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Abstract

Wireless sensor networks are an emerging area of research interest with
a number of compelling potential applications. By architecting sensor
networks as virtual databases, we can provide a well-understood non-
procedural programming interface suitable to data management, allowing
the community to realize sensornet applications rapidly. We argue here that
in order to achieve an energy-efficient and useful implementation, query
processing operators should be implemented within the sensor network, and
that approximate query results will play a key role. We observe that in-
network implementations of database operators require novel data-centric
routing mechanisms, as well as a reconsideration of traditional network and
database interface layering.

1 Introduction

Wireless sensor networks have received significant recent attention
in both the networking and operating systems communities [23, 25].
These networks are predicated on advances in miniaturization that
will make it possible to design small form-factor devices with sig-
nificant on-board computation, wireless communication, and sens-
ing capabilities.

Anticipating the development of such devices, recent work has
also begun exploring potential applications of sensor networks for
instrumenting and monitoring various environments. Examples of
such applications include: monitoring in-building energy usage
for planning energy conservation [1]; military and civilian surveil-
lance [12]; fine-grain monitoring of natural habitats with a view
to understanding ecosystem dynamics [6]; data gathering in in-
strumented learning environments for children [35]; and measuring
variations in local salinity levels in riparian environments [36]. The
variety of these applications clearly conveys the enormous potential
impact of wireless sensor networks.

Several characteristics of these sensor networks make them dif-
ferent from today’s wired and wireless networks. In most of the
applications described above, the sensor networks will operate unat-
tended and untethered. The devices will likely be battery powered,
and energy-efficiency will be a primary design consideration. In
particular, the energy cost of communication is expected to be sig-
nificantly higher than the cost of local computation [30, 23]. This
implies that data collection techniques that transport large volumes
of data across significant distances can seriously degrade network
lifetime. Furthermore, in these networks, the devices interact with
the physical world, and generate data about locally observed events.
As a consequence, robustness to node and communications failures,
as well as to noisy sensor readings, will be an important design con-
sideration. Finally, the expected mode of usage of sensor networks
will be that users will query the network and thereby obtain one or
more responses. For example, a user might ask of an in-building net-
work: “What is the average late afternoon temperature in the west
wing?”.

These characteristics of sensor networks impact their structure
in interesting ways. Sensor networks are best designed in a data-

centric manner: the low-level communication primitives in these
networks are designed in terms of named data rather than the node
identifiers used in traditional networked communication [25]. This
architecture follows from the fact that in these networks, individual
nodes do not necessarily have an identity of interest; rather, the data
that they generate is of interest independent of source node identity.

The characteristics of sensor networks described above also give
rise to another intriguing architectural view of sensor networks; the
sensor network as a database. This view is complementary to the
view of the network as having a data-centric routing system, in that
routing is a bottom-up mechanism, whereas a database view is a top-
down data modeling and application development interface. Recall
that nodes in a sensor network generate named data against which
one or more users issue queries. This is quite similar to the tra-
ditional view of relational databases, in which disk blocks (whose
individual identities are irrelevant to the application) contain data
records against which queries are issued.

We have said that the database view is a modeling and interface
issue, but of course the database community has developed a great
deal of algorithmics and system architecture to span this level of in-
direction in an efficient and dynamic fashion. These include query
optimization and indexing techniques, and a canonical set of primi-
tive query operators that can be composed to form complex queries.
A core challenge in relational database systems has been to ensure
that query-based applications remain robust in the face of changing
data distributions, physical storage characteristics, and query work-
loads. The infrastructure for data access in sensor networks will
also need to provide a similar form of robustness, in addition to be-
ing robust to node failures and noisy sensor readings. Indeed, data
generation and routing in the sensor networks seem quite analogous
to data storage and query processing in databases. As such, it seems
quite natural to view the sensor network as a database, and attempt
to leverage similar benefits in this new context. Of course the prop-
erties of the infrastructure and the data in a sensor network are quite
different than in a database system.

In this paper, we explore challenges in realizing this architectural
view of the sensor network as a database. Specifically, this view
allows users to issue database queries to one or more (perhaps des-
ignated) nodes within the sensor network. These queries can be
“one-shot” relational queries with a fixed answer set, or ongoing
continuous queries that produce an unbounded stream of results.
The compelling advantage of a query-specification interface is that
it defines an application-independent way of programming data col-
lection from the sensor network.1

We suggest that a sensor network database (or a sensornet
database, for short) should be architected on two important ideas.

