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Abstract

Em* is a software environment for developing and de-
ploying Wireless Sensor Network (WSN) applications on
Linux-class hardware platforms (called “Microservers”).
Em* consists of libraries that implement message-passing
IPC primitives, tools that support simulation, emulation,
and visualization of live systems, both real and simulated,
and services that support for networking, sensing, and time
synchronization. While Em*’s design has favored ease of
use and modularity over efficiency, the resulting increase in
overhead has not been an impediment to any of our current
projects.

1 Introduction
The field of wireless sensor networks (WSNs) is growing
in importance,[1] with new applications appearing in the
commercial, scientific, and military spheres, and an evolv-
ing family of platforms and hardware. One of the most
promising signs in the field is a growing involvement by
researchers outside the networking systems field who are
bringing new application needs to the table. A recent NSF
Workshop report[8] details a number of these needs, build-
ing on early experience with deployments (e.g. GDI[15],
CENS[20], James Reserve[23]).

Many of these applications lead to “tiered architec-
ture” designs, in which the system is composed of a mix-
ture of platforms with different costs, capabilities and en-
ergy budgets.[3][18] Low capability nodes, often Crossbow
Mica[21] Motes running TinyOS[12] can perform simple
tasks and provide long life at low cost. The high capability
nodes, or microservers, generally consume more energy,
but in turn can run more complex software and support
more sophisticated sensors. Em*1 is a software environ-
ment targeted at microserver platforms.

Microservers, typically iPAQ or Crossbow Stargate plat-
forms, are central to several new applications at CENS. The
Extensible Sensing System (ESS) employs microservers as
data sinks to collect and report microclimate data at the

1The Em* name derives from a number of its tools and services whose
names begin with “Em” for “embedded”.

James Reserve. A proposed 50-node seismic network will
use Stargates to measure and report seismic activity using
a high-precision multichannel ADC. Ongoing research in
acoustic sensing uses iPAQ hardware to do beamforming
and animal call detection.

WSNs have several properties that distinguish them from
other types of distributed systems. First, the system as a
whole must often be energy-aware. Two important fac-
tors in energy consumption are communication, because
physics dictates strict lower bounds on the energy required,
and RAM, because existing technology requires energy to
refresh it. Duty cycling is an important technique to re-
duce energy requirements. Second, WSNs are often forced,
for reasons of cost and energy, to use low capability com-
munications, which tend to have reduced range, bandwidth
and reliability, and higher latency. Third, because of the
poor comms and the need to save energy, systems often
must implement distributed algorithms through multihop
in-network processing. In addition, in-network collabora-
tion and triggering can yeild results that would be impos-
sible with a centralized system. Fourth, WSN applications
often encounter a high degree of environmental dynamics,
requiring a reactive system design.

In this paper, we will show how Em* addresses many of
these needs in support of WSN application development. 2

2 Tools and Services

Em* incorporates a number of tools and services germane
to the creation of wireless sensor network applications. In
this section, we will briefly describe these, without going
into detail about their implementation. In Section 3, we
will detail some of the key building blocks used to con-
struct them. Then, in Section 4 we return to our tools and
services and show how their implementation made use of
these building blocks.

2This work was made possible with support from the NSF Cooperative
Agreement CCR-0120778, and the UC MICRO program (grant 01-031)
with matching funds from Intel Corp. Additional support was provided
by the DARPA NEST program (the “GALORE” project, grant F33615-
01-C-1906).



Figure 1: (a) EmView and (b) the Ceiling Array

2.1 Em* Tools
Em* tools include support for deployment, simulation, em-
ulation, and visualization of live systems, both real and
simulated.

EmSim/EmCee The ability to transparently simulate at
varying levels of accuracy is critically useful for building
and deploying large systems.[6] Together, EmSim and Em-
Cee comprise several accuracy regimes. EmSim is a pure
simulation environment, in which many virtual nodes are
run in parallel, interacting with a simulated environment
and radio channel. EmCee runs the EmSim core, but pro-
vides an interface to real low-power radios instead of a sim-
ulated channel.

These simulation regimes speed development and de-
bugging; pure simulation helps to get the code logically
correct, while emulation in the field helps to better under-
stand environmental dynamics before a real deployment.
While simulation and emulation don’t obviate the need for
debugging a deployed system, they will tend to reduce the
number of problems that arise in it.

In all of these regimes, the running Em* binaries are
identical, making it painless to transition among them
during development and debugging, and eliminating the
accidental code differences that can arise when running
in simulation requires modifications. EmSim is simi-
lar to other “real-code” simulation environments, such as
TOSSim[14].

EmView/EmProxy EmView is a graphical visualizer for
Em* systems. It is designed to be easily extended to sup-
port new visualization needs as they arise. EmView can re-
quest and capture status updates from a collection of nodes,
or from a simulator. Because it uses UDP, the requests
can be broadcast to a group of nodes, and the responses
arrive with low latency, enabling EmView to capture real-
time system dynamics. EmProxy is a server that runs on a
node or as part of a simulation, and handles requests from
EmView. Based on the request, EmProxy will monitor spe-
cific status interfaces and immediately report any changes
on those interfaces back via UDP.

EmRun EmRun is a service responsible for starting,
stopping, and managing an Em* system. It processes a con-
fig file that specifies how the Em* services are “wired” to-
gether, and starts the system up in dependency order, max-

imizing parallelism. EmRun also maintains a control chan-
nel to each child process that enables it to monitor process
health (repawn dead or stuck processes), initiate graceful
shutdown, and receive notification when starting up that
initialization is complete. Log messages emitted by Em*
services are processed centrally by EmRun and exposed
to interactive clients as in-memory logrings with runtime-
configurable loglevels.

2.2 Em* Services
Em* services include support for networking, sensing, and
time synchronization.

Link and Neighborhood Esimation The LinkStats and
Neighbors services monitor a radio link to estimate connec-
tivity to other nodes on the same channel, and expose this
information to their clients. When significant changes oc-
cur, the clients are notified so that they can take necessary
action. This information is useful for two reasons.

First, many systems need to know their directly con-
nected neighbors because they need to interact or collabo-
rate with them. Neighbors provides them a list of neighbors
and enables them to select which they want to use based on
link quality or other metrics. Notification of changes en-
ables them to quickly react to a changing environment.

Second, wireless systems have a significant “gray zone”
where connectivity is poor and unreliable[2]. Some algo-
rithms choose to ignore these links, while others factor link
quality into their algorithms. For example a routing algo-
rithm might use a metric that uses link quality to weight
hop counts.

Time Synchronization The ability to relate the times of
events on different nodes is critical to most distributed sens-
ing applications, especially those interested in correlation
of high-frequency phenomena. The TimeSync service pro-
vides a mechanism for converting among CPU clocks (i.e.
gettimeofday()) on neighboring nodes. Rather than attempt
to synchronize the clocks to a specific “master”, TimeSync
estimates conversion parameters that enable a timestamp
from one node to be interpreted on another node. Timesync
can also compute relations between the local CPU clock
and other clocks in the system such as sample indices from
an ADC or the clocks of other processor modules.

Routing Em* supports several types of routing: Flood-
ing, Geographical, and Quad-Tree. One of the founding
principles of Em* is that innovation in routing, and hybrid
transport/routing protocols are key research areas in the de-
velopment of wireless sensor network systems. Thus, while
Em* “supports” several routing protocols, the point is that
it’s easy to invent your own. For example, the authors of
Directed Diffusion [11][13] are implementing their proto-
col for Em*.

