
Nonintrusive Precision Instrumentation
of Microcontroller Software

Ben L. Titzer
UCLA

Computer Science Department
titzer@cs.ucla.edu

Jens Palsberg
UCLA

Computer Science Department
palsberg@ucla.edu

Abstract
Debugging, testing, and profiling microcontroller programs are no-
toriously difficult. The lack of supporting software such as an
operating system, a narrow interface to the hardware chip, and
delicately timed sequences of code present significant challenges
which can be exacerbated by the presence of additional debugging
or profiling code. In this paper we present a solution to the preci-
sion instrumentation problem for microcontroller code that is based
upon our open, flexible simulator framework, Avrora. Our simu-
lator preserves all timing and behavior of the instrumented pro-
gram while allowing precision measurement of application-specific
quantities.

Categories and Subject DescriptorsI.6 [Computing Methodolo-
gies]: Simulation and Modeling

General Terms Experimentation, Performance

Keywords Sensor networks, instruction-level simulation, cycle-
accurate, parallel simulation, instrumentation, debugging, monitor-
ing, profiling

1. Introduction
For many embedded applications,microcontrollerscan be used
in place of application-specific integrated circuits (ASICs), which
significantly lowers cost and increases flexibility. Microcontrollers
are small, limited-power processors that represent systems on a
chip: a central processing unit, main memory, and I/O devices in
one package. They generally have limited computational power and
resources but correspondingly low cost, which makes them an ideal
fit for high-volume, low-price electronics where they may serve as
the central or auxiliary control (e.g., a fuel injection system in an
internal combustion engine).

Compared to desktop applications, debugging, testing, under-
standing, and measuring programs that run on a microcontroller can
be a significant challenge because it is hard to observe the software
operation in detail. One approach is to instrument programs at the
source level manually to dump debugging or profiling information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-018-3/05/0006. . . $5.00.

to a narrow interface such as a serial port or individual hardware
pin. However, often these interfaces are partially controlled by the
software itself and can fail mysteriously. Such instrumentation can
also alter the timing and behavior of the underlying program be-
ing instrumented, distorting or ruining results. Alternatively, many
microcontrollers provide an in-circuit-emulation (ICE) mode that
can be accessed through a protocol such as JTAG, which allows the
hardware to be paused, stepped, and resumed. The interface is of-
ten low-level and may be utilized by a debugger such as gdb [8].
However, the interface is insufficient for complex profiling tasks
or debugging the program in the midst of a complex environment
scenario where external devices are present.

A popular approach to debugging and testing microcontroller
programs is to use an instruction-level simulator that is able to
interpret the microcontroller program accurately and report a trace
of various aspects of its execution. The relevant state of the program
is “dumped” as output as the program executes, and the output is
observed manually or post-processed by external tools. However,
this simulator-based approach can require significant modifications
to the simulator to allow the reporting of all relevant information
and it can generate large amounts of output from which it can be
difficult to reconstruct complex behavior.

In this paper we present a new approach to instrumenting mi-
crocontroller software. In contrast to previous work, our approach
has all of the following six properties:

• modular: the instrumentation can be written without editing
the source or target code of the microcontroller;
• efficient: the instrumentation introduces a performance over-

head that is small and proportional to the computation per-
formed by the instrumentation itself;
• flexible: the instrumentation can be inserted statically or dy-

namically;
• high level: the instrumentation can be written in a high-level

language and use complex data structures;
• nonintrusive: the instrumentation does not alter behavior, tim-

ing, or energy usage of the microcontroller software;
• comprehensive:the instrumentation can report on locations in

memory, individual control points, events from the simulation
itself (such as reception of packets in a sensor network simula-
tion), timing counts, energy counts, etc.

Our simulator-based approach offers three core instrumentation
mechanisms,probes, watches, andevents, that are inspired by the
Observer pattern [10] to allow dynamic insertion of program instru-
mentation. Dynamic instrumentation allows adding arbitrary pro-
filing behavior at any point in the program or in response to any
type of event at any point in simulation time, without making any
modifications to the simulator or influencing the program’s behav-

modular efficient flexible high level nonintrusive comprehensive
Manuel instrumentation no yes yes yes no no
Automatic instrumentation yes yes yes yes no no
Simulation traces yes no no yes yes yes
Hardware monitors yes yes no no yes no
Debuggers yes no yes yes no no
Avrora yes yes yes yes yes yes

Figure 1. Six approaches to instrumentation

ior or timing. We have implemented our approach in Avrora [19],
which is a cycle-accurate instruction-level simulator for the AVR
microcontroller and for networks of sensor nodes built on the AVR
microcontroller.

In the following section, we discuss several traditional ap-
proaches to debugging and testing and we argue why none of them
have all six properties listed above. In section 3 we discuss the
architecture of Avrora and how it lends itself naturally to instru-
mentation. In section 4 we introduce our instrumentation mecha-
nisms and their interfaces within the simulation, and in section 5
we discuss efficient implementation strategies. In section 6, we
evaluate the performance overheads introduced by common types
of instrumentation, including per-instruction profiling and periodic
sampling. Finally, in section 7 we discuss applications such as
monitoring stack-allocated quantities and report on our experience
implementing a debugger backend and several profiling tools.

2. Previous Work
We now discuss five previous approaches to instrumenting pro-
grams and discuss their relevance to microcontroller programs. The
five approaches are: manual and automatic source instrumentation,
dynamic binary instrumentation, trace-based simulation, hardware
performance counters, and debugging. For each approach, we as-
sess which of the six desired properties (as listed in Section 1) it
has, and what shortcomings it has. A summary of the discussion is
shown in Figure 1.

2.1 Manual Instrumentation

Often programmers trace the execution of their program by man-
ually inserting instrumentation statements that may print out the
program location and value of one or more program variables, or
toggle a physical pin on the microcontroller when they are reached.
Thus the program generates its own trace that can be inspected to
understand or verify its behavior as it executes on the actual hard-
ware device. Some microcontrollers provide a serial interface to
which print statements in the program write their output; a work-
station or server connected on the other end displays the output on
a user’s terminal or stores it in a file. Often this requires linking in
additional code to manage the serial port as well as the code to ren-
der program quantities such as integers and floating point to a string
representation. In extreme cases and for small devices, the addition
of this extra code may no longer allow the program to actually fit in
the limited code space of the device. Lacing the code with printf’s
also subtly distorts its behavior and may radically affect its timing.
It can sometimes lead to the dreaded “Heisen-bug” effect, where a
bug in the program disappears depending on what instrumentation
is enabled when the program is compiled.