The first is in-network implementations of primitive database
query operators such as grouping, aggregation, and joins. By “in-
network” we mean group communication and routing protocols
which, together with possible processing at intermediate nodes, im-

1Clearly, not all applications will use the query-specification interface. For ex-
ample, our mechanisms will not be applicable for actuation. They may be applicable
for event notification, although we do not discuss such uses in this paper.
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plement each operator in an application-independent way. We argue
that such implementations will require novel routing mechanisms
which take into account network resource constraints as well as the
order in which database operators are processed.

Second, unlike the strict semantics associated with traditional
data models and query languages, we argue for relaxing the seman-
tics of database queries to allow approximate results. This relax-
ation enables energy-efficient implementations even given the ex-
pected high level of network dynamics (such as packet loss, node
failures etc.). A sensor network is a proxy for a continuous real-
world phenomenon, and by nature samples that phenomenon dis-
cretely at some rate, with some degree of error. Hence it is not only
convenient but indeed more accurate to present approximate seman-
tics, and expose a spectrum of tradeoffs between concise and precise
communication. As we discuss below, several pieces of prior work
on online sampling and approximation in the database community
are applicable in this context.

2 Background

In this section, we briefly review the state of sensor network subsys-
tems, and provide the necessary background in database systems. In
subsequent sections, we discuss challenges in designing a sensornet
database.

2.1 Sensor Network Subsystems

Prototypes of sensor devices are starting to appear on the horizon.
One class of devices is exemplified by the mote [23]. Motes con-
tain an 8-bit processor, a low baud-rate radio, several megabytes
of memory, and MEMS sensors for detecting temperature, ambient
light, and vibration. A class of larger devices [30] contains PC-class
processors, spread-spectrum radios, infrared dipoles, acoustic geo-
phones, and electret microphones. In both these classes of devices,
the radios represent a key design constraint: communication using
these radios requires significantly more energy than computation.

Devices (Sensors, Radio)

Packet Delivery (Flooding, Geographic Routing)

Local Signal Processing

Data−Centric Routing

Collaborative Event Processing

Applications

Localization and Time Synchronization
Radio MAC Layer, Topology Discovery

Figure 1: Sensor Network Software Subsystems

While the eventual form of sensor network hardware can be rea-
sonably extrapolated from the above classes the form of sensor net-
work software subsystems is less clear. Figure 1 depicts an emerg-
ing modularization of sensor network software. Although drawn as
a stack, we do not mean to suggest that this is the most appropriate
modularization of sensor network software, or indeed that sensor
network software can even be “layered”. As we illustrate later, it
might be necessary to collapse layers or selectively break abstrac-
tion boundaries for efficiency or robustness reasons.

Term Description

Data Model Framework for data representation
and data semantics

Tuple A data record, usually consisting
of several attributes

Source Sensor node that generates a tuple
Table A logical collection of similarly

typed tuples. It can represent
an infinite stream of tuples.

Operator A function that takes one or more
tables as input and outputs a table

Query A composition (specifically, a tree)
of operators

Figure 2: Glossary of Terms

Figure 1 allows us to place ongoing work in developing sen-
sor network subsystems in context. Working our way up the lay-
ers in Figure 1, examples of such related research include: an
efficient operating system for sensor nodes [23]; low-level net-
work self-configuration systems [7], including systems for localiz-
ing nodes [31, 32, 33], and performing time synchronization [11];
a data-centric routing system [25], and possibly collaborative signal
processing systems [39] that can, for example, track moving targets.

2.2 Data Models

A prerequisite for discussing the database view of sensor networks
is a data model, which is a framework for describing data represen-
tation and semantics. The most popular data model in use today is
the relational model. In the context of a sensor network, this model
is best described as follows. In our descriptions, we assume, for ease
of exposition, a sensor network where nodes do not move. Each sen-
sor produces one or more tuples. The node that generates the tuple
is termed the source. For example, a temperature sensor might pro-
duce a tuple of the form <nodeLocation, timestamp, tempera-
ture>. Similarly, at a node that uses acoustic and vibration signal
patterns to detect vehicles, signal processing software might gener-
ate a tuple of the form <nodeLocation, timestamp, vehicle-
type, detectionConfidence>. A collection of similarly-typed
tuples from a group of sensors forms a “snapshot”. In database ter-
minology, this snapshot constitutes a relational table which is hor-
izontally partitioned across the sensors in the group. For example,
the tuples generated by a collection of temperature sensors form a
temperature table.