2.3 Em* Device Support
Em* includes native support for a number of devices, in-
cluding sensors, and radio hardware.



HostMote and MoteNIC Em* systems often need to
gateway to a network of low-energy platforms such as
Mica[21] Motes running TinyOS[12]. To enable this, the
HostMote service implements a line protocol to a compat-
ible Mote attached to an Em* node via a serial port. The
HostMote service provides a configuration interface and a
message interface that demultiplexes traffic to and from the
Mote to multiple clients. MoteNIC is a packet relay ser-
vice that connects to HostMote. MoteNIC provides a stan-
dard Em* data link interface, and translates messages to
and from the Mote. Software on the Mote then relays those
packets onto the air.

Audio Server The Audio service provides a buffered and
continuous streaming interface to audio data sampled by
sound hardware. It also propagates synchronization infor-
mation to the TimeSync service to enable clients to use
TimeSync to relate specific sample indices to CPU times.
Using the Audio service, clients can extract data from a
buffer of historical data as well as receive a stream of data
as it arrives. The ability to acquire historical data is crucial
to implementing triggering and collaboration algorithms
where there may be a significant nondeterministic delay
in communication due to channel contentention, multihop
communication, duty cycling, and other sources of delay.

Other Sensor Hardware We have implemented a num-
ber of other services that support various sensor devices we
have encountered. For the NIMS project, we have built a
driver for the DGH multichannel ADC conversion module.
We have also built a driver for the WMR968 weather sta-
tion.

3 Building Blocks
In this section, we will describe in more detail the build-
ing blocks that enabled us to construct the Em* suite of
tools and services. The basic structure of Em* encap-
sulates logically separable modules within individual pro-
cesses, and enables communication among these modules
through message passing via device files. This structure
provides for fault isolation and independence of implemen-
tation among services and applications.

In principle, Em* does not specify anything about the
implementation of its modules, apart from the POSIX sys-
tem call interface required to access device files. For exam-
ple, most Em* device interfaces can be used interactively
from the shell, and Em* servers could be implemented in
any language that supports the system call interface.

In practice, there is much to be gained from using and
creating standard libraries. In the case of Em* we have
implemented these libraries in C, and we have adopted the
GLib event framework to manage select() and to support
timers. The event framework enables us to encapsulate
complex protocol mechanisms in libraries, which we can
then conveniently integrate without explicit coordination.
The decision to use C, GLib, and the POSIX interface was
designed to minimize the effort required to integrate Em*

with arbitrary languages, implementation styles, and legacy
codebases.

We will now describe some key building blocks in more
detail. These building blocks, the Em* IPC mechanisms
and associated libraries, will be explained in terms of what
they do, how they work, and how they are used.

3.1 FUSD
FUSD, the Framework for User-Space Devices, is essen-
tially a microkernel extension to Linux. FUSD allows
device-file callbacks to be proxied into user-space and im-
plemented by user-space programs instead of kernel code.
Though implemented in userspace, FUSD drivers can cre-
ate device files that are semantically indistinguishable from
kernel-implemented /dev files, from the point of view of
the processes that use them. FUSD follows in the tradition
of microkernel operating systems that implement POSIX
interfaces, such as QNX [26] and GNU HURD [22]. A
performance analysis of Em*’s FUSD–based interfaces ap-
pears in Section 3.3.2.

As we will describe in later sections, this capability is
used by Em* modules for both communication with other
modules and with users. Of course, many other IPC meth-
ods exist in Linux, including sockets, message queues, and
named pipes. We have found a number of compelling ad-
vantages in using using user-space device drivers for IPC
among EmStar processes. For example, system call re-
turn values come from the EmStar processes themselves,
not the kernel; a successful write() guarantees that the data
has reached the application. Traditional IPC has much
weaker semantics, where a successful write() means only
that the data has been accepted into a kernel buffer, not
that it has been read or acknowledged by an application.
FUSD-based IPC obviates the need for explicit application-
level acknowledgement schemes built on top of sockets or
named pipes.

FUSD-driven devices are a convenient way for applica-
tions to expose state or configuration variables in a con-
venient, browseable, named hierarchy—just as the kernel
itself uses the /proc filesystem. These devices can respond
to system calls using custom semantics; for example, a read
from a packet-interface device (Section 3.2.2) will always
begin at a packet boundary. The customization of system
call semantics is a particularly powerful feature, allowing
surprisingly expressive APIs to be constructed. We will ex-
plore this feature further in Section 3.2.

3.1.1 FUSD Implementation

The proxying of kernel system calls is implemented using
a combination of a kernel module and cooperating user-
space library. The kernel module implements a device,
/dev/fusd, which serves as a control channel between
the two. When a user-space driver calls fusd register(), it
uses this channel tell the FUSD kernel module the name of
the device being registered. The FUSD kernel module, in
turn, registers that device with the kernel proper using de-



vfs, the Linux device filesystem. Devfs and the kernel don’t
know anything unusual is happening; it appears from their
point of view that the registered devices are simply being
implemented by the FUSD module.

FUSD drivers are conceptually similar to kernel drivers:
a set of callback functions called in response to system
calls made on file descriptors by user programs. In ad-
dition to the device name, fusd register() accepts a struc-
ture full of pointers to callback functions, used in response
to client system calls—for example, when another process
tries to open, close, read from, or write to the driver’s de-
vice. The callback functions are generally written conform
to the standard definitions of POSIX system call behavior.
In many ways, the user-space FUSD callback functions are
identical to their kernel counterparts.

When a client executes a system call on a FUSD-
managed device (e.g., open() or read(), the kernel ac-
tivates a callback in the FUSD kernel module. The module
blocks the calling process, marshals the arguments of the
system call, and sends a message to the user-space driver
managing the target device. In user-space, the library half
of FUSD unmarshals the message and calls the user-space
callback that the FUSD driver passed to fusd register().
When that user-space callback returns a value, the process
happens in reverse: the return value and its side-effects are
marshaled by the library and sent to the kernel. The FUSD
kernel module unmarshals the message, matches it with the
corresponding outstanding request, and completes the sys-
tem call. The calling process is completely unaware of this
trickery; it simply enters the kernel once, blocks, unblocks,
and returns from the system call—just as it would for a sys-
tem call to a kernel-managed device.

One of the primary design goals of FUSD is stability.
A FUSD driver can not corrupt or crash any other part
of the system, either due to error or malice. Of course, a
buggy driver may corrupt itself (e.g., due to a buffer over-
run). However, strict error checking is implemented at the
user/kernel boundary which prevents drivers from corrupt-
ing the kernel or any other user-space process—including
other FUSD drivers, and even the processes using the de-
vices provided by the errant driver.

3.2 Device Patterns
Using FUSD, it is possible to implement character devices
with more or less arbitrary semantics. FUSD itself does not
enforce any restrictions on the semantics of system calls,
other than those needed to maintain fault isolation between
the client, server, and kernel. While this absence of re-
striction makes FUSD a very powerful tool, we have found
that in practice the interface needs of most applications fall
into well-defined classes. We use the term Device Pattern
to refer to these interface classes. We call them “patterns”
because they factor out the semantics of the device com-
mon to a class of interfaces, while leaving the rest to be
customized in the implementation of the service.