Instrumenting to measure a program can also be done manually
when a programmer gathers profiling information by inserting code
to track various quantities he or she may be interested in such as
loop iterations, function calls, data structures, or timing. The pres-
ence of such code can often influence the results, introducing im-
precision in the measurement. As with any addition to the program,

the instrumentation code or data collected may inadvertently break
the program or cause it to no longer fit on the device due to limited
space.

Jeffery and Griswold [12] presented an approach to execution
monitoring in which the instrumentation code is written in the same
language as the monitored program, in a modular way. The instru-
mentation code is written in a co-routine, and every time an event
of interest occurs control is transferred to the instrumentation code.
Thus, the only extra code that appears in the monitored program are
statements for yielding control to the instrumentation co-routine. A
related approach can be achieved using aspect-oriented program-
ming [13] in which instrumentation code, for example, can be writ-
ten in a separate aspect and weaved in with the monitored code
using an aspect weaver. Aside from the modularity achieved us-
ing co-routines and aspects, those approaches suffer from the same
drawbacks as other approaches to manual source instrumentation.

To summarize: manual instrumentation can break the program,
is labor-intensive, is poor at debugging, understanding, and testing,
but good at measuring application-specific quantities.

2.2 Automatic Instrumentation

Software is automatically instrumented in many contexts for many
purposes. Let us begin with automatic source instrumentation.
Templer and Jeffery [18] presented the CCI tool, which inserts
code into C programs for obtaining events that are useful for moni-
toring. Auguston [3] presented a tool for instrumenting C programs
such that assertions can be checked at run-time or such that a trace
can be saved and later post-processed. Such tools obviate the need
for editing the monitored program and they often provide a domain-
specific language [18, 3, 4] for writing the instrumentation code,
and tools that can translate the instrumentation code to the language
of the monitored program. The main problem with this approach
is that it does insert code into the monitored program and there-
fore changes the timing properties, increase code size, etc. Also,
the instrumentation code can only have access to what is available
at the source level of the language of the monitored program, not
quantitative measures such as cycle counts, energy counts, etc.

It is also possible to do automatic binary instrumentation.
Of particular interest isdynamic binary instrumentation which
can be done either using run-time code generation, as done by
Hollingsworth, Miller, Goncalves, Naim, Xu, and Zheng [11] or
using operation-system support, as done by Tamches and Miller
[17], Moore [14], and Cantrill, Shapiro and Leventhal [6], Also for
binary instrumentation may one use a domain-specific language
for writing the instrumentation code [11, 14, 6]. Dynamic binary
instrumentation is not suited for microcontrollers, where machine
code is often immutable, and there is no supporting software such
as an operating system which many such techniques require.

2.3 Simulation Traces

Another approach is to use an instruction-level simulator, such as
SimpleScalar [5], which can execute the machine code program and
produce a trace of its execution. Simulation offers the advantage of
reproducibility, which solves the “Heisen-bug” problem, and the

ability to inspect the execution in fine-grained detail by produc-
ing a detailed trace as the output of simulation. The trace can then
be inspected either manually or by automated tools external to the
simulator to glean the desired information about the program’s exe-
cution. Some simulators offer various output options to be selected
at the beginning of executing the simulation such as tracing each in-
struction, memory access, stack operation, interrupt, device event,
etc, and may offer higher-level services such as counting instruc-
tion executions, cache misses, or other things.

One main disadvantage is that even simple monitoring tasks can
have dynamic behavior that is not easy to capture with a simulation
trace. In such a case all of the relevant trace information must be
enabled at the beginning of execution and sifted through later, since
they cannot be enabled and disabled dynamically. For example, the
simple task of monitoring a local variable in a function is com-
plex; the variable may at times be stored in a register and at other
times on the stack, depending on how the compiler allocates regis-
ters, and while on the stack it might be modified indirectly through
a pointer access. Worse, the variable is only in scope during the
lifetime of the function call; it is not adequate to simply monitor
a single memory location in the stack. Enabling all tracing to cap-
ture all such behavior leads to the problem that the trace output can
be huge; programs may execute many millions of instructions and
generate gigabytes of data quickly. Generating such an amount of
data and processing it slows down simulation considerably, render-
ing it impractical for long-running simulations. In our approach, we
solve this problem by allowing instrumentation to be enabled and
disabled dynamically.

Another disadvantage is that such an approach may require
intrusive modifications to the simulator if the relevant state for
an instrumentation task is not available outside of the simulator.
Intrusive modifications require access to the simulator source code
and some knowledge of its implementation. Our approach requires
no such modifications, and only knowledge of a clear, well-defined
interface to the state of the simulation.

To summarize: simulation traces can be slow and cumbersome
and poor at debugging, understanding, but sufficient for testing and
measuring, as long as it is not application-specific.

2.4 Hardware Monitors

Many hardware designs have additional logic that allows debug-
ging or profiling of a program as it executes. For example, mod-
ern desktop CPUs record hardware profiling information such as
branch frequencies and cache misses which can be used to under-
stand the performance of an executing program. Ammons, Ball, and
Larus [2] used hardware counters on the Sun UltraSPARC proces-
sor to do flow sensitive and context sensitive path profiling. Adl-
Tabatabai, Hudson, Serrano, and Subramoney [1] used hardware
performance monitors on the Intel Itanium 2 processor to do gather
information that can help improve prefetching. However, in embed-
ded systems where chip size and power consumption are important,
such logic is rare, and programs cannot be profiled in this way.

Fortunately, most CPUs and microcontrollers do support a hard-
ware interface that allows a program to be loaded and run. Usually
called in-circuit emulation or ICE, logic built into the device of-
fers an external physical interface for programs to be loaded, run,
paused, stepped, and resumed, as well as the state of the registers,
memory, and on-chip devices to be inspected. A source-level de-
bugger can be connected to this hardware interface and allow de-
bugging of the program running on the actual chip. However, one
disadvantage is that complex application-specific measurements of
the software cannot be performed through this interface (e.g. mea-
suring hits in a software-implemented hash table).

