
 Problem Description:Problem Description: Accurate simulation of sensor programs requires precise timingAccurate simulation of sensor programs requires precise timing

 Proposed Solution:Proposed Solution: Efficient, parallel, cycle-accurate simulation with AvroraEfficient, parallel, cycle-accurate simulation with Avrora

Avrora: Scalable Simulation of Sensor Networks withAvrora: Scalable Simulation of Sensor Networks with
Precise TimingPrecise Timing

Ben L. Titzer and Jens Palsberg
UCLA Compilers Group - http://compilers.cs.ucla.edu/

 Introduction:Introduction: Sensor networks are hard to develop and test Sensor networks are hard to develop and test

Debugging microcontroller programs is hard
• Narrow debugging interface to hardware

– Interface to chip is narrow and does not allow complex interaction with
the executing program in real time

– presence of debugging code influences results

• Intricate, low-level code
– Driver code for various hardware sensors and communications devices

• Subtle timing interactions
• Longer development cycles due to reprogramming

Distributed network behavior
• Behavior of code depends on environment

– Can depend on input to sensors and communication with outside world

• Distributed, multi-hop communications
– Routing algorithms
– Data mining

• Detailed network monitoring difficult
– Lots of sensors, lots of communication
– Microsecond level phenomenon
– Complex interactions

High Accuracy needed

Parallel machine-code simulation Results

UCLA UCLA –– UCR UCR –– Caltech Caltech –– USC USC –– CSU CSU –– JPL JPL –– UC Merced UC Merced

Center for Embedded Networked SensingCenter for Embedded Networked Sensing

Poor

High

Good

Scalability

GTK2

X

Libelf

gcc

libxml

noneGoodExcellentFairNoneFairAtEmu

Linux

X86

TinyOS

ncc

gcc

nonePoorFairExcellentNonePoorTOSSIM

JavaFramework

Stack

CFG

ExcellentHighHighGoodExcellentAvrora

R
equires

Program
A

nalysis

Flex ib ili ty

A
ccura cy

Perfo rm
ance

Parallelism

Po rtab ilit y

Simulator

Environment

Interpreter

Monitor
(user)

Off-chip Devices

On-chip Devices

Fe = Fire Event
Fp = Fire Probe
Fi = Fire Interrupt
Wi = Write IO Register
Wp = Write Pin
Rp = Read Pin

Fp

Fi Wi

Ip

S

S = Start
X = Stop
Pi = Post Interrupt
Pe = Post Event
Ip = Insert Probe

WpRp

Pi

Pe

Event Queue

Pe

Fe

Simulator Organization

X

Asynchronous

Synchronous

Fe

Channel Utilization

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 8 16 32 64 128 256 512

Number of Nodes

B
y
te

s
 p

e
r

s
e
c
o

n
d

Attempts

Delivered
Corrupted

Channel Limit

CPU bound performance

0

5

10

15

20

25

30

Livermore Loop 1 Livermore Loop 2 Livermore Loop 5

benchmark

M
h

z

Avrora (-server)
Avrora
ATEMU
simulavr

Scalability

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Number of processors

N
o

rm
a
li

ze
d

 E
x
e
cu

ti
o

n
 T

im
e

1 node
4 nodes
32 nodes

Performance

0.1

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Number of nodes

S
e
co

n
d

s

ATEMU
Avrora
TOSSIM

•Map one thread per node
–Allows parallelism in simulation
–Requires new solutions to Send-Receive and Sampling problems

•Synchronization Interval approach
–Periodically synchronize threads to preserve order and timing of
communications

•Wait For Neighbors approach
–Node waits for all neighbors that can influence its operation to
pass a specific point in global simulation time

Core Problems Identified
• Cycle-level phenomenon

– Software control of radio hardware device
– Sleep behavior, interrupt behavior
– Measure time-dependent quantities such as channel

utilization, access latency

• Previous approaches don’t scale well
– Synchronization of nodes every clock cycle
– Each device simulated adds work every clock cycle
– Poor performance for large networks

• Send-Receive Problem
– A receiver node must not proceed past a point in time

at which it should receive a radio packet from a sender
until the sender is beyond the point of transmission

– Time to send a byte on mica2: 6106 clock cycles

• Sampling Problem
– A node sampling the RSSI value of its own radio

should not proceed past a point in time at which
possible senders can influence the sampled value

– Time to sample RSSI on mica2: 832 clock cycles

•Cycle-accurate AVR simulator
–Efficient execution of program code
–Accurate timing of program interaction
with devices

•Device and Radio simulation
–Timers, UART, SPI, CC1000
–Important for correct program simulation

•Whole network simulation
–Nodes sense, compute, and communicate,
with full monitoring capabilities

•Profiling and Monitoring
–Flexible extension points allow for
detailed monitoring of program execution
without changes to simulator

Node A

Node B

Node C

Node D

Node E

T=0 T=1 T=2 T=3

RSSI

Send E1

C1

RSSI

A

B

C
E

D

Network

Send C1 Send C2

RSSI

Synchronization Illustration

C2+E1

C1 C2

Delivery point

Synchronization point

Starting point

Avrora allows sophisticated
program profiling to be

performed during simulation
without loss of precision, and

with fully cycle-accurate
results.

Simulator comparison