The Em* device patterns are implemented by libraries

that include hooks into the GLib event framework. These
hooks enable them to encapsulate the detailed interface to
FUSD, leaving the service to provide only configuration
parameters and the minimal set of callback functions re-
quired to customize the semantics of the device to fit the
application. For example, the Status Device pattern defines
the behavior when the device is read, but requires that the
application provide a callback to represent the application’s
current “status” on demand.

A key property of Em* device patterns, relative to other
approaches such as log files and status files, is their active
nature. For example, the Logring Device pattern appears
very much like a log file, but it stores only recent log mes-
sages in memory, and reports them followed by a stream of
new messages as the arrive. The Status Device pattern ap-
pears very much like a file that always contains the most re-
cent state of the service providing it. However, most status
devices also support poll()-based notification of changes to
the state.

The following sections will describe the Device Patterns
defined within Em*. Most of these patterns were discov-
ered during the development of services that needed them,
and later factored out into libraries. In some cases, several
similar instances were discovered, and the various features
amalgamated into a single pattern.

3.2.1 Status Device

The Status Device pattern provides a device that always re-
ports the current state of the service providing it. The exact
semantics of “state” is determined by the service; there is
no limitation on the number of separate Status Devices em-
ployed by a single service. The data reported by a Status
Device is not limited in size to a single read(). The Sta-
tus Device reports its data using a simple protocol in which
multiple sequential reads may be completed, terminated by
a zero-length read to indicate the end of the status report.
Status Devices are used for a wide variety of purposes, in-
cluding the output of a neighbor discovery service and the
current configuration and packet transfer statistics for a ra-
dio link. Because they are so easy to integrate into an Em*
service, they are also favored for output of a wide variety
of debugging information.
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Figure 2: Block diagram of the (a) Status and (b) Packet Device pat-
terns. In the Packet Device diagram, the “F” boxes are client-configurable
filters, and the curved arrows from Client1 represent ioctl() based config-
uration of queue lengths and message filtering.



While it is often convenient to use cat to interactively
view the state of a service from the shell, an important fea-
ture of the Status Device is its support for “binary mode”.
A client can put the device into binary mode using a spe-
cial ioctl() call. After this call is performed, the device will
produce output formatted in service-specific structs rather
than human-readable ASCII. For programmatic use, binary
mode is preferable for reasons of both convenience and
compactness.

In addition to polling the state by reading the device,
Status Device supports change notification through poll().
When the service’s state changes, the service can choose to
notify its clients, causing their devices to become readable.
Upon notification, each client can read it again to receive
the updated state information. This process highlights an-
other key property of the status device: while every read
is guaranteed to compute and report the current state, the
client is not guaranteed to see every intermediate state tran-
sition. The corollary to this is that if no clients care about
the state, no work is done to compute it. Applications that
desire queue semantics should use the Packet Device pat-
tern (described in Section 3.2.2).

Another feature of Status Device is support for multiple
concurrent clients. Although intended to support one-to-
many status reporting, this feature has the interesting side
effect of enabling a great deal of system transparency. For
debugging or monitoring purposes, a new client can open
the device and observe the same sequence of state changes
as any other client, effectively snooping on the “traffic”
from that service to its clients. The ability to do this in-
teractively is a powerful development and troubleshooting
tool.

A Status Device can implement an optional write() han-
dler, which can be used to configure client-specific state
such as options or filters. For example, a routing pro-
tocol that maintained multiple routing trees might ex-
pose its routing tables as a status device, that was client-
configurable to select only one of the trees.

In order to demonstrate the simplicity of implementing
a “dual mode” Status Device, Figure 3 shows an complete
example using this interface. The example creates a de-
vice called /dev/energy/status, that reports infor-
mation about remaining energy in the system, represented
by the energy status t structure. The device is created in
the main() function, by calling the constructor with an op-
tions structure.

The options structure specifies the name of the device, a
private data pointer, and two callback functions that will be
called when the device is accessed by a client. If the client
sets the device into binary mode, the “binary” handler is
called to generate a response; otherwise, the “printable”
handler is called. The handlers are provided a buf t (a dy-
namically allocated growable buffer) which they must fill.
Typically the binary output is reported as a struct that it ex-
posed to clients in a header file, while the printable output
constructs an equivalent message from the same underlying

#include <libdev/status dev.h>

typedef struct energy status s {
float batt voltage;

5 int seconds remain;
} energy status t;

int e stat bin(status context t *ctx, buf t *buf) {
energy status t *es = (energy status t *)sd data(ctx);

10 bufcpy(buf, es, sizeof(energy status t));
return STATUS MSG COMPLETE;
}

int e stat print(status context t *ctx, buf t *buf) {
15 energy status t *es = (energy status t *)sd data(ctx);

bufprintf(buf, "Energy status: \n");
bufprintf(buf, " %.2f volts, %d seconds remain\n",

es−>batt voltage, es−>seconds remain);
return STATUS MSG COMPLETE;

20 }

int main(int argc, char **argv) {
energy status t energy status = {};
status context t *stat dev = NULL;

25 status dev opts t s opts = {
device: {

devname: "energy/status",
device info: &energy status
},

30 printable: e stat print,
binary: e stat bin
};
g status dev(&s opts, &stat dev);
/* e cmd init(&energy status); */

35 g main();
return 0;
}

Figure 3: A snippet of code that creates a Status Device.

struct. This approach of always reporting the complete sta-
tus (rather than attempting a diff-based scheme) simplifies
implementation and eliminates a large number of possible
bugs.

Of course, in a real application there would be mecha-
nism that acquired and filled in the energy status. In the
event that a significant change occurred in the energy state,
it might be appropriate to notify any existing clients. In
this example, notification would take the form of the call
g status dev notify(stat dev). This call would trigger read
notification on all clients, who would then re-read the de-
vice to get the updated status.

3.2.2 Packet Device

The Packet Device pattern provides a read/write device that
provides a queued multi-client packet interface. This pat-
tern is generally intended for packet data interfaces, such
as the interface to a radio module, a fragmentation layer, or
a routing protocol. By creating this pattern, duplicate code
and effort was eliminated, and the feature set across all in-
stantiations was enhanced and standardized. Although its
intent was to support packet transport services, Packet De-
vice can also be convenient for a variety of other interfaces
where queue semantics are desired.

Reads and writes to a Packet Device must transfer a com-
plete packet in each system call. If read() is not supplied
with a large enough buffer to contain the packet, the packet
will be truncated. A Packet Device may be used in either a
blocking or poll()-driven mode. A Packet Device is marked



readable when there is at least one packet in its input queue,
and is marked writable when a previously filled queue has
dropped below half full.

Packet Device supports per-client input and output
queues. The queue lengths are client-configurable. When
at least one client’s output queue contains data, the Packet
Device processes the client queues serially in round-robin
order. Each packet is submitted to the server individually,
and the processing of other queues is suspended until the
server indicates that it is ready for the next packet. This in-
terface is designed to support the common case of servers
that are controlling access to a rate-limited serial channel.