Also, many microcontroller programs interact with external de-
vices that are wired directly to the microcontroller. Often these de-

vices are not designed to participate in the debugging of the pro-
gram; they cannot be paused, inspected, and resumed as the mi-
crocontroller itself can. Therefore debugging programs in the pres-
ence of external devices can be difficult. Troubleshooting timing
problems can therefore be frustrating and difficult, especially when
external devices are involved.

To summarize: hardware-supported instrumentation is good at
debugging (with limitations for external devices) and understand-
ing, but poor at measuring and testing application specific quanti-
ties and is often not available for embedded systems.

2.5 Debuggers

Many debuggers are able to attach to either a hardware-based de-
bugging interface such as JTAG or to an instruction level simu-
lator. Either generally offers a comparable interface; breakpoints,
watchpoints, and read/write of various memory locations. Debug-
gers make use of source-level information preserved by the com-
piler that describes the mapping of the machine code and memory
addresses back to the source code. However, most compilers are
unable to preserve complete debugging information when the pro-
gram is compiled at the highest optimization levels, often leading
to separate “debug” and “optimized” builds.

A debugger can be an excellent tool for interacting with an
executing program and may offer limited profiling and monitoring
of source-level behavior, but most debuggers are not suited to
complex monitoring tasks, for automated testing, and are often
not extensible in what behavior can happen at breakpoints and
watchpoints. Recent progress was reported by Ducassé [9] who
presented an approach to debugging for C in which instrumentation
is written in Prolog and queries can be executed at breakpoints.
However, debuggers are often limited by the quality of source-
level mapping provided by the compiler and may be confused by
advanced optimizations such as code motion.

Inspired by the shortcomings of the previous approaches to
debugging, testing, and measuring, we will present an approach that
has all six desired properties. We have implemented our approach
in the Avrora simulator [19].

3. The Avrora Simulator
Avrora is a flexible simulator framework. In this section we briefly
discuss aspects of Avrora’s software architecture relevant to design-
ing and implementing instrumentation mechanisms; the discussion
in this section is based on our paper [19] and is provided for con-
venience and completeness.

Avrora is implemented in Java; its object-oriented design lends
itself to encapsulating the principal concepts in simulation such as
instructions, devices, and state in an intuitive manner.

Figure 2 shows a structural diagram of the software architecture.
The encapsulation mirrors the physical design of a device; a micro-
controller contains an interpreter capable of executing instructions
and on-chip devices such as timers, a serial controller, etc, and is
itself contained in a larger platform abstraction which adds external
devices.

3.1 Device Simulation

One primary problem of developing and testing a microcontroller
program that controls an external device is that often the target de-
vice cannot be paused and stepped like the microcontroller in ICE
mode. Stopping the microcontroller in the middle of its interac-
tions with the external device may give unexpected and incorrect
results. In order to address this problem, Avrora’s architecture al-
lows a model of each device to be built in software that emulates
the device and allows the program to interact with it. Each de-
vice model is written in Java and connects to the main simulation

Platform

Microcontroller

UART Timer0 Ports On-chip devices

Pin interface

Radio LEDs Off-chip devices

Simulator

Interpreter

Radio

IOReg interface

LEDs

Event queue
interface

Pin interface

Figure 2. Avrora’s software architecture

through interfaces that separate it from the details of the simulator
implementation.

On the AVR architecture, the program interacts with internal
devices through memory-mapped I/O registers. In the simulation,
each I/O register is represented as a Java object that has both
read() andwrite() methods. Each device can then implement
its own behavior for reading and writing the registers associated
with that device, without any knowledge of the rest of the simulator
implementation.

For external devices, the program can read or write the logic
value of an individual pin on the microcontroller chip or can com-
municate through one of the more complex interfaces such as the
serial port. In the simulator architecture, external devices can be
implemented as Java classes and connected to individual pins or to
a serial port interface, and thus are separated from the simulator
details.

These interfaces in Avrora’s software architecture make it easy
to implement new device models and connect them to the simu-
lation without requiring modification or recompilation of the sim-
ulator, as, like any Java class, new device classes can be loaded
dynamically and wired into the simulation. In this way, both the
simulator and the devices are insulated from changes in implemen-
tation. We demonstrate in section 6 that this increased modularity
does not sacrifice performance by comparing Avrora to two other
AVR simulators with comparable features.

3.2 Event Queue

In order to achieve a high degree of accuracy and closely match the
hardware, cycle-accurate simulation is needed. The precise timing
of individual instructions and devices can be important for accurate
performance accounting, testing real-time properties, and correct
emulation of device operation such as timers that are derived from
the main clock.

Building a cycle-accurate interpreter for microcontrollers is
straightforward, since most microcontrollers have an ISA where
each instruction (with the exception of branches) takes a fixed num-
ber of cycles to execute and there are no pipeline stalls.

However, microcontroller programs often depend heavily on the
timing of on-chip and off-chip devices. On AVR, some examples
include: a timer might be programmed to increment a register ev-
ery 16 cycles and trigger an interrupt when the count reaches a

maximum value; the UART chip communicates over the serial port
by writing bits out one by one on a pin at a fixed and known clock
rate; the EEPROM write sequence offers only a strict timing win-
dow for the program to supply the data in order to work correctly.
Also, controlling external devices can often have complex timing
behavior that should be modeled accurately in simulation.

One naive interpreter implementation would be to simply notify
each device after every clock cycle, and each device would decide
what work (if any) should be done. While correct in terms of
timing, this strategy complicates device implementations and leads
to poor simulation performance. Avrora solves this problem by
exposing an event queue that is timed by the main microcontroller
clock. Devices perform work at the correct time by inserting events
into this queue. For example, when the timer is programmed to
increment a register every 16 cycles, it simply inserts an event into
the queue 16 cycles into the future. When the interpreter reaches
that time in the future, the timer event is fired. The event increments
the register and inserts itself again into the queue 16 cycles into the
future.

