answer known at o. For example, in a DataSpace of
sensors sensing temperature in all parts of a building, the
building administrator is said to be 5-s-aware of the query “Is
there fire in any part of the building?” if he receives a trig-
gered/periodic update within a maximum of 5 s of time any-
time some portion of the building catches fire.

R-observability and R-awareness reflect the need to define
approximate (e.g., 50-percent-complete-observable) query
answering and query monitoring in volatile networked envi-
ronments with varying reachability, disconnections, and so on.

Challenges

In this section we discuss the key technical challenges that
must be addressed before the proposed DataSpace architec-
tures can be realized:

* Monitoring operation: issues — The primary concern is
how to keep the overhead associated with sending updates
to a minimum while still ensuring that the objects monitor-
ing a query have the most up-to-date answer. This goal is
especially challenging in the face of failures of objects and
loss of updates in the network.

* Brokers: issues — The presence of brokers in our system

presents the following challenges:
—It is not always resource-efficient to cache the answer of a
query. This is because a cached answer requires receiving
constant updates in order to keep the answer current.
These updates represent an overhead that may far exceed
the savings gained by not querying the objects directly. How
does a broker decide which queries are worth caching and
which are not? The problem is compounded by the fact that
the set of queries worth caching changes over time.

—How to architect brokers so that they scale well with
respect to their load.

—How to support Query Zooming. A related issue is that dif-
ferent queries require different aggregation functions. How

does a broker know which aggregation function to use for a
particular query?

Supporting observability and awareness: In the TCP/IP pro-
tocol suite, the network layer offers best-effort connection-
less service. Supporting observability and awareness with some
non-null guarantees is an open issue. Even in networks with

QoS support, it is not clear how the QoS at the network
layer translates to guarantees on the answer to a particular
query, or on the knowledge of the answer at any given time
to a particular query when performing monitoring.

Other issues:

—Response implosion: A DataSpace comprises a huge num-
ber of objects. It is very likely that a querying object is
flooded by responses, since it may be common for some
queries to be satisfied by a large number of objects. We call
this the response implosion problem. We have already
described two possible mechanisms for dealing with this:
having brokers and query zooming. Other possible solutions

include samplecast and gathercast [9].

In samplecast, an object that satisfies query g responds
with probability p. The querying object looks at the number of
responses received and can estimate the total number of
responses, thus avoiding the response implosion problem. It
may then proceed by increasing p to some higher value, p’,
and obtaining a bigger sample of the answer.

In Gathercast [9], a number of small response packets with
the same destination are combined into one larger packet.
This combining operation is done at the routers as the
responses flow toward their destination. This reduces the
number of response packets received by the querier.

—Nearcast: If an object is querying in DataSpace in order to
discover services (e.g., discover a broker for a query), it
would certainly like to contact the nearest available one.

This suggests a need to be able to nearcast. The challenge

is how to implement a nearcast mechanism in a manner

scalable to the potential size of DataSpace.

Summary

We have defined a new conception of three-dimensional
DataSpace which is physical space enhanced with connectivi-
ty to the network. DataSpace is a collection of datacubes
often populated by classes of mobile objects called
dataflocks. Objects in DataSpace produce and store their
own data. Such objects can be queried and monitored on
the basis of their properties. DataSpace is the next genera-
tion of the World Wide Web, with two major differences: it
is embedded in physical reality, organized in a
geographic/spatial manner rather than logically as the Web
is today; and it supports a huge number of objects that pro-
duce and store their own data and move through DataS-
pace. While browsing is the main navigation mechanism for
the Web, querying and monitoring are the main navigation
mechanisms for DataSpace. In this article we mention the
concepts required to implement these mechanism in the
context of DataSpace. We describe mechanisms to use the
network as a DataSpace engine to perform querying and
monitoring operations at the network layer. We also
describe possible architectures of DataSpace and introduce
two quality-of-service parameters, observability and aware-
ness, in order to evaluate any DataSpace design. Finally, we
present key technical challenges in order to realize our pro-
posed architecture.

IEEE Personal Communications ® October 2000

Acknowledgments

We are grateful for discussions and constant encouragement
from B. R. Badrinath. We would like to thank Shirish Phatak
for providing comments on an earlier draft of this article.
Thanks are also due to the anonymous reviewer for providing
helpful comments.