When an incoming packet arrives, the server must call
into the Packet Device library to queue the new packet for
any clients that are interested. Several calls are provided
that enable the server to queue the new packet only for
certain clients that may be distinguished in an application-
specific way. However, the typical mode of use is to pro-
vide the packet to all clients, subject to a client-specified fil-
ter, based for example on a packet type field. This method
enhances the transparency of the system by enabling a
“promiscuous” client to see all traffic passing through the
device. An optional loopback mode can enable a client to
see outgoing traffic as well.

3.2.3 Command Device

The Command Device pattern provides an interface simi-
lar to the writable entries in the Linux /proc filesystem,
which enable user processes to modify configurations and
trigger actions. In response to a write(), the server provid-
ing the device processes and executes the command, and
returns an error code to the client to indicate any problem
with the command. Command Device does not support any
form of delayed or asynchronous return to the client.

Although Command Devices can accept binary com-
mands as well as ASCII strings, in most implementa-
tions a simple ASCII command format is used. This en-
ables interactivity from the shell, while simplifying client
code as well. Alternatives such as ioctl() codes or com-
mands formed from binary structures might be slightly
more efficient, but tend to lead to more obscure client code
than using ASCII commands that are more or less self-
documenting. In cases where the commands are low-rate
configuration changes, performance is not a concern.

The Command Device pattern also includes a read() han-
dler, which is typically used to report “usage” information.
Thus, an interactive user can get a command summary us-
ing cat and then issue the command using echo. Alter-
natively, the Command Device may report state informa-
tion in response to a read. This behavior would be more in
keeping with the style used in the /proc filesystem, and
is explicitly implemented in a specialization of Command
Device called the Options Device pattern.

Figure 4 continues our previous example by adding a
Command Device. Uncommenting line 34 of Figure 3 and
linking with Figure 4 will instantiate a new Command De-

#include <libdev/command dev.h>

char *e usage(void *data) {
return "Echo ’suspend’ to suspend system\n";

5 }

int e command(char *cmd, size t size, void *data) {
int retval = EVENT RENEW;
if (strncasecmp(cmd, "suspend", 7) == 0) {

10 /* initiate suspend mode. . . */
}
else

retval |= EVENT ERROR(EINVAL);
return retval;

15 }

void e cmd init(energy status t *es) {
cmd dev opts t c opts = {

device: {
20 devname: "energy/command",

device info: es
},
command: e command,
usage: e usage

25 };
g command dev(&c opts, NULL);
}

Figure 4: Snippet of code that creates a Command Device.
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Figure 5: Block diagram of the (a) Query and (b) Sensor Device pat-
terns. In the Query Device, queries from the clients are queued and “pro-
cess” is called serially. The “R” boxes represent a buffer per client to hold
the response to the last query from that client. In the Sensor Device, the
server submits new samples by calling sdev push(). These are stored in
the ring buffer (RB), and streamed to clients with relevant requests. The
“R” boxes represent each client’s pending request.

vice called /dev/energy/command, that can be used
to trigger the system to suspend. The implementation re-
quires only the “command” handler. This handler tests the
string and triggers the suspend process if the string equals
suspend. Any other string will return the error EINVAL.
The usage handler returns a usage string to the client.

In many cases the commands to a command device are
more complex than a simple keyword. To support these
cases, the Em* libraries include a simple parser that defines
a standard syntax used by most Command Devices. This
syntax specifies a sequence of key/value pairs, delimited
by colons.

3.2.4 Query Device

Thus far, all of our Device Patterns have implemented es-
sentially asynchronous interfaces. Status Devices report
asynchronous status updates to the client. Packet Devices
are read/write, but the input and output streams are inde-
pendent of each other. Command Devices can accept a
command and immediately return an error code, but do not



permit the server to return a delayed result (for example
after a lengthy operation completed.) While all of these
patterns are built upon synchronous system calls, none of
them adequately support a request/response protocol.

In contrast, the Query Device pattern in designed to im-
plement a transactional, request/response semantics. To ex-
ecute a request and response, a client first opens the device
and writes the request data. The client then uses poll() to
wait for the file to become readable, and read back the re-
sponse in the same way as a Status Device. For those ser-
vices that provide human-readable interfaces, we have writ-
ten a universal client called echocat that performs these
steps and reports the output.

It is interesting to note that the Query Device was not
one of the first device types implemented; rather, most con-
figuration interfaces in Em* have been implemented by
separate Status and Command devices. In practice, any
given configurable service will have many clients that need
to be apprised of its current configuration, independent of
whether they need to change the configuration. This is ex-
acerbated by the high level of offered dynamics in sensor
network applications. Furthermore, to build more robust
systems we often use a soft-state approach to configuration
in which the current configuration is periodically read and
then modified if necessary. This approach addresses at once
a wide range of potential faults.

To the service implementing the device, the Query De-
vice pattern offers a simple, transaction-oriented interface.
The service defines a callback to handle new transactions.
Queries from the client are queued and are passed serially
to the transaction processing callback, similar to the way
the output queues are handled in a Packet Device. If the
transaction is not complete when the callback returns, it
can be completed asynchronously. At the time of comple-
tion, a response is reported to the device library, which it
then makes available to the client. The service may also
optionally provide a callback to provide usage information,
in the event that the client reads the device before any query
has been submitted.

Clients of a Query Device are normally serviced in
round-robin order. However, some applications need to al-
low a client to “lock” the device and perform several back-
to-back transactions. The service may choose to give a cur-
rent client the “lock”, with an optional timeout. The lock
will be broken if the timeout expires, or if the client with
the lock closes their file descriptor.

3.3 Domain-Specific Interfaces

In Section 3.2 we described several device patterns, gener-
ally useful primitives that can be applied to a wide variety
of purposes. In this section, we will describe a few exam-
ples of more domain-specific interfaces, that are composed
from device patterns, but are designed to support the im-
plementation of specific types of services.

3.3.1 Data Link Interface

The Data Link interface is a specification of a standard in-
terface for network stack modules. The Data Link inter-
face is composed of three device files: data, command,
and status. These three interfaces appear together in a
directory named for the specific stack module.

The data device is a Packet Device interface that is
used to send and receive packets from the network. All
packets transmitted on this interface begin with a standard
link header that specifies common fields. This link header
masks certain cosmetic differences in the actual over-the-
air headers used by different MAC layers, such as the
Berkeley MAC [12] and SMAC [19] layers supported on
Mica Motes.

The command and status devices provide asyn-
chronous access to the configuration of the stack module.
The status device reports the current configuration of the
module (such as its channel, sleep state, link address, etc.)
as well as the latest packet transfer and error statistics. The
command device can be used to issue configuration com-
mands, for example to set the channel, sleep state, etc. The
set of valid commands and the set of values reported in sta-
tus varies with the underlying capabilities of the hardware.
However, the binary format of the status output is standard
across all modules (currently, the union of all features).

Several “link drivers” have been implemented in Em*, to
provide interfaces to radio link hardware including 802.11,
and several flavors of Mica Mote. The 802.11 driver over-
lays the socket interface, sending and receiving packets
through the Linux network stack. Two versions of the Mote
driver exist, one that supports the standard Berkeley MAC
and one that supports SMAC. Because all of these drivers
conform to the link interface spec, some applications can
work more or less transparently over different physical ra-
dio hardware. In the event that an application needs infor-
mation about the radio layer (e.g. the nominal link capac-
ity), that information is available from the status device.