Avrora implements the event queue as an efficiently maintained
delta queue, with the nearest event in the future at the head. After
each instruction, it subtracts the cycles consumed by that instruc-
tion from the count at the head of the queue and fires the event
when it reaches zero, moving the head to the next link.

The event queue also enables the sleep optimization where when
the microcontroller is in sleep mode, the simulator only needs to
processes events in the queue in order, skipping large amounts of
idle simulation time.

We now turn to the contribution of this paper: design and imple-
mentation of nonintrusive precision instrumentation.

4. Instrumentation Mechanisms
For simulation-based approaches, a simulator’s usefulness is re-
lated to the instrumentation services that it provides. For example,
systems such as shade [7] and SimpleScalar [5] provide instruc-
tion counts, cache misses, execution time, and other quantities en-
visioned by the designers of the simulator, as well as the ability to
dump traces as output. Users are limited by what the simulator pro-
vides or what they can reconstruct by post-processing the output of
simulation.

In Avrora, we provide three general mechanisms: probes,
watches and events. These represent instrumentation points in-
stead of fixed services. Common services can be implemented in
terms of these mechanisms while additionally allowing new types
of instrumentation to be added easily by users of the system—
without modifying or recompiling any code. This enables detailed,
application-specific results and solves an open extensibility prob-
lem not previously recognized in this domain.

4.1 Probes

Many instrumentation tasks require some behavior to be triggered
when a particular location in the program is reached. For example,
a debugging task might set a breakpoint at a particular instruction
corresponding to a line of source code, or a profiling task may
keep a count of the number of times a particular function is called.
A typical timing measurement of interest might be the number
of clock cycles between the program entering one location, like
the start of an interrupt handler, and it reaching another location,
such as the end of the interrupt handler. More complex tasks are
also possible. Rather than attempt to foresee all possible scenarios
when building our simulator, we instead choose to offer a point
of extensibility called a probe, which allows arbitrary behavior to
inserted at any location in the program, as illustrated in Figure 3.

The simulator exposes an interfaceSimulator.Probe that al-
lows a Java object implementing the interface to be inserted at a

Simulator

Interpreter

ProbedInstr

…

program

User Code

Probe A

Probe B

Probe C

.fireBefore()

.fireAfter()

.insertProbe()

.removeProbe()

Figure 3. Instrumentation with probes

Simulator

Interpreter

sram

sram_watches

… …

User Code

Watch A

Watch B

Watch C

.insertWatch()

.removeWatch()

.fireBeforeX()

.fireAfterX()

Figure 4. Instrumentation with watches

particular location in the program. TheSimulator class exposes
two methods:

insertProbe(Probe p, int addr) and

removeProbe(Probe p, int addr)

that allow probes to be inserted and removed from a program lo-
cation dynamically during the execution of the program. When the
program reaches that location, the probe’sfireBefore() is called
before the instruction executes, and the Instr object representing
the instruction at the location, the address of that instruction, and
a State object representing the state of the simulation are passed
to the method. After the probe returns, the instruction is executed
by the interpreter. After the instruction has finished execution, the
probe’sfireAfter() method is called, again passing the instruc-
tion, its location, and the state of simulation as parameters to the
call. Since the probe executes in the virtual machine running the
simulation, and not as part of the executing program, it cannot in-
advertently alter the program’s execution. TheState interface pro-
vides methods to access the state of registers, memory, and devices
and enforces that the probe can only read the state of the program
being simulated and not alter it. Since the probe runs “in the simu-
lation”, it does not affect the timing of the underlying program.

The simplest probe may just increment a counter for that in-
struction, as shown in Figure 5. A more complex probe might pause
the simulation (such as a breakpoint), inspect the registers or mem-
ory, or insert or remove other probes. Since a probe is a Java class

public class ProgramProfiler
implements Simulator.Probe {

public final Program program;
public final long icount[];
public ProgramProfiler(Program p) {

int size = p.program_end;
icount = new long[size];
program = p;

}
public void fireBefore(Instr i, int address,

State state) {
icount[address]++;

}
public void fireAfter(Instr i, int address,

State state) {
// do nothing.

}
}

Figure 5. A program profiler probe

public class MemoryProfiler
implements Simulator.Watch {

public final long rcount[];
public final long wcount[];
public MemoryProfiler(int size) {

rcount = new long[size];
wcount = new long[size];

}
public void fireBeforeRead(Instr i, int address,

State state,
int data_addr,
byte value) {

rcount[data_addr]++;
}
public void fireBeforeWrite(Instr i, int address,

State state,
int data_addr,
byte value) {

wcount[data_addr]++;
}
public void fireAfterRead(Instr i, int address,

State state,
int data_addr,
byte value) {

// do nothing
}
public void fireAfterWrite(Instr i, int address,

State state,
int data_addr,
byte value) {

// do nothing
}

}

Figure 6. A memory profiler watch

just like other parts of the simulator, it can be loaded dynamically
like other classes in Java; the simulator need not be modified or re-
compiled to allow the probe to be inserted. Our technique therefore
benefits greatly from the inherent flexibility in the Java language.
For simulators implemented in C or C++, this level of modularity
could be achieved by allowing the user to specify a dynamic library
containing instrumentation code that the simulator would link in

throughdlopen anddlsym calls, removing the need to recompile
the simulator to add instrumentation. We show some common uses
of probes in section 6.

4.2 Watches

Just as in many cases an instrumentation task requires some actions
to be taken when a particular location in the program is reached,
some tasks require actions to be taken when a particular memory
location is accessed. For example, many debuggers allow a “watch-
point” to be inserted on a variable in the program, and when that
variable is modified, the program will be paused. This cannot be
done simply by adding probes throughout the code of the pro-
gram because memory locations can be modified indirectly through
pointers or may reside in the stack. In this case, the most natural and
general mechanism is to allow another point of extensibility called
a watch to be inserted at the particular memory location, as illus-
trated in Figure 4. Reads and writes to that memory location will
then trigger the actions in the watch.