Relational tables are typically stored on disks in conventional re-
lational database systems. It is important to note that the tables we
discuss in the sensor network context are all virtual tables. They
are relational views of the data generated by a sensor network; the
database concepts we discuss apply to virtual tables as well as they
do to conventional databases. Accesses to these virtual tables are
automatically translated into corresponding data-collecting opera-
tions on each relevant sensor nodes, e.g.,, GetTemperature, Get-
LightIntensity, etc. Virtual tables can be unbounded, represent-
ing, for example, streams of data.

The goal of the sensornet database design should be to preserve
location transparency. A sensor network application writer should
be able to get live temperature information by issuing database
queries against a temperature table without any knowledge of ac-
tual topology of the network. Managing the location and routing of
these tuples is left to the infrastructure. This greatly eases the task
of the application developers, and – more importantly – ensures that
application code continues to function when data locations and/or
routing schemes change.
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Note that each tuple can have a key that identifies where the tuple
was generated. In our example above, this is the nodeLocation,
but more generally it can be any unique node identifier. This iden-
tifier is used to correlate multiple readings from a single node, for
example, using the join operation (described later). It might also be
useful for network monitoring. However, such an identifier does not
compromise our requirement for location transparency as long as
applications do apply physical interpretations to the identifiers (e.g.,
assuming that a node is up by checking if there exist tuples with the
specified identifier).

One final note on data modeling. Especially outside the database
community, the term “relational database” often evokes notions of
strong guarantees on storage consistency and availability. This pa-
per does not discuss challenges in the storage of tuples or in design-
ing mechanisms to guarantee availability of tuples (e.g., availability
of a tuple generated within a time window for sequence-centric op-
erations on that window).

2.3 Database Operators

The basic thesis of our paper is that core relational database op-
erators like aggregation, grouping, selection and join form appro-
priate building blocks for application development on sensor net-
works. The following paragraphs describe some of these traditional
database operators in a sensor network context. We stick to an
SQL-style multiset (or bag) semantics, in which duplicate tuples
are not eliminated by default; this is typically the desired semantics
for aggregation-centric applications. Note that the algebra of these
relational operators is closed, meaning that the result of any of these
operators is a relational table, which can serve as input to further
operators.

Aggregation is an operation that is fundamental to a data-rich,
large-scale, yet energy-constrained, sensor network. By aggregation
we mean the summarization of a column (or arithmetic expression
over multiple columns) into a single numerical value. “The aver-
age temperature on the third floor” is an example of an aggregate
defined on a temperature table consisting of tuples from sensors in
an in-building sensor network. Most commercial databases provide
common aggregation operators such as SUM, COUNT, AVERAGE,
MIN, MAX, and STDDEV (standard deviation). We anticipate aggre-
gation queries will be very prevalent in sensor networks.

In traditional databases, the join operator is used to correlate data
from multiple tables. A join can be defined as a selection over the
cross-product of a pair of tables; a join of tables R and S is de-
noted by R on S. One simple implementation of a join is to gen-
erate all pairs of tuples, and then extract those which satisfy the
selection predicate. However it is quite common to implement joins
in a more efficient fashion that does not form all pairs. A com-
mon join predicate is an equality match across columns of the two
tables (an equi-join). For example, consider a temperature table
with tuples of the form <nodeLocation, timestamp, temper-
ature>. Also, assume that some sensor nodes with temperature
sensors also have light sensors, each of which produces tuples of the
form <nodeLocation, timestamp, lightlevel>. An equi-join
of these two tables on the nodeLocation column would produce
a table with tuples of the form: <nodeLocation, timestamp,
lightlevel, temperature>, where tuples are only defined for
nodes that have both temperature and light sensors.

There are several other relational operators like grouping (parti-

tioning a table according to a predicate), selection (extracting tuples
based on a predicate), projection (extracting one or more columns
from a table), union, difference, duplicate elimination, and distinct
aggregates that we do not discuss for brevity.

Join

<location,temp,light>

Selection Group by light
intensity

<location,temp>

<location,light>

Tuples
with light values in range [10,15]

Aggregate tuples
within group

Figure 3: Complex Query Example

Finally, it is natural to write complex queries that compose multi-
ple operators. Consider an in-building network that contains sensor
nodes with light and temperature sensors. An example of a complex
query defined on this network is: find the average temperature in
different iso-light-intensity regions within a range of light intensi-
ties [10, 15]. Figure 3 describes how such a query could be accom-
plished using the operators described above.