In addition to providing support for multiple underly-
ing radio types, the standard Data Link interface enables
a variety of useful “passthrough” stack modules and rout-
ing modules. Two standard modules in Em* network stacks
are LinkStats and Fragmentation. Both of these sit between
a client and an underlying radio driver module, transpar-
ently to the client. In addition to passing data through, they
proxy and modify status information, for example updating
the MTU specification.

3.3.2 Cost Analysis of the Data Link Interface

Our discussion to this point begs the question, what is the
cost of this architecture? In order to quantify some of these
costs, we performed a series of experiments, the results of
which are shown in Figure 6. We found that while our ar-
chitecture introduces a measurable increase in latency and
decrease in throughput, these costs have a negligible impact
when applied to a low bandwidth communications chan-



Building Block Description Requires Used By

Status Reports current status, supports notification N/A All Services and Tools
Command Accepts commands N/A HostMote, EmRun, TimeSync(2)
Packet Forwards packet traffic with configurable queuing N/A HostMote, EmProxy
Query Serializes a queue of transactions Status DGH
Data Link Standard interface for network stack modules Packet, Status,

Command
MoteNIC, UDP, LinkStats, Flooding, MoteSim(N)

Sensor Buffered sensor data interface Status Audio Server(2), Weather Station(4), DGH(4)
Logring In-memory ring of log messages N/A EmRun(N)
Directory Defines mapping from string values to numbers Status TimeSync

Table 1: Summary of Device Patterns, and the tools and services that use them.
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Figure 6: Measuring the cost of the Em* stack. Graph (a) shows the results of our throughput test over loopback for raw UDP and three stack
configurations. Graph (b) shows the results of our latency test. Graph (c) shows the results of the throughput test when run over the Mote radio.

nel. This is an important case, since Em* is designed for
systems with an architecturally high ratio of CPU to com-
munication.

To characterize latency and throughput, we devised two
tests. First, we performed a throughput test, in which a test
application would send packets as quickly as possible over
the channel. Second, we performed a latency test, in which
a test application would send a series of “ping” messages
over the channel, only sending the next “ping” upon receipt
of the previous ping’s response. For both tests, the inter-
send time was recorded and analysed. All of our experi-
ments were performed on a 900 MHz Pentium III running
Linux 2.4.20, with no other users.

For our first experiments, we wanted to select a chan-
nel that was fast and deterministic, to simplify accounting
for the underlying channel costs in determining the cost of
Em*. UDP over loopback seemed the ideal choice. For our
baseline case, we wrote a simple UDP client and server that
implemented both of our tests. The results of the through-
put and latency tests for a variety of packet sizes over UDP
are shown as the “udp-raw” curves in Figures 6(a) and 6(b).

Next, we implemented an Em* version of the client and
server, and ran the same tests on an Em* interface to the
UDP loopback channel, shown as the “udp-dev” curves.
The same communication occurred, only now it traversed
the Em* Data Link interface (once in the throughput test,
and four times in the latency test). We then added two ad-
ditional layers to the Em* stack, and performed the tests
again. The “udp-dev-linkstats” curves are results after
adding the LinkStats service to the Em* stack; the “udp-
dev+ls+frag” curve are results from adding a Fragmenta-

tion service on top of LinkStats.

We observe from the graphs that each additional layer
adds a fixed amount of overhead, with a slight dependence
on packet size. This corresponds well with previous mea-
surements of FUSD suggesting that system call volume
was the dominant factor in performance. An interesting
observation is that the overhead of the lowest “udp-dev”
layer is not constant, in fact decreasing with packet size.
We don’t have a clear explanation for this, but speculate
that it is related to scheduling delay in waking the client
processes.

We also observe that the ping latency is about 5x longer
than the transmit latency. Since the ping consists of two tra-
verses down the stack and two traverses up the stack, this
suggests that traverses up the stack cost about 1.5x as much
as traverses downwards. This could be explained by ob-
serving that traversing up requires a notification operation
(triggering select()) followed by a read(), while traversing
down requires only a write().

Figure 6(c) shows the result of the throughput test, us-
ing a Mote as the underlying channel instead of UDP, for
200 byte packets. Each bar shows the mean, plus or mi-
nus one standard deviation, for 1000 packet sends. The
first bar shows the inter-send times achieved by integrat-
ing the HostMote serial protocol with the throughput test
into a single process. The second bar shows the Em*
MoteNIC/HostMote service layers, driven by our Em*
throughput test application. The third bar tests with the
Linkstats service layered above MoteNIC, and the fourth
bar adds Fragmentation above Linkstats. In order to fo-
cus on the overhead of Em* interfaces (rather than protocol



overhead), the length of the payload issued at the top layer
is adjusted in each case to generate 200 byte packets at the
Mote radio layer. As we can see from the graph, the Em*
layers do not have a significant impact on throughput.

3.3.3 Sensor Device

Two of the applications that drove the development of Em*
centered around acquisition and processing of audio data.
One application, a ranging and localization system [10],
needed to extract and process audio clips from a specific
time in the past. The other, a continuous frog call detection
and localization system [17], needed to receive the data in
a continuous stream. Both applications needed to be able
to correlate time series data captured on a distributed set of
nodes, thus timing relationships among the nodes needed
to be maintained.

The Sensor Device interface encapsulates a ring buffer
that stores a history of sampled data, and integrates with
the Em* Time Synch service to enable clients to relate local
sensor data to sensor data from other nodes. A client of the
sensor device can open the device and issue a request for
a range of samples. When the sample data is captured, the
client will be notified and the data will be streamed back to
the client as it continues to arrive.

Keeping a history of recent sensor data and being able
to relate the sample timing across the network is critical
to many sensor network applications. By retaining a his-
tory of sampled data, it is much easier to implement appli-
cations where an event detected on one node triggers fur-
ther investigation and sensing at other nodes. Without local
buffering, the variance in multi-hop communications times
makes it difficult to abstract the triggered application from
the communications stack.

3.4 Em* Events and Client APIs
One of the benefits of the Em* design is that services
and applications are separate processes and communicate
through POSIX system calls. As such, Em* clients and
applications can be implemented in a wide variety of lan-
guages and styles. However, a large part of the convenience
of Em* as a development environment comes from a set of
helper libraries that improve the elegance and simplicity of
building robust applications.

In Section 3.2 we mentioned that an important part of
device patterns is the library that implements them on the
service side. Most device patterns also include a client-side
“API” library, that provides basic utility functions, GLib
compatible notification interfaces, and a crashproofing fea-
ture intended to prevent cascading failures.

Crashproofing is intended to prevent the failure of a
lower-level service from causing exceptions in clients that
lead them to abort. It achieves this by encapsulating the
mechanism required to open and configure the device, and
automatically triggering that mechanism to automatically
re-open the device whenever it closes unexpectedly. The
algorithm used in crashproofing is described in Figure 7.

WATCH-CRASHPROOF(devname, CONFIG, HANDLER)

1 fd ← OPEN(devname)
2 if CONFIGURE(fd) < 0 goto 11
3 crashed ← FALSE

4 resultset ← POLL(fd, {input, except})
5 if crashed
6 then status ← READ(fd, buffer)
7 if status < 0 abort
8 if devname ∈ buffer goto 1
9 else

10 if except ∈ resultset

11 then CLOSE(fd)
12 fd ← OPEN(“/dev/fusd/status′′)
13 if fd < 0 abort
14 crashed ← TRUE

15 elseif input ∈ resultset

16 then status ← READ(fd, buffer)
17 if fatal error goto 11
18 if status ≥ 0 HANDLER(buffer , status)
19 goto 4

Figure 7: “Crashproof” auto-reopen algorithm.