Similar to the case with probes, the simulator exposes an inter-
faceSimulator.Watch that allows a Java object implementing the
interface to be inserted at a particular memory location in memory.
TheSimulator class exposes two methods:

insertWatch(Watch w, int addr) and

removeWatch(Watch w, int addr)

that, just as for probes, allow watches on memory locations to
be inserted and removed dynamically as the program executes.
When the program attempts to read that memory location, the
watch’s fireBeforeRead() method is called, the read is per-
formed, and then the methodfireAfterRead() is called. Sim-
ilarly, when the program attempts to write to that location, the
fireBeforeWrite() and fireAfterWrite() methods before
and after the write, respectively.

The simplest watch may just increment a counter for that mem-
ory location, as shown in Figure 6. Watches can be used to im-
plement watchpoints for debuggers, value profiling for data struc-
tures, monitoring reference locality for cached architectures, or can
enable other types of instrumentation dynamically by inserting or
removing probes or other watches in the program. This dynamic
property can be key in supporting many application-specific profil-
ing tasks such as monitoring each item in a list, the efficiency of a
hash table, accesses to a matrix, etc. We show some common uses
of watches in section 6.

4.3 Events

One often-overlooked aspect in instrumentation schemes is the ac-
curate accounting of time. For delicately timed code, interaction
with devices, or for precise performance measures, accurate timing
is essential. While instrumenting locations in the code and mem-
ory of an executing program is essential, in some instrumentation
applications “instrumenting” time in the same way is useful.

For example, one application is periodic profiling of the pro-
gram. For a course-grained approximation of which locations in
the code are executed the most frequently, the program counter can
be sampled periodically with an event. At the beginning of the pro-
gram, an event is inserted in the queue for 1000 cycles (for exam-
ple) in the future. When this event fires, it will record the program
counter value and determine which function contains that program
counter. The function is then charged with a “tick”, and the event is
re-inserted into the queue for 1000 cycles in the future. In this way,
functions accumulate “ticks”, which approximates the time spent
in each.

Following the theme of theSimulator.Probe interface and
theSimulator.Watch interface, theSimulator class exposes an
interfaceSimulator.Event that allows a Java object implement-

ing the interface to be inserted into the event queue. The interface
has a single method,fire(), that the simulator calls when the time
for the event to be fired is reached.

5. Implementation Techniques
In this section, we discuss the efficient implementation of the in-
strumentation mechanisms. For probes and events, the overhead
incurred is proportional to the amount of instrumentation present,
with no overhead if probes and events are not used. The support for
watches imposes a negligible overhead regardless of use.

5.1 Probe Implementation

Avrora implements probes with minimal simulation overhead.
Since probes are tied to the execution of individual instructions,
the interpreter must be modified to support executing probes be-
fore and after (potentially) any instruction in the program. Probes
also be inserted and removed dynamically, so the interpreter must
be flexible enough to allow this.

Avrora represents each instruction in the program as an instance
of a Java object descending from theInstr class. Each type of in-
struction is represented by a class inside ofInstr that also extends
Instr. For example, theInstr.ADC class represents instances of
the “adc”, or add with carry, instruction. Instances of each instruc-
tion class store the operands (registers, immediates, etc) as fields in
the object. When executing instructions, a main loop controls exe-
cution by keeping track of the current instruction, calling a method
on the instruction for it to be executed, and then advancing to the
next instruction. (Originally we expected the cost of the call to be a
limiting factor for interpreter performance; however, we found that
on modern Java virtual machines that cost is negligible compared
with the other costs of interpreting the instruction).

The naive strategy to add probes to an instruction-level simula-
tor would alter the main interpretation loop to check if the instruc-
tion to be executed has any attached probes and if so fire calling the
probes’fireBefore() methods, execute the instruction, and then
call thefireAfter() methods. This imposes overhead on the sim-
ulation because the tests for the presence of probes happen for each
instruction executed, regardless of whether that instruction is being
probed or not.

We solve the efficiency problem by introducing a new class,
ProbedInstr, that extendsInstr and, like other instructions, has
a method that is called to execute it. When a probe is inserted at a
particular instruction in the program, a newProbedInstr instance
is created that replaces that instruction and contains references to
the original instruction and the probe(s) attached to the instruc-
tion. Later, when that instruction is executed, theProbedInstr
is executed instead of the original instruction. It will first call the
probes before execution, then call the original instruction’s execute
method, and then call the probe(s) after the instruction is finished.
In this way, the main loop of the interpreter need not be altered and
the performance of non-probe instructions is not degraded, since
interpreting each instruction already involves one indirect call.

This implementation technique for probes is widely applicable;
even in an interpreter which uses a large switch statement with
various integer codes to differentiate between instruction types, the
same effect can be derived by adding an extra instruction type for
a “probed instruction”, adding a new case in the switch statement,
and replacing the original instruction in the program with a probed
instruction when the probe is inserted. This new case in the switch
statement therefore adds no overhead to the execution of the other
instructions.

Our implementation technique has the important property that
probing the executing program has overhead which is proportional
to the dynamic count of probes fired; simulation without instru-
mentation runs at full speed. We validate this claim in section 6 by

showing that our simulator outperforms two other widely available
AVR simulators.

5.2 Watch Implementation

The simulator must implement watches in a way that attempts
to minimize the performance overheads in simulation while still
preserving the ability to dynamically insert and remove watches.

In Avrora, the memory (SRAM) of the microcontroller is rep-
resented by a simple array of bytessram[] indexed from 0 to
the highest memory address. In the case of the AVR architec-
ture, this memory is byte addressable and the largest currently
available memories are 4KB in size. The byte array that repre-
sents SRAM is stored in the interpreter and is read and written
by the instruction implementations through thegetDataByte()
and setDataByte() methods. These methods were modified in
order to support watches. In addition to the arraysram[] for
storing the actual value of memory locations, a parallel array
sram watches[] is kept where each element stores a (possibly
empty) list of watches for each memory address. The reference
to this array is non-null only when there are active watches at any
memory location; it is not allocated until the first watch is activated.

