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  Introduction:Introduction: Sensor networks are hard to develop and test Sensor networks are hard to develop and test

Debugging microcontroller programs is hard
• Narrow debugging interface to hardware

– Interface to chip is narrow and does not allow complex interaction with
the executing program in real time

– presence of debugging code influences results

• Intricate, low-level code
– Driver code for various hardware sensors and communications devices

• Subtle timing interactions
• Longer development cycles due to reprogramming

Distributed network behavior
• Behavior of code depends on environment

– Can depend on input to sensors and communication with outside world

• Distributed, multi-hop communications
– Routing algorithms
– Data mining

• Detailed network monitoring difficult
– Lots of sensors, lots of communication
– Microsecond level phenomenon
– Complex interactions

High Accuracy needed

 

Parallel machine-code simulation Results
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•Map one thread per node
–Allows parallelism in simulation
–Requires new solutions to Send-Receive and Sampling problems

•Synchronization Interval approach
–Periodically synchronize threads to preserve order and timing of
communications

•Wait For Neighbors approach
–Node waits for all neighbors that can influence its operation to
pass a specific point in global simulation time

Core Problems Identified
• Cycle-level phenomenon

– Software control of radio hardware device
– Sleep behavior, interrupt behavior
– Measure time-dependent quantities such as channel

utilization, access latency

• Previous approaches don’t scale well
– Synchronization of nodes every clock cycle
– Each device simulated adds work every clock cycle
– Poor performance for large networks

• Send-Receive Problem
– A receiver node must not proceed past a point in time

at which it should receive a radio packet from a sender
until the sender is beyond the point of transmission

– Time to send a byte on mica2: 6106 clock cycles

• Sampling Problem
– A node sampling the RSSI value of its own radio

should not proceed past a point in time at which
possible senders can influence the sampled value

– Time to sample RSSI on mica2: 832 clock cycles

•Cycle-accurate AVR simulator
–Efficient execution of program code
–Accurate timing of program interaction
with devices

•Device and Radio simulation
–Timers, UART, SPI, CC1000
–Important for correct program simulation

•Whole network simulation
–Nodes sense, compute, and communicate,
with full monitoring capabilities

•Profiling and Monitoring
–Flexible extension points allow for
detailed monitoring of program execution
without changes to simulator
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Avrora allows sophisticated
program profiling to be

performed during simulation
without loss of precision, and

with fully cycle-accurate
results.

Simulator comparison