The arguments to this algorithm are the name of the de-
vice, and two callback functions, config and handler. The
config function configures a freshly opened device file ac-
cording to the needs of the client, e.g. setting queue lengths
and filter parameters. The handler function is called when
new data arrives. Note that in the implementation, the call
to poll() occurs in the GLib event system, but the funda-
mental algorithm is the same.

As a client, using crashproof devices is completely trans-
parent. The client constructs a structure specifying the de-
vice name, a handler callback, and the client configura-
tion, including desired queue lengths, filters, etc. Then, the
client calls a constructor function that opens and configures
the device, and starts watching it according to the algorithm
in Figure 7. In the event of a crash and reopen, the informa-
tion originally provided by the client will be used to recon-
figure the new descriptor. The crashproof client libraries
are supplied for both Packet and Status devices.

4 Examples

The last section enumerated a number of building blocks
that are the foundation for the Em* environment. In this
Section, we will describe how we have used them to con-
struct several key Em* tools and services.

4.1 EmSim and EmCee

EmSim and EmCee are tools designed to simulate unmodi-
fied Em* systems at varying points on the continuum from
simulation to deployment. EmSim is a pure simulation en-
vironment, in which many virtual nodes are run in parallel,
interacting with a simulated environment and radio chan-
nel. EmCee is a slightly modified version of EmSim that
provides an interface to real low-power radios in place of a
simulated channel.

EmSim itself is made up of modules. The main Em-
Sim module maintains a central repository for node infor-
mation, initially sourced from a configuration file, and ex-
posed as a Status Device. EmSim then launches other mod-



ules that are responsible for implementing the simulated
“world model” based on the node configuration. After the
world is in place, EmSim begins the simulation, starting up
and shutting down virtual nodes at the appropriate times.

4.1.1 Running Virtual Nodes

The uniform use of the /dev filesystem for all of our I/O
and IPC leads to a very elegant mechanism for transparency
between simulation, various levels of reality, and real de-
ployments. The mechanism relies on name mangling to
cause all references to /dev/* to be redirected deeper into
the hierarchy, to /dev/sim/groupX/nodeY/*. This
is achieved through two simple conventions.

First, all Em* modules must include the call to
misc init() early in their main() function. This function
will check for certain environment variables to determine
whether the module is running in “simulation mode”, and
what its group and node IDs are. The second conven-
tion is to wrap every instance of a device file name with
sim path(). This macro will perform name-mangling based
on the information discovered in misc init().3 For simplic-
ity, we typically include the sim path() wrapper at the def-
inition of device names in interface header files.

This approach enables easy and transparent simulation
of many nodes on the same machine. This is not the case
for many other network software implementations. When-
ever the system being developed relies on mechanisms in-
side the kernel that can’t readily be partitioned into virtual
machines, it will be difficult to implement a transparent
simulation.

For example, ad-hoc routing code that directly config-
ures the network interfaces and kernel routing table is very
difficult to simulate transparently. While a simulation en-
vironment such as NS-2 [24] does attempt to run much of
the same algorithmic code as the real system, it does so in
a very intrusive, #ifdef-heavy way. This makes it cumber-
some to keep the live system in sync with the NS-2 version.

In contrast, Em* modules don’t even need to be recom-
piled to switch from simulation to reality. In addition, the
Em* device hierarchy interactively yields a great deal of
transparency into the workings of each individual node. Of
course, this flexibility brings a cost. An ad-hoc routing
algorithm that dragged every packet to user-space would
likely suffer poorer performance.

4.1.2 Simulated World Models

Given the capability to transparently redirect the IPC chan-
nels, we can provide a world for the simulated nodes
to see, and in some cases, affect. There are many ex-
amples of network simulation environments in the net-
working community, some of which support radio channel
modeling.[24][25] In addition, the robotics community has
devoted much effort to creating world models.[16] For sen-
sor networks, the robotic simulations are often more appro-
priate, because they are designed to model a system sens-

3Thus, misc init() must precede the use of sim path().

ing the environment, and intended to test and debug control
systems and behaviors that must be reactive and resilient.

The existence of Em* device patterns simplifies the con-
struction of simulated devices, because all of the complex-
ity of the interface behavior can be reused. Even more im-
portant, by using the same libraries, the chances of subtle
behavior differences are reduced. Typically, a “simulation
module” will read the node configuration from EmSim’s
Status Device, and then expose perhaps hundreds of de-
vices, one for each node. Requests to each exposed device
will be processed according to a simulation of the effects
of the environment, or in some cases in accordance with
traces of real data.

The notification channel in Em* status devices enables
EmSim to easily support configurations changes during a
simulation. Updates to the central node configuration, such
as changes in the position of nodes, trigger notification in
the simulation modules. The modules can then read the
new configuration and update their models appropriately.
In addition, we can close the loop by creating a simulation
module that provides an actuation interface, for example
enabling the node to move itself. In response to a request
to move, this module could issue a command to EmSim to
update that node’s position and notify all clients.

4.1.3 Using Real Channels in the Lab

EmCee is a variant of EmSim that integrates a set of vir-
tual nodes to a set of real radio interfaces, positioned out
in the world. We have two EmCee-compatible testbeds:
the ceiling array and the portable array. The ceiling array
is composed of 55 Crossbow Mica1 Motes, permanently
attached to the ceiling of our lab in a 4 foot grid. Serial
cabling runs back to two 32-port ethernet to serial multi-
plexers. The portable array is composed of 16 Crossbow
Mica2 Motes and a 16-port serial multiplexer, that can be
taken out to the field.[2]

The serial multiplexers are configured to expose their se-
rial port devices to appear to be normal serial devices on
a Linux server (or laptop in the portable case). To support
EmCee, the HostMote and MoteNIC services support an
“EmCee mode” where they open a set of serial ports spec-
ified in a config file and expose their devices within the
appropriate virtual node spaces.

Thus, the difference between EmSim and EmCee is min-
imal. Where EmSim would start up a radio channel simu-
lator to provide virtual radio link devices, EmCee starts up
the MoteNIC service in “EmCee mode”, which creates real
radio link devices which map to multiplexer serial ports and
thus to real Motes.

Our experience with EmCee has been well worth the in-
frastructure investment. Users have consistently observed
that using real radios is substantially different than our
best efforts at creating a modeled radio channel.[5][2] Even
channels driven by empirical data captured using the ceil-
ing array don’t seem to adequately capture the real dynam-
ics. Although testing with EmCee is still not the same as
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a real deployment, the reduction in effort relative to a de-
ployment far outweighs the reduction in reality for a large
part of the development and testing process.

4.1.4 Performance of EmSim/EmCee

Currently, an important limitation of our simulator is that
it can only run in real-time, using real timers and inter-
rupts from the underlying operating system. This is unlike
a discrete-event simulator such as ns-2, which runs in its
own virtual time, so can run for as long as necessary to
complete the simulation without affecting the results.