3 Sensornet Database: Overview

We have said that a sensornet database allows any user to issue a
query to the sensor network as if it is a database system (perhaps
from any node attached to the network) and obtain a response to
that query.

There are at least two obvious realizations of a sensornet
database. The first is a centralized (data warehouse) realization,
where all data from each node in the network is sent to a desig-
nated node within the network attached to which is a large database.
Users can then simply query that database. This can be impracti-
cal in the sensor network context since it requires significant com-
munication and that requires energy. The other alternative, a dis-
tributed database, can be energy efficient when the query rate is
less than the rate at which data is generated. However, traditional
distributed databases are unsuitable for large-scale sensor networks
because distributed database design has traditionally assumed well-
maintained global metadata about data distribution and network
topology.

We believe that a fundamentally different architecture is neces-
sary to realize a sensornet database. This architecture rests on two
features. The first feature is in-network implementation of database
operators. When a user (or an application) poses a query to the net-
work, that query is disseminated across the network (either to all
the nodes using simple flooding, or to a geographically constrained
set of nodes using variants of well-known geographic routing algo-
rithms [27]). In response to the query, each node generates tuples
that match the query, and transmits matching tuples towards the ori-
gin of the query. As the tuples are routed through the network, inter-
mediate nodes might apply one or more database operators. Other
work has shown that in-network processing of sensor data is funda-
mental to achieving energy-efficient communication in sensor net-
works [18].

A second feature is that, unlike traditional databases, the sensor-
net database will provide approximate results. In sensor networks,
the availability of data might be reduced as a result of message loss
caused by vagaries in wireless communication, or by node failure.
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We argue—given the energy constraints on sensor network design,
and given the time-varying nature of sensor data—that classical ap-
proaches to data recovery (e.g., replication, reliable transmission
protocols) may be too heavy-weight. Rather, by relaxing the se-
mantics of database operators to allow approximate results, we ar-
gue that it might be possible to use data recovery methods better
tuned to operator semantics.

Related to the notion of approximate answers is another feature,
called streamed results, that we think will be important for sensor
networks, particularly those used for continuously monitoring the
environment. This feature will enable partial query results to be dis-
played in real-time to a human user, and will allow users of the sen-
sor network dynamically refine their queries. This capability, called
online aggregation, has been proposed in the database literature for
large on-line decision support systems [22, 19, 20]. In the sensor
network context, such a capability could allow users to drill down
to more specific queries (e.g., an outlier in the query of Figure 3
might indicate an unusual source of heat).

In the next section, we illustrate the research challenges involved
in realizing these features by considering the implementation of
some database operators. Before we do so, however, we contrast
our overall approach with three other closely related pieces of work.

The notion of representing data generated by sensors as tuples is
superficially similar to the notion of data naming discussed in the
context of data-centric sensor network routing [18] and wide-area
information discovery [3]. However, modeling the data generated
by a sensor network as a relational database allows us to present a
well understood application interface, and to leverage standardized
data manipulation techniques defined for databases.

The COUGAR project at Cornell University [5] is one of the first
attempts to model a sensor network as a database system. It focuses
on the interaction between the sequence data produced in sensor
networks and stored data in backend relational databases. It ex-
tends both the SEQ [34] sequence data model and the relational data
model by introducing new operators between sequence data and re-
lational data. COUGAR is implemented as an extension to Cornell’s
PREDATOR Object-Relational database system. It models sensors
as columns with Abstract Data Types (ADTs). Users invoke sensors
functions by calling ADT functions on sensor columns in queries.
COUGAR does not currently focus on exploiting the special char-
acteristics of sensor networks, nor does it explore the interaction
between query processing and networking. Rather, from an archi-
tectural point of view it simply layers (novel) database functionality
on top of a traditional network model. We intend to leverage the
data modeling work that has been done by the COUGAR group,
and instead focus on the architectural and algorithmic issues of ef-
ficiently integrating query processing logic into sensor networking
subsystems.

Finally, Srivastava et al. [35] point out the need for a data man-
agement middleware for sensor network data analysis and mining,
in the context of a particular application (the “smart” kindergarten).
Our paper takes this a step further and identifies specific challenges
in realizing one aspect of this middleware, a relational database.

4 Operators

What we have discussed so far lays the groundwork for discussing
the research issues in designing sensornet databases. We now be-
gin to highlight some of these research issues by considering the

implementation of two database operators: joins and aggregation.