References

[1] Sun Microsystems Inc., “Jini Architecture Specification,” Jan. 1999;
http://www.sun.com/jini/specs/jini-spec.ps.

[2] J. C. Navas and T. Imielinski, “Geographic Addressing and Routing,”
Proc. 3rd ACM/IEEE Int’l. Conf. Mobile Computing and Networking,
Budapest, Hungary, Sept. 1997.

[3] T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT): An
Architecture for Scalable Inter-Domain Multicast Routing,” Proc. SIG-
COMM, 1993.

[4] S. Deering et al., “The PIM Architecture for Wide-Area Multicast Rout-
ing,” IEEE/ACM Trans. Net., vol. 4, no. 2, Apr. 1996, pp. 153-62.

[5] T. Imielinski and S. Goel, “Dataspace - Querying and Monitoring Deeply
Networked Collections of Physical Objects, Part | — Concepts and Archi-
tecture,” Tech. rep. DCS-TR-381, Rutgers Univ., July 1999.

[6] T. Imielinski and S. Goel, “Dataspace - Querying and Monitoring Deeply

Networked Collections of Physical Objects, Part Il — Protocol Details,”
Tech. rep. DCS-TR-400, Rutgers Univ., July 1999.

[7] R. Hinden and S. Deering, “RFC2373: IP Version 6 Addressing Architec-
ture,” July 1998; ftp://ftp.isi.edu/in-notes/rfc2373.txt.

[8] “GPS SPS Signal Specification,” 2nd ed., June 1995, http://www.navcen.
uscg.mil/gps/geninfo/gpsdocuments/sigspec/default.htm

[9] B. R. Badrinath and P. Sudame, “Gathercast: An Efficient Multi-Point to
Point Aggregation Mechanism in IP Networks,” Tech. rep. DCS-TR-362,
Dept. of Comp. Sci., Rutgers Univ., July 1998.

Biographies

TOMASzZ IMIELINSKI (imielins@cs.rutgers.edu) is professor and chair of the
Dept. of Computer Science, Rutgers Univ., New Brunswick, NJ. He received
his Ph.D. from the Polish Academy of Science (Warsaw) in 1982. His current
interests include database mining and mobile wireless computing. He has
published nearly 100 articles and two books on these subjects. He is co-edi-
tor of the book Mobile Computing (Kluwer, 1996). In 1999 he was Program
co-Chair for ACM/IEEE Mobicom ‘99, the primary conference in the area.

SAMIR GOEL (gsamir@cs.rutgers.edu) is currently a research assistant in the
Computer Science Department at Rutgers University, New Brunswick, New
Jersey. He received his Master’s degree from the Computer Science Depart-
ment of the Indian Institute of Technology, Kanpur, in 1997. His research
interests include mobile computing and IP multicast.

CALL FOR PAPERS
IEEE COMMUNICATIONS SURVEYS & TUTORIALS

Get your Tutorial or Survey published in the First Quarter 2001 issue of IEEE Communications Surveys & Tutorials
http://www.comsoc.org/pubs/surveys/

IEEE Communications Surveys & Tutorials is a ComSoc publication. It provides researchers and other communications profes-
sionals with the ideal venue for publishing on-line tutorials and surveys which are exposed to an unlimited global audience. It
is available online only and access is free of charge.. A few quarterly issues have already been published
(http://www.comsoc.org/pubs/surveys/). We are now looking for contributions for the first quarter 2001 issue. Topics of inter-
est include, but are not limited to:

Network and Service Management
Internet

Wireless Networks

Radio and Satellite Communications
Light wave Technologies

Broadband Networks

Data Networks

Residential Networks and Services
Traffic Engineering and Management
Signalling and Intelligent Networks

SUBMISSION INSTRUCTIONS:
Please submit manuscripts via email to the Editor-In-Chief:
Roch H. Glitho
Ericsson Research
8400 Decarie boulevard.
Town of Mount Royal - Quebec H4P 2N2
Canada
Tel: 1-514-345 7900 xx2266
E-mail: roch.glitho@Imc.ericsson.se

An abstract is to be provided, preferably no longer than 150 words. A short biography needs to be included. The maximum
paper length is 8000 words. Preferred formats for electronic submission are PDF, postscript and MS Word.

SCHEDULE:

Manuscripts due: October 30, 2000
Notification of acceptance: December 15, 2000
Publication date: First quarter 2001

IEEE Personal Communications * October 2000