The real-time nature of EmSim/EmCee makes perfor-
mance an important consideration. With perfect efficiency,
the simulator platform would need the aggregate computa-
tional power of all simulated nodes. To test the actual effi-
ciency, we ran test simulations on a single SMP-enabled
server with 4 700MHz Pentium-III processors, running
Linux kernel 2.4.20. 4

In our initial testing, the default Linux scheduler was
used; no explicit assignment of processes to CPUs was
made. Each “node” consisted of two processes that con-
tinuously exchanged data via a FUSD Status Device. The
results, shown in Figure 8, emphasize the need to run pro-
cesses that intercommunicate heavily on a common CPU.
A single-node simulation ran on a single-CPU platform at
nearly at nearly twice the speed as on 2-, 3- or 4-CPU plat-
form. The Linux scheduler’s default behavior of placing
one process on each CPU is disastrously inefficient because
those processes communicate with high bandwidth. A sim-
ilar effect can be seen with the 2-node (4-process) simula-
tion on a 4-CPU platform, which was slower than the 2-
CPU case where processes from a single “node” are forced
onto the same CPU.

The data also show that additional CPUs are beneficial
if the processes are better partitioned. In the larger sim-
ulations, performance with larger numbers of CPUs im-

4The number of CPUs available to the simulator was controlled using
Andrew Morton’s “cpus allowed” patch.

proves, as it becomes more likely that processes from the
same simulated node will share a CPU. With this lesson in
hand, subsequent versions of our simulator explicitly as-
sign processes to CPUs, improving efficiency by keeping
the highest-bandwidth communication within a CPU.

4.2 EmRun

EmRun starts up, maintains, and shuts down an Em* sys-
tem according to the policy specified in a config file. There
are three key points in its design: process respawn, in-
memory logging, and fast startup, graceful shutdown.

Respawn Process respawn is neither new, nor difficult to
achieve, but it is very important to an Em* system. It is dif-
ficult to track down every bug, especially ones that occur
very infrequently, such as a floating-point error process-
ing an unusual set of data. Nonetheless, in a deployment,
even infrequent crashes are still a problem. Often, process
respawn is sufficient to work around the problem; eventu-
ally, the system will recover.

In-Memory Logs EmRun saves each process’ output to
in-memory logrings that are available interactively from the
/dev/emlog/* hierarchy. These illustrates the power of
FUSD devices relative to traditional logfiles. Unlike rotat-
ing logs, Em* logrings never need to be switched, never
grow beyond a maximum size, and always contain only re-
cent data.

Fast Startup EmRun’s fast startup and graceful shut-
down is critical for a system that needs to duty cycle to
conserve energy. The implementation depends on a con-
trol channel that Em* services establish back to EmRun
when they start up. Em* services notify EmRun when their
initialization is complete and are ready to respond to re-
quests. The emrun init() library function, called by the ser-
vice, communicates with EmRun by writing a message to
/dev/emrun/.int/control. EmRun then launches
other processes waiting for that service, based on a config-
ured dependency graph.

This feedback enables EmRun to start independent pro-
cesses with maximal parallelism, and to wait exactly as
long as it needs to wait before starting dependent processes.
This scheme is far superior to the naive approach of waiting
between daemon starts for pre-determined times, i.e., the
ubiquitous “sleep 2” statements found in *NIX boot scripts.
Various factors can make startup times difficult to predict
and high in variance, such as flash filesystem garbage col-
lection. On each boot, a static sleep value will either be too
long, causing slow startup, or too short, causing services to
fail when their prerequisites are not yet available.

Graceful Shutdown The control channel is also criti-
cal to supporting graceful shutdown. EmRun can send a
message through that channel, requesting that the service
shut down, saving state if needed. EmRun then waits for
SIGCHLD to indicate that the service has terminated. If
the process is unresponsive, it will be killed by a signal.
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Figure 9: Block diagram of an Em* system, showing the types of interfaces and linkages. The boxes in gray are all standard Em* services, while the
white box is an notional application, similar to one implemented against an earlier version of Em* components[4]. Note that all services have a control
channel to EmRun, although only four are shown (dashed arcs).

An interesting property of the EmRun control channel is
one that differentiates FUSD from other approaches. When
proxying system calls to a service, FUSD includes the PID,
UID, and GID of the client along with the marshalled sys-
tem call. This means that EmRun can implictly match up
the client connections on the control channel to the child
processes it has spawned, and reject connections from non-
child processes. This property is not yet used much in Em*
but it provides an interesting vector for customizing device
behavior.

4.3 Time-Synchronized Sampling in Em*
Several of the driving applications for Em* have involved
distributed processing of high-rate audio: audible acoustic
ranging, acoustic beamforming, and animal call detection
are a few of the applications. We used earlier versions of
Em* to tackle a few of these problems[17][4][10]; the cur-
rent version of Em* includes support for these types of ap-
plication. In this section, we will describe the services that
enable this in more detail.

Figure 9 shows a block diagram of a time-synchronized
sampling system. The TimeSync service and the Au-
dioServer service collaborate to enable an application such
as a Beamformer to acquire time series and relate them to
time series from other nodes across the network.

TimeSync Between Nodes The TimeSync service uses
Reference Broadcast Synchronization (RBS)[7] to com-
pute relationships among the CPU clocks on nodes in a
given broadcast domain. This technique correlates the ar-
rival times of broadcast packets at different nodes, and uses
linear regression to estimate conversion parameters among
clocks that receive broadcasts in common. We chose RBS
because techniques based on measuring send times, such
as TPSN[9], are not generally applicable without support
at the MAC layer. Requiring this support would rule out
many possible radios, including 802.11 cards.

A key insight in RBS is that it is better to enable con-
version than to attempt to train a clock to follow some re-
mote “master” clock. Training a clock has many negative
repercussions for the design of a sampling system caused

by clock discontinuities and distortions.
Thus, TimeSync is really a “time conversion” ser-

vice. The output of the regression is reported through
the /dev/sync/params/ticker device, in a com-
plete listing of all known pairwise conversions. Clients of
TimeSync read this device to get the latest conversion pa-
rameters, then convert times from one timebase to another.
The code for reading the device and converting among
clocks is implemented in a library.

TimeSync within a Node Many systems have more than
one clock. For example, a Stargate board, with an attached
Mote and an audio card has three independent clocks. Thus
to compare audio time series from two independent nodes,
an index in a time series must be converted first to local
CPU time, then to remote CPU time, and finally to a remote
audio sample index.

The TimeSync service provides an interface for other
services to supply pair-wise observations to it, i.e. a CPU
timestamp and a clock-X timestamp. This interface uses
a Directory device to enable clients to create a new clock,
and associate it with a numeric identifier. The client then
writes periodic observations of that clock to the timesync
command device /dev/sync/params/command. The
observations are fit using linear regression to compute a re-
lationship between the two local clocks.

The Audio Server The Audio service provides a Sensor
Device output5. It defines a “sample clock”, which is the
index of samples in a stream, and submits observations re-
lating the sample clock to the CPU time to TimeSync.

A client of the Audio service can extract a sequence of
data from a specific time period by first using TimeSync
to convert the begin and end times to sample indices and
then placing a request to the Audio service for that sam-
ple range. Conversely, a feature detected in the streaming
output at a particular sample offset can be converted to a
CPU time. These clock relations can also be used to com-
pute and correct the skew in sample rates between devices,
which can otherwise cause significant problems.

5Actually, it was the model for the Sensor Device pattern.