4.1 Join

In the sensornet database, the complexity of the join can vary with
the particular query. The simplest example of a join, one which
joins the temperature and light tables by node location (see example
in Section 2.3) can be accomplished locally. That is, each individ-
ual node can perform the join on the temperature and light tuples
that it generates before transmitting the joined tuple to the query
originator.

More generally, however, the tuples generated at different nodes
might be joined at a single node. Consider, for example, a multi-
modal vehicle identification sensor network in which some nodes
have vibration sensors, others acoustic sensors, and yet others im-
agers (nodes may also have more than one sensor). A vibration
sensor generates a tuple of the form <eventType, vibrationAm-
plitude, confidenceLevel, targetLocation>. Other sen-
sors produce similar tuples, perhaps differently typed. To correlate
events from different sensors, one might wish to perform an equi-
join on the eventType column.

The database literature has studied several generic join imple-
mentation methods, such as nested-loop, merge-sort, and hash-
join [15]. Some of these methods only apply to equi-joins (Sec-
tion 2.3). However, these conventional methods have one drawback
that makes them unsuitable for sensor network environments. These
methods are blocking. For example, the hashjoin algorithms com-
monly used in database systems [9] cannot produce any tuples until
one of the tables is fully scanned. Blocking is infeasible in sensor
networks because the tables can contain unbounded streams of data,
and the amount of memory available on each sensor node is limited
relative to the potential sizes of sensornet database tables.

Database join algorithms can be modified with two basic tech-
niques to become applicable to the sensor net context: pipelining
and partitioning. We discuss these next.

Pipelining

A suite of non-blocking pipelined join methods have been devel-
oped in recent years. One example is symmetric hash-join [38]. It
builds and maintains two hash tables (keyed by the column(s) used
for the join), one for each input table. When an input tuple arrives, it
looks up matching tuples from the other input’s hash table and out-
puts any matching results, then inserts itself into its own hash table.
It is “symmetric” because the action for each tuple from either table
is the same.

A generalization of symmetric hash-joins is the family of join
methods called ripple joins [17]. These join methods statistically
sample the two tables to be joined, in order to produce a stream of
joined tuples. The relative rates at which the two tables are sampled
adapt to match the variance produced by the data in each. When
used together with an aggregation operator, they provide online ag-
gregation.

These pipelined join methods, because they are non-blocking,
will be the methods most directly applicable to sensor nets. In ad-
dition to the memory constraint imposed by the sensor nodes, there
are two reasons for preferring pipelined joins. We have argued that
on-line query refinement will be important in sensor nets used for
monitoring. Pipelined joins, because they provide streamed par-
tial answers can enable query refinement. Furthermore, pipelining
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schemes like ripple joins form a low energy approach to obtain ap-
proximate answers and can be used together with sampling (as we
discuss in Section 4.2).

Partitioning and Interactions with Routing

How will a join query be realized on our sensornet database? Will
there be a single node in the network that will perform the pipelined
join? Especially for a geographically constrained join (e.g., select
records from a certain region of the network and then perform a
join), it might be possible to elect a node (e.g., the one closest to the
centroid of the region) to perform the join. More generally, this ap-
proach points to a technique used in parallel database systems called
partitioning. Here, tuples are partitioned based on their join-column
values (either by range or by hashing), and redistributed on the fly
across multiple nodes; the work of joining the individual partitions
is done in parallel by each of the nodes [10]. This idea is applicable
in the sensornet database as well; partitions can be defined by value,
geographically, or by sensor type, and a node (or nodes) can be des-
ignated to perform the join for the partition. The goal here is both
to leverage parallelism, and to exploit aggregate RAM space across
multiple nodes, since joins can be memory-intensive, and the sensor
nodes may be memory-constrained.

An obvious research challenge is to develop techniques for par-
titioning joins in an energy-efficient way. Geographic partitioning
can be energy efficient (in that tuples are locally joined). However,
if the join is not along a node location column, geographic parti-
tioning may not be applicable. A possible approach is to partition
a column by hash values, using data-centric storage schemes like
CAN, Chord, Pastry and Tapestry. Like traditional parallel hash
joins, these schemes partition a key space across a collection of
nodes. However, traditional databases did this on a fully-connected
cluster interconnect, whereas data-centric storage schemes are scal-
able over arbitrary topologies in the wide area. Data-centric storage
can require transporting tuples over significant distances; however
if the key space is partitioned across nodes within a loosely bounded
geographical region, the overhead of this technique might be accept-
able.