ThegetDataByte() andsetDataByte() methods are imple-
mented such that the reference to thesram watches[] array is
tested first. If this reference isnull, then there are no currently ac-
tive watches, and the read or write happens normally. If the array
is present, then the list at the location corresponding to the mem-
ory address being accessed is tested. If this element isnull, then
there are no watches for this memory address, and the read or write
can happen normally. If the list is notnull, then the watches are
called before and after the access occurs. For large memories, it
may be necessary to have a more space efficient implementation
of thesram watches[] array, such as a two-level array, a tree, or
a hash table. We have not found this to be necessary, since AVR
memories are 4KB or less.

While for probes we can completely eliminate overhead for
non-probed instructions, there is still a small cost on each mem-
ory access to check whether there are 1) any watches for the entire
memory and 2) any watches for that address. We measure this over-
head in section 6 for computationally intensive and memory inten-
sive benchmarks. For most programs, the cost of simulating mem-
ory accesses is small compared to the other costs of simulation,
and therefore the extra overhead for supporting memory watches is
negligible.

5.3 Event Implementation

As discussed in section 3, an event queue tracks individual clock
cycles for each instruction and allows cycle-accurate interpretation
of instructions and device implementations. Instrumentation events
are treated just as another type of event in the simulation, whether
it be work to be performed by a device, communication, etc. In this
way the event queue mechanism is reused, and no extra cost is paid
for apply it to profiling.

6. Experimental Results
In this section, we evaluate the performance overheads introduced
in implementing the instrumentation mechanisms over a variety
of common instrumentation tasks. For all experiments, we use the
same machine: a dual 3.06ghz Xeon server with 4GB of memory
running Linux kernel 2.6.8. To run Avrora, we use the publicly
available Sun Hotspot JVM version 1.4.2-05 in client mode, un-
less specified otherwise. For benchmarks, we use: i) three computa-
tionally intensive programs taken from the Livermore loops series:
livermore1, livermore2, and livermore5; ii) a C implementation
of bubblesort for arrays of 16-bit integers; iii) a device-intensive

Performance Comparison: AVR Simulators

0

5

10

15

20

25

30

Livermore Loop 1 Livermore Loop 2 Livermore Loop 5

benchmark

M
hz

Avrora (-server)
Avrora
ATEMU
simulavr

Figure 7. Performance Comparison

TinyOS sensor network program that uses the radio: CntToRfm; iv)
an interrupt-driven sleep-often program that simply toggles LEDs
periodically: Blink.

6.1 Simulator Performance

First, it is important to establish that our techniques can be used in a
high-performance simulation environment, since evaluating an im-
plementation technique in a slower simulator can mask overheads
in the already poor performance of simulation. For this reason, we
first show benchmarks that demonstrate our simulation framework
has excellent performance compared to two other AVR simulators.
The comparison is taken from our paper [19].

The first simulator issimulavr [16], an open-source AVR simu-
lator that supports a variety of microcontroller models and on-chip
devices and is widely used in the open-source community. It sup-
ports source-level debugging with gdb by communicating over a
socket.

The second, ATEMU [15], is a sensor network simulator that
is able to simulate mica2 motes including the ATMega128 AVR
microcontroller, its on-chip devices, and an external CC1000 radio.
It has its own custom debugger interface implemented in GTK+.

All three simulators interpret the full AVR instruction set, are
cycle-accurate, and support most of the on-chip devices of the
microcontroller. While Avrora is implemented in Java, ATEMU
and simulavr are implemented in C and were compiled with gcc
version 3.2.2 for our benchmarks.

Figure 7 shows the performance results comparing the three
AVR simulators. First, we see that Avrora is sensitive to the Java
Virtual Machine’s performance; it has nearly double the perfor-
mance when run on the more sophisticated server VM. Second,
ATEMU and Avrora have comparable performance when Avrora is
run on the client (default) version of the JVM, but Avrora outper-
forms ATEMU by up to a factor of two when run on the server VM.
The other simulator,simulavr, lags behind the other two simulators
significantly. All Avrora results include full instrumentation sup-
port; no instrumentation mechanisms were removed from Avrora
to make it run faster.

Avrora and ATEMU are sensor network simulators; both are ca-
pable of simulating many sensor nodes running in parallel. Avrora
scales well to large networks with high device activity, outperform-
ing ATEMU by as much as a factor of 20, as reported in our paper
[19]. This scalability helps to establish that Avrora is fast and scal-
able enough that measuring overheads in this context gives mean-
ingful results.

6.2 Watch Support Overhead

Next we evaluate the performance overhead introduced in support-
ing watches, namely the extra checks performed when memory is
read or written by the program. This overhead is proportional to the
frequency of memory access by the program. For this reason, we
a computationally intensive benchmark livermore1 that accesses
memory infrequently, and a memory-intensive benchmark bubble-
sort.

Watches livermore1 bubblesort
baseline 0.0% 0.0%
none 3.1% 15.8%
present 3.4% 24.0%
empty 3.9% 43.8%
count 4.0% 46.0%

After instrumenting each program, we found that bubblesort ac-
cesses memory once every 4.23 cycles on average, and livermore1
averages one access per 218 cycles. We first ran our simulator
without the watch support by removing related checks in the in-
terpreter to obtain a baseline performance number (“baseline”). We
then evaluate four scenarios: when no watches are present (“none”:
sram watches[] array isnull), when one watch is present but
does not ever fire (“present”), when an empty watch fires for every
memory access (“empty”), and when a watch fires for every mem-
ory access and records the read/written count for every memory ad-
dress (“count”). The numbers in the table represent the percentage
slow-down from the baseline.

6.3 Exact Execution Profile

The first and simplest type of instrumentation task we evaluate is an
exact execution profile of the entire program. The instrumentation
collects an execution count and a cycle count for every instruction
in the program. The instrumentation does this by inserting a probe
at every instruction. During simulation, the probe is invoked for ev-
ery instruction executed and records a counter and the total cycles
consumed for each instruction in an array indexed by the instruc-
tion’s address. This information is reported to the user in a table at
the end of simulation. The benchmark used is livermore1.

Probes Time Overhead
none 63.3s 0.0%
empty probe 74.6s 17.8%
count 84.4s 33.4%
count + cycles 117.4s 85.5%

It is important to note that most instrumentation tasks do not re-
quire work to be done for every instruction executed. For example,
to obtain an execution count and cycles consumed for the whole
program on a basic block level, probes would only need to be in-
serted at the beginning and end of each basic block. For a function
granularity measurement, probes would only need to be inserted at
the beginning and end of each method.