Generating the synch observations requires minor
changes to the audio driver in the kernel. We have made
patches for two audio drivers: the iPAQ built-in audio
driver and the Crystal cs4281. In both cases, incoming
DMA interrupts are timestamped and retrieved by the Au-
dio service via ioctl(). While this approach makes the sys-
tem harder to port to new platforms and hardware, it is a
better solution for building sensing platforms.

The more common solution, the “synchronized start”
feature of many sound cards, has numerous drawbacks.
First, it only give you one data point for the run, where
our technique gives you a continous stream of points to av-
erage. Second, it is subject to drift, and since the end is
not timestamped there is no way to accurately determine
the actual sample rate. Third, it forces the system to coor-
dinate use of the audio hardware, whereas the Audio server
runs continuously and allows access by multiple clients.

5 Design Philosophy and Aesthetics
In this section, we will describe some of the ideas behind
the choices we made in the design of Em*.

5.1 No Local/Remote Transparency
One of the disadvantages of FUSD relative to sockets is that
connections to FUSD services are always local, whereas
sockets provide transparency between local and remote
connections. Nonetheless, we elected to base Em* on
FUSD because we felt that the advantages outweighed the
disadvantages.

The primary reason for giving up remote transparency
in Em* is that remote access is never transparent in wire-
less sensor networks. WSNs are characterized by com-
munications links that have high or variable latency, have
varying link quality and evolving topologies, and generally
low bandwidth. In addition, because communication has
a significant energy cost, WSNs strive to develop innova-
tive protocols that minimize communications, make use of
broadcast channels, tolerate high latency, and enable trade-
offs to be made explicit to the system designer. Not only
is remote communication in WSNs demonstrably different
than local communication, very little is achieved by mask-
ing that fact.

In abandoning remote transparency, the client gains the
benefit of knowing that each synchronous call will be re-
ceived and processed by the server with low latency. While
an improperly implemented server can introduce delays,
there is never a need to worry that a network problem might
introduce an unexpected delay. Requests that are known
to be time consuming can be explicitly implemented so
that the results are returned asynchronously via notification
(e.g. Query Device).

5.2 Intra-Node Fault Tolerance
Tolerance of node failures (or the failure of intervening
communications networks) is an important part of the de-
sign of distributed systems. In the case of embedded sys-

tems, several issues conspire to make node robustness a
high priority. First, the cost of responding to node failure
can be much higher for embedded systems. This is espe-
cially true if network access to the node is unreliable and a
physical journey is required; in extreme cases, nodes may
be physically irretrievable. Second, many applications of
WSNs are aimed at discovering new properties of their en-
vironment that could not previously be studied. By its na-
ture, this task exposes the system to new inputs that may in
turn exercise new bugs.

We apply several techniques to address fault tolerance
within a node: EmRun respawn, “crashproofing”, soft-state
refresh, and transactional interface design. We discussed
EmRun respawn and crashproofing in Sections 4.2 and 3.4,
as means of keeping the Em* services running, and pre-
venting cascading failures when an underlying service fails.

Soft-state and transactional design are key ideas in the
design of many distributed services, and are equally ap-
plicable within an Em* node. Status devices are typically
used in a soft-state mode. Rather than reporting “diffs”, ev-
ery status update reports the complete current state, leaving
the client to decide how to respond based on its own state.
While this approach is less efficient, when the update rate is
low it’s usually easy to make the case for trading efficiency
for robustness and simplicity. Similarly, periodic refreshes
in the absence of notification are often used to limit the
damage caused by a missing notification signal.

In the other direction, state pushed by a client to a ser-
vice typically uses a transactional approach with soft-state
refresh, for similar reasons. Rather than admitting the pos-
sibility that the client and server are out of synch (e.g. in
the event of a server restart), the client periodically resub-
mits its complete state to the service, enabling the service
to make appropriate corrections if there is a discrepancy.
Where the state in question is very large, there may be rea-
son to implement a more complex scheme, but for small
amounts of state simplicity and robustness carry the day.

5.3 Code Reuse
Code reuse and support for modularity were major de-
sign goals of Em*. Despite being written in a non-
OOP language, Em* manages to achieve a high degree of
reusabililty through disciplined design, as can be seen in
Table 2. Em* has largely been designed by factoring useful
components from existing implementations. In this way,
we guarantee at least one user for each library. The device
patterns have all arisen in this way; they exemplify solu-
tions that apply to a useful class of problems.

Em* services have been designed following the dictum
“encapsulate mechanism, not policy”. By extracting the
mechanism from the application but leaving the policy, we
can reduce the complexity of the system while maintaining
simple interfaces between independent processes. While
the approach of packaging mechanism in libraries can yield
a similar simplicity of interface, in that case the application
is still at the mercy of bugs or unexpected interactions be-



tween its code and the library code. With Em* that com-
plexity is offloaded to a separate process, whose fate the
application does not share.

Building Block Server Uses Client Uses

Status Device and derivatives 40 22
Command Device 17 N/A
Packet Device 10 5
Data Link Interface 12 32

Table 2: Reuse statistics culled from LXR.

5.4 Reactivity
Reactivity one of the most interesting characteristics of
WSNs. They must react to hard-to-predict changes in
their environment in order to operate as designed. Often
the tasks themselves require a reaction, for example a dis-
tributed control system or a distributed sensing application
that triggers other sensing activities.

Em* is designed to support reactivity through the notifi-
cation interfaces in Em* devices. Em* also encourages ser-
vices and applications to be written in an event-driven style
that lends itself to reactive design. Many Em* services are
written in a style that decouples the “input” and “output”
call chains, with shared state in the middle. Thus, the input
side makes changes to the state, and notifies the output side
to recompute. Independently, the output side processes the
current state according to its own schedule and the needs
of clients. This design can greatly simplify implementation
given the many possible orders of event arrival.

5.5 High Visibility
While the decision to stress visibility in the Em* design
was partly motivated by aesthetics, it has paid off hand-
somely in overall ease of use, development, and debugging.
The ability to browse the IPC interfaces in the shell, to
see human-readable outputs of internal state, and in many
cases to manually trigger actions makes for very conve-
nient development of a system that could otherwise be quite
cumbersome. Tools like EmView also benefit greatly from
stack transparency, because EmView can snoop on traffic
travelling in the middle of the stack in real time, without
modifying the stack itself.

6 Conclusion and Future Work
In conclusion, we have found Em* to be a very useful de-
velopment environment for WSNs. We are using Em* at
CENS as the basis for a 50-node seismic deployment that
is currently under development, as well as for numerous lo-
cal development projects. We are also directing resources
to supporting other groups with their Em* based projects,
including the NIMS project and the ISI ILENSE group.

We are currently focusing on Em* support for the Cross-
bow/Intel Stargate platform, which is an inexpensive Linux
platform based on the XScale processor. Compared with
the iPAQ platforms we had used previously, Stargates are
much easier to modify and much easier to buy.

We are also planning several Em* extensions. To sup-
port high-bandwidth sensor interfaces such as high-rate au-
dio, image data, and signal processing modules, we plan to
add a shared-memory based data channel to Sensor device.
We also plan to implement a device proxy that can enable
remote access to devices over local high-speed intercon-
nects, for example to allow cpus in same logical system
to share devices. Through work on the NIMS project, we
hope to gain more experience with sensors, actuators, and
simulated world-models.
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