While these approaches are somewhat simplified, they point out
an important issue: the realization of relational operators in a sen-
sornet database can be posed as a routing problem. In these exam-
ples, we have discussed relatively simple instances of this problem.
In Section 5, we discuss situations where the routing subsystem is
invoked at a finer granularity (e.g., to route individual tuples differ-
ently).

4.2 Aggregation

The next class of operators we study are the aggregation operators.
The mechanics of computing aggregates is conceptually simple; a
query is flooded throughout the network or to a specified geographic
region, and the responses are routed on the reverse path trees, possi-
bly being aggregated across several nodes. However, achieving this
in the context of sensor networks proves to have surprising richness.

A Taxonomy of Aggregates

Aggregation on multiple nodes is not new – is has been extensively
explored in the parallel database literature, particularly in the con-
text of parallel systems with user-extensible interfaces for defining

ad hoc aggregation functions [26]. A taxonomy of aggregates was
developed [16] to categorize the different classes of aggregates in
terms of their partitioning across multiple nodes in a cluster. We
use and extend that taxonomy here to organize the various types of
aggregation functions in a sensornet database.

In any multi-node aggregation scheme, the basic idea is for each
node to aggregate some subset of the data, and then pass some
partially-aggregated state to other nodes; this partial state is itself
aggregated more from multiple sources. Eventually, some node re-
ceives a set of partially-aggregated state that covers the entire table,
and computes a final answer. In sensor networks, one key perfor-
mance goal is to extend the lifetime of the network by minimiz-
ing communications. Hence, aggregation functions can be usefully
categorized by the sizes of the partial state records that get passed
around.

As an example, the AVERAGE aggregate is computed by each
node sending the SUM and COUNT of its readings to its parent, with
parents sending the SUM of SUMs and COUNT of COUNTs upwards
recursively. The root finalizes the aggregate by dividing the total
SUM by the total COUNT. Hence the partial state for AVERAGE is
two numbers (partial COUNT and partial SUM), and twice the size of
the base readings.

In Table 1 we present a simple taxonomy of aggregation func-
tions, and the amount of partial state they must communicate. The
first three classifications were initially presented in the context of
traditional databases [16]; we devised the other entries to capture
the sensor network case. As in [16], we are as general as possible in
our taxonomy, covering not only the traditional SQL aggregates, but
also any user-defined aggregation functions that might arise. This
taxonomy helps us discuss aggregation techniques for related ag-
gregates in a unified way.

One key challenge in computing aggregates in a sensornet
database is energy-efficiency. In particular, the network-wide aggre-
gate (where each node responds with its value) can incur significant
communication. Energy-efficiency might not be an issue if these
aggregations were infrequent; however, we believe that aggregation
will be a frequently-used query operation. This is especially true in
interactive settings: user studies of information analysts have shown
that the first request is often for a “big picture” of the data, which is
used to decide what other questions to ask [29].

Energy-efficient Aggregation

Energy-efficiency can be achieved using approximate aggregates.
We have argued in Section 3 that a sensornet database can provide
approximate results to queries. Approximate aggregates are useful
for on-line monitoring, can reduce the communication costs, and
simplify or obviate networking mechanisms for in-network error re-
covery. This approach brings up an important consideration in the
design of approximate aggregates. The measure of goodness of such
mechanisms is not the number of packets successfully delivered by
the sensornet database, but the information quality of the delivered
result (i.e., how close the approximate result is to the true result).
This information quality may be significantly affected by packet
loss only under certain circumstances (e.g., when the distribution
of values is highly variable) and only for certain kinds of aggregates
(e.g., MIN).

There are several possible techniques for computing approximate
aggregates. We now discuss each technique briefly. We intend to
investigate these techniques in our research.
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Class Partial State Size Examples and Description
Distributive sizeof(agg) COUNT, MIN, MAX, SUM. Partial state is a partial aggregate
Algebraic c · sizeof(agg) AVERAGE and STDDEV. State is constant size,

on the order of the size of an aggregate.
Holistic |records| MEDIAN and RANK. All values are needed to compute the aggregate.
Content-Sensitive ∝ f (records) Any holistic aggregate enhanced with compression of state records.

Also many approximate “signatures” of the data set,
e.g. wavelet approximations of the source distribution. [14]
State is proportional to the content (e.g. entropy) of the
data in the partition.

Unique ∝ |distinct records| DISTINCT variants of holistic aggregates.