6.4 Periodic Execution Profile

Exact profiling can place a significant overhead on simulation time,
especially if the each sample is expensive to compute, such as a
call chain. While short simulations may not be affected much, the
overhead may be unacceptable for a simulation that lasts hours or
days. One popular approach to the dynamic profiling problem is
to use periodic sampling, where the program counter location, the
call stack, or other criteria is sampled periodically, such as every
n cycles or milliseconds. This gives an approximate answer that is
close to the exact profile with high probability but with significantly
less overhead because samples are taken less often. We ran a similar
experiment to measure the overhead of this approach using four

different periods: 1, 10, 100, and 1000 cycles. This instrumentation
is implemented by an event that is placed in the queue of the
simulation. When this event fires, it will read the value of the
program counter, update a count for that instruction, and then
reinsert itself into the queue for the next period.

Period Time Overhead
none 63.0s 0.0%
1 cycle 189.2s 200.2%
10 cycles 79.7s 26.4%
100 cycles 66.0s 4.7%
1000 cycles 64.0s 1.5%

As expected, the overhead is severe for sampling each cycle,
but decreases rapidly as the frequency of sampling is reduced. For
a sampling period of 1000 cycles (7372 samples per second on
mica2), the overhead imposed on simulation is just 1.5%.

7. Applications and Experience
Up to this point, our discussion has been limited to measuring
quantities that are not application specific, such as the execution
profile for an entire program, or the memory behavior for a whole
program. We would like to be able to measure specific properties of
the program that exist at the source level, such as the percentage of
hits in a hash table, the length of the longest path in a tree, the time
from one point in the program to another, or the most common
value passed to a function. For an approach based on simulation
traces, this can require a significant amount of post-processing by
application-specific scripts.

Avrora supports these types of tasks by providing probes,
watches, and events that are 1) comprehensive, allowing access
to all program locations and data, 2) targeted, meaning individual
locations can be singled out for instrumentation, and 3) dynamic,
allowing instrumentation to be inserted and removed depending on
the behavior of the program.

7.1 Dynamic Instrumentation

Dynamic instrumentation is key for application-specific instrumen-
tation tasks where monitoring the dynamic properties of code and
data structures at the source level is important. For example, in low-
level systems code written in C, it is common to allocate buffers on
the stack to avoid the extra overhead of allocating a block of mem-
ory from the heap and then freeing it after it is no longer used.
In embedded systems it is common to use this technique when
dynamic allocation of memory from the heap is not supported.
Suppose we are interested in monitoring the contents of one such
buffer. It is clear that static instrumentation is inadequate: we can-
not determine ahead of time which memory addresses the buffer
will occupy when it is allocated, and moreover, the addresses the
buffer occupies will be reused as the stack grows and shrinks during
the execution of the program. The problem reduces to the fact that
the buffer has a scoped lifetime; it is only live while the function
that allocated it is live. We can use the dynamic instrumentation
mechanisms of Avrora to solve this problem.

Suppose thatF is a C function that allocates a bufferbuf in
its stack frame and that we are interested in tracking the accesses
to buf during execution. First we determine the starting point of
F in the assembly code. Next, we determine the location ofbuf
in F ’s stack frame as an offset from the stack pointer, which can
be done by examining the debugging information generated by the
compiler. Third, by automatically tracing the basic blocks from the
beginning of the function to basic blocks that end with a return
instruction, we determine the exit points of the functionF . Now,
we can write a probePF -start that is inserted at the instruction at
the beginning ofF . This role of this probe is to insert a watch

W on the memory locations corresponding tobuf whenF begins
execution.PF -startcomputes the location ofbuf by reading the the
stack pointer from theState object and adding the known offset.
WhenW has been installed on the buffer, any accesses to the buffer
from any point in the program, even through pointers, will causeW
to be called before and after the access. WhenF returns, we would
like the watch to be removed, since that memory in the stack will
be reused. We do this by inserting another probePF -endat the exit
points ofF that will removeW from the memory locations when
F exits.

In this way, we can achieve precise, application-specific instru-
mentation without modifying the source code or the binary. It only
requires reading the debugging information generated by the com-
piler in order to determine where to insert probes and watches into
the simulation.

Another example is complex runtime assertion checking. For
example, we might have a data structure in our program that must
obey some invariant, such as members of thered list must all be
red. Using the Avrora instrumentation mechanisms, we can write a
system of dynamic watches that check this property each time an
element is modified. When an item is inserted into the list, a probe
fires that first checks whether the element isred. Then a watch
is placed on that element so that if the element is ever modified
indirectly, the watch can check that thered property still holds.
When the item is removed from the list, we can remove the watch,
and subsequent modifications to the element will not be checked.

7.2 Debuggers and Beyond

We demonstrated the comprehensiveness of our system by imple-
menting several common instrumentation tasks in terms of probes
and watches, allowing us to provide useful services without modi-
fying the simulator code in order to support them.

One important service we wanted to offer was source-level
debugging. Avrora supports this by accepting connections from
gdb, which defines a protocol for remote debugging over a socket or
a serial port. The debugger sends commands over this connection
to insert breakpoints and watchpoints, inspect variables, and step
individual instructions or source statements. We implemented a
monitor that accepts gdb connections, decodes these commands,
and implements each command with probes and watches, without
modifying the simulator’s code. For this task, dynamic insertion
and removal of probes is essential, since the user may insert or
remove breakpoints in the program as he or she interacts with
it. The table below compares the number of lines of Java code,
including comments and blank lines, needed to implement three
common instrumentation tasks in Avrora. For the gdb server, we
required only 570 lines of code, the majority of which handles the
decoding of the serial protocol, 100 lines of which are probe and
watch code.

Monitor Total Probes
gdb server 570 lines 100 lines
A-B timing 200 lines 20 lines
exact profile 200 lines 40 lines

Another common instrumentation task in real-time systems is
A–B timing, where the time required for the program to execute
starting at locationA and ending at locationB is measured. Loca-
tionsA andB might be the start and end of an interrupt handler, for
example.A–B is implemented in a very straightforward manner as
two probes: the probe at locationA records the start time, and the
probe at locationB records the end time, subtracting the time atA
to obtain the result. The times for various traces can be averaged
or the distribution plotted. We implemented a monitor that allows
simultaneousA–B timing for an arbitrary number of pairsA and
B in the program, as well asA–X timing, which records the time

from one location in the program to every other location in the pro-
gram.

8. Conclusion and Future Work
We identified six major properties that are important in an in-
strumentation system: modularity, efficiency, flexibility, high-
levelness, nonintrusiveness, and comprehensiveness. We demon-
strated how previous systems have not been able to have all these
properties simultaneously. We identified three major extension
points in simulation that can allow instrumentation to be added
with a system that satisfies all six of these criteria. Additionally, we
believe our system makes significant progress on two principal cri-
teria of importance to microcontroller programs: nonintrusiveness
and flexibility, while still retaining precision.

Our system is based on instrumenting machine code and raw
memory. Its primary weakness is that accomplishing source-level
instrumentation tasks manually can be tedious and requires detailed
debugging information from the compiler. We would like to ex-
tend the system to make it easier to express source-level monitoring
tasks and automatically translate the instrumentation to the appro-
priate machine-level probes and watches which are inserted at the
correct points in the program.

Our experience has been that collecting information with probes
is relatively easy compared to the tasks of organizing, correlating,
processing and displaying that data, as seen in the ratio of monitor
code to actual probe code in our demonstrative examples. Libraries
of commonly used functionality could aid greatly in reducing the
effort spent in this area.

Dynamic instrumentation is powerful, but it is also more diffi-
cult and tedious to implement because it is written at the machine
level and probes may insert or remove probes or watches. It can be
tricky to get the right probes in the right points in the program at
the right time. Also, the instrumentation is also triggered by the un-
derlying program’s behavior, which in itself can be quite complex.
A domain specific language for writing such instrumentation may
help to simplify complex dynamic instrumentation tasks.

We are also interested in performing a more comprehensive
study for larger embedded programs and more complicated profil-
ing tasks, especially for embedded systems with larger memories.
While our initial work has focused on microcontrollers, there is a
large potential for applicability to these larger embedded platforms
and this remains as future work.

Acknowledgments
We thank Daniel Lee for implementing many of the device simula-
tions in Avrora including the CC1000 radio, Simon Han for valu-
able timing validation work against real devices as well as bug re-
ports and suggestions for improvements to Avrora, and Todd Mill-
stein for comments on an early draft of this paper. We were partially
supported by the NSF ITR award number 0427202.

References
[1] Ali-Reza Adl-Tabatabai, Richard L. Hudson, Mauricio J. Serrano,

and Sreenivas Subramoney. Prefetch injection based on hardware
monitoring and object metadata. InProceedings of PLDI’04,
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 267–276, 2004.

[2] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting
hardware performance counters with flow and context sensitive
profiling. In Proceedings of PLDI’97, ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 85–96,
1997.

[3] Mikhail Auguston. Assertion checker for the C programming
language based on computations over event traces. InProceedings

of AADEBUG’99, International Workshop on Automated Debugging,
2000.

[4] Mikhail Auguston, Clinton Jeffery, and Scott Underwood. A
framework for automatic debugging. InProceedings of ASE’02,
Automated Software Engineering, pages 217–222, 2002.

[5] Todd M. Austin, Eric Larson, and Dan Ernst. Simplescalar: An
infrastructure for computer system modeling.IEEE Computer,
35(2):59–67, 2002.

[6] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal.
Dynamic instrumentation of production systems. InProceedings of
USENIX Annual Technical Conference, General Track, pages 15–28,
2004.

[7] Bob Cmelik and David Keppel. Shade: a fast instruction-set
simulator for execution profiling. InProceedings of SIGMETRICS’94,
Conference on Measurement and Modeling of Computer Systems,
pages 128–137, 1994.

[8] The GDB developers. GDB: The GNU project debugger.
http://www.gnu.org/software/gdb.

[9] Mireille Ducasśee. Coca: an automated debugger for C. In
Proceedings of ICSE’98, International Conference on Software
Engineering, pages 504–513, 1999.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[11] Jeffrey K. Hollingsworth, Barton P. Miller, Marcelo J. R. Goncalves,
Oscar Naim, Zhichen Xu, and Ling Zheng. Mdl: A language and
compiler for dynamic program instrumentation. InProceedings of
PACT’97, Conference on Parallel Architectures and Compilation
Techniques, pages 201–213, 1997.

[12] Clinton L. Jeffery and Ralph Griswold. A framework for execution
monitoring in Icon.Software – Practice & Experience, 24(11):1025–
1049, November 1994.

[13] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In
Proceedings of ECOOP’01, European Conference on Object-
Oriented Programming, pages 327–355. Springer-Verlag (LNCS
2072), 2001.

[14] Richard J. Moore. A universal dynamic trace for Linux and other
operating systems. InProceedings of USENIX Annual Technical
Conference, FREENIX Track, pages 297–308, 2001.

[15] Jonathan Polley, Dionysys Blazakis, Jonathan McGee, Dan Rusk,
John S. Baras, and Manish Karir. ATEMU: A fine-grained sensor
network simulator. InProceedings of SECON’04, IEEE Conference
on Sensor and Ad Hoc Communications and Networks, 2004.

[16] Theodore A. Roth. Simulavr: an AVR simulator.
http://savannah.nongnu.org/projects/simulavr.

[17] Ariel Tamches and Barton Miller. Fine-grained dynamic instrumen-
tation of commodity operating system kernels. InProceedings of
OSDI’99, Symposium on Operating Systems Design and Implemen-
tation, pages 117–130, 1999.

[18] Kevin Templer and Clinton L. Jeffery. A configurable automatic
instrumentation tool for ANSI C. InProceedings of ASE’98,
Automated Software Engineering, pages 249–259, 1998.

[19] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: Scalable
sensor network simulation with precise timing. InProceedings of
IPSN’05, International Conference on Information Processing in
Sensor Networks, 2005. To appear.