Table 1: Classes of aggregates

The first of these is uniform sampling. This approach is applica-
ble to algebraic aggregates like AVERAGE, and has been proposed
in for online aggregation in traditional databases [22]. In this ap-
proach, tuples in a table are uniformly sampled and the resulting av-
erage is assumed to represent the actual average (the approach also
applies to distributive aggregates like COUNT, with minor modifica-
tions). It is possible, using the weak law of large numbers, to ob-
tain confidence intervals for the approximation. In the networking
context this fails, because packet loss might invalidate the statisti-
cal assumptions that these intervals depend on. The technique itself
might still be applicable in the networking context; simulations can
perhaps give us an idea of how the error in the count depends on
loss levels.

A variant of this approach that is applicable to counting is a
class of probabilistic counting methods that use logarithmic sam-
pling [28, 13]. In these approaches, the number of respondents
(or the size of memory needed for the count, depending on the
scheme) scales logarithmically with the size of the network. These
approaches generally provide looser error bounds but use signifi-
cantly less memory or communication.

Another class of approximate counting methods leverages the
particular structure of result propagation and is applicable to some
distributive and algebraic aggregates. Recall that the results of a
query are sent up the reverse path tree towards the originator. In-
stead of sending, for example, a partial SUM to its parent, a node
can evenly distribute the sum among all nodes within its radio range
that are siblings of its parent. We call this approach flow-based be-
cause it splits up a count or value into many “flows” and thereby
reduces the sensitivity of the aggregate to loss.

Some of the distributive aggregates like MIN or MAX are, of
course, not amenable to sampling since they are highly sensitive to
packet loss. For these, we can use a class of approaches that we
call hypothesis testing. To answer certain aggregates like MAX, the
query originator can pose a hypothesis answer, and see if anybody
refutes it – this limits communication costs to aggregation of “refu-
tations”. This is potentially a multi-round protocol and there is a
tradeoff between good guesses (which require few responses) and
sensitivity to drops (less comm = more sensitivity). More generally,
we think counting based schemes are amenable to hypothesis test-
ing. Thus, an n-tile is a hypothesis of the form “there are exactly
|nodes|/n readings whose value is greater than a value x.” It may
be possible to generalize this idea, by noting that determining the
shape of a distribution (which is the basis of estimating aggregates)
can be done by trying to count discrete segments of the distribution
– i.e., build a histogram.
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Figure 4: Three equivalent query plans: two traditional static plans,
and one with an eddy. Each plan has three input tables R, S and T ,
and two join operators combining R with S, and S with T . The eddy
version is able to adaptively reorder the join operators, effectively
choosing among the two static plans dynamically.

Finally, for aggregates where the size of the partial state is a func-
tion of the number of records, data compression techniques are ap-
plicable. In the database literature, there has been analogous work
on communicating lossily-compressed data “synopses” (e.g., [2]).
Also applicable in this context is multi-resolution communication of
aggregates using wavelets. With these techniques, the performance
improvements clearly depend on the underlying data distribution.

In the database literature, the statistical quality of approximate
results can be robustly described via confidence intervals for ag-
gregate estimators run over i.i.d. samples of the database (e.g.,
[24, 22, 17]). Such a robust statistical characterization of approx-
imate result quality for sensor networks is a much more complex
challenge, since it may require modeling network losses in tandem
with sensor sampling rates, noise models, and so on. One way to
address this issue would use simulation and implementation to ob-
serve the phenomena causing approximation in these networks (e.g.,
losses), and also to see empirically the relative perturbation of an-
swer quality when reliable protocols are forfeited. We expect that
these simulations will validate the usefulness of lightweight mecha-
nisms and approximation. However, beyond these experiments, we
believe that it will be necessary to do statistical research on mathe-
matically characterizing the approximation quality of results.

5 Complex Query Optimization

Thus far, we have described how database operators might be real-
ized in a sensornet database. In practice, as we have argued before,
it will be likely that queries will comprise several operators. Gen-
erally speaking, such complex queries can be described as a tree of
operators. For a given query, the order of operator evaluation can
determine resource utilization. For energy-efficiency, therefore, op-
timizing complex queries will be an important goal. As we shall see,
in a sensornet database, complex query optimization is intimately
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related to routing.
To motivate complex query optimization, consider a complex join

query of the form R on (S on T ) (recall that R on S denotes
the join of tables R and S). Joins are commutative and associa-
tive, and hence the above expression is equivalent to the expression
(R on S) on T . These expressions represent different query execu-
tion plans (or simply, query plans). In the first plan, the join S on T
is evaluated first and the resulting table is joined with R. In the
second, the join R on S is evaluated first and the resulting table is
joined with T . These two query plans may have different costs. For
example, if R on S has a small number of tuples, the latter query
plan may be more energy-efficient than the former. (See the left two
query plans in Figure 4.)

In database systems, a query optimizer determines a query execu-
tion plan for complex queries. Query optimization in the database
literature has treated this as a classical search problem. The search
problem has three parameters: the set of feasible plans (the “plan
space”), a cost model for estimating the efficiency of a plan, and
an efficient search algorithm for finding the min-cost plan in the
space. Given these three pieces, traditional optimizers examine a
query, choose (or “compile”) the best plan, and pass the plan off for
execution.

Unfortunately, such static plan execution may not be appropriate
for a sensornet database. Query costs are extremely dynamic in
a sensor network. In the sensornet database, we expect the main
query cost to be energy consumption. This is affected by the input
data distributions and the operator ordering, which jointly determine
the sizes of intermediate results in the query pipeline. It is also
affected by network parameters including topology, loss rates and
so on. Both the data and the communication in a sensor network
are highly volatile, and hence a more adaptive query optimization
approach is required.

5.1 Adaptive Optimization Schemes

Adaptive query optimization is an area of emerging interest in the
database community for server-side query processing over remote
data sources [21]. Among the most flexible approaches is the no-
tion of an eddy, which addresses the operator ordering problem at
runtime in an adaptive fashion. We now briefly describe eddies;
the reader is referred to [4] for more detail. An eddy is a dataflow
operator that is interposed between commutative query processing
operators, as shown in the rightmost plan of Figure 4. The eddy
marks tuples as it sends them to each operator, so that it knows to
send a tuple to each operator at most once. Each operator may mod-
ify the tuple’s contents and return it (or even multiple copies), or the
operator may delete the tuple from the flow. Based on observations
of consumption and production rates of the operators, an eddy rout-
ing policy can route incoming tuples to “better” operators first, in
order to optimize the flow of data through all the operators (a sim-
ple but effective routing policy based on lottery scheduling [37] is
described in [4].) Hence eddies dynamically do query optimization
at runtime: they continuously recalibrate operator costs (by observ-
ing rates) and make moves in the plan space (by trying different
orderings) in an adaptive fashion.

As originally envisioned for centralized processing, eddies route
data among commutative operators on a single node. In a sensor-
net database, however, where operator execution may span multiple
nodes, it might be necessary for eddies to function in a distributed,

parallel fashion. This is an open area of research. One possible ap-
proach is to have an independent eddy on any node that contains
more than one commutative operator, with the eddy making local
decisions. Another approach is to have multiple eddies coordinate
(either by observing each other’s data rates, or by communicating
on a control channel), and make better global decisions – possibly
including decisions about operator partitioning and placement as de-
scribed in the previous section.

This latter approach is essentially dynamic routing of tuples, but
with some differences. The routing protocol is application-specific,
as are the metrics. This is a fascinating example of an integration
of functionality that would, in more traditional systems, have been
considered as belonging to separable layers [8]. Also important to
this kind of an adaptive query optimization is some knowledge of
topology; this would help the adaptive placement of operators.

6 Conclusions

A standardized query interface for programming data collection
from a wireless sensor network will greatly enhance the develop-
ment of distributed sensing applications. Modeling the sensor net-
work as a relational database can provide this functionality. Such
a sensornet database can be realized, but only by carefully imple-
menting database operators inside the network, and by relaxing the
semantics of database queries to allow for approximate results. An
important outcome of research in this area will be an understanding
of the appropriate modularization (we hesitate to call it “layering”)
of sensor network subsystems, and an appreciation of the level of
integration needed between different modules (e.g., the routing sub-
system and the database subsystem) to achieve a robust and efficient
system.

In closing, we note that modeling a sensornet database as a rela-
tional table is a reasonable starting point. However, because each
sensor produces a temporally ordered stream of tuples, it is perhaps
more realistic to expect that extensions to the relational model will
be necessary. The database literature has explored temporal and
other sequence-centric data models (those in which data sequences
are the conceptual units). An example of such a model is SEQ [34],
which introduces sequence-based operators but does not fundamen-
tally change the execution and optimization techniques developed
for the relational model [15]. There exist conceptually straightfor-
ward extensions to the implementation of database operators that
will enable sequence semantics.
